ORGANOMETALLICS

Volume 3, Number 8, August 1984

© Copyright 1984 American Chemical Society

Nucleophilic Substitution and Addition Reactions of Tricarbonyl(η^5 -cyclopentadienyl)-, Tricarbonyl(η -1,5-cyclohexadienylium)-, and Tricarbonyl(η -1,5-cycloheptadlenyllum)iron Cations

David A. Brown,* Noel J. Fitzpatrick, William K. Glass, and Pardeep K. Saval

Department of Chemistry, University of College Dublin, Belfield, Dublin 4, Ireland

Received July 27, 1983

Further studies of the substitution pattern for nucleophilic attack on the tricarbonyl(η -1,5-cycloheptadienylium)-, tricarbonyl(η -1,5-cyclohexadienylium)-, and tricarbonyl(η ⁵-cyclopentadienyl)iron cations by a range of nucleophiles are reported and discussed in terms of our previous theoretical approach.¹ In the case of the six- and seven-membered ring cations, attack by nitrite, cyanate, azide, and dithiocarbamate ions gives 5-exo ring adducts with 5-exo-C₆ $H_7NO_2Fe(CO)_3$ rearranging rapidly to the endo isomer followed by metal or carbonyl attack. Preferential ring attack by the soft iodide nucleophile occurs in mixed polar solvents followed by metal attack and formation of the normal metal dicarbonyl iodide as suggested by theory. Thiocyanate and selenocyanate form 5-exo N-bonded ring adducts that isomerize to the corresponding 5-exo S-bonded adducts. In the case of the five-membered ring cation, metal attack and carbonyl substitution occur exclusively with thiocyanate and selenocyanate forming linkage isomers and the dithiocarbamate anion giving sequential mono- and dicarbonyl substitution.

Introduction

(Cyclic diene) metal carbonyl complexes such as the title compounds (I, II, and III) are well-known to undergo nucleophilic attack at the diene ring,² the metal atom,² or the carbonyl group.³ However, the factors influencing the site of attack by a particular nucleophile are still not clear. One difficulty is that the final substitution or addition product is the thermodynamically stable product, but this may be preceded by initial formation of a kinetically controlled product so that the site of initial nucleophilic attack may be quite different from that of the final product; for example, substitution of the tricarbonyl(η -1,5-cycloheptadienylium)iron cation (III) by ethoxide at low temperatures gives the carbethoxy derivative C₇H₉Fe- $(CO)_2CO_2Et$, which on raising the temperature rearranges by a dissociative mechanism to the 5-exo ring ethoxy compound $C_7H_9OEtFe(CO)_3$.⁴ In a recent application of

Experimental Section

General Information. Reagent grade chemicals were used without further purification. All solvents were dried and deoxygenated before use. Reactions and workup, including chromatography, were carried out under oxygen-free nitrogen. Infrared spectra were recorded on Perkin-Elmer 337 and 283B spectrophotometers. Integrated intensities (M⁻¹ cm⁻²) were calculated

⁽¹⁾ Brown, D. A.; Chester, J. P.; Fitzpatrick, N. J. Inorg. Chem. 1982, 21, 2723.

 ⁽²⁾ Hashmi, M. A.; Monro, J. D.; Pauson, P. L.; Williamson, J. M. J.
 Chem. Soc. A 1967, 240.
 (3) Cowles, R. J. H.; Johnson, B. F. G.; Losty, P. L.; Lewis, J. J. Chem.
 Soc., Chem. Commun. 1969, 392.
 (4) Brown, D. A.; Glass, W. K.; Hussein, F. M. J. Organomet. Chem.

the perturbation theory of reactivity⁵ to the above series of complexes,¹ it was suggested that initial attack by a hard nucleophile may occur at either the metal or the carbonyl carbon depending on reaction conditions and that a soft nucleophile may attack the ring preferentially before either the carbonyl carbon atom or the metal. Solvent polarity was also shown to be important. In an accompanying experimental study,⁶ it was found possible by "tuning" the nucleophilicity of substituted hydrazines to obtain either metal or carbonyl attack. In this paper, we report an extension of these studies to a further range of nucleophiles including thiocyanate, selenocyanate, nitrite, azide, cyanate, halide, and dithiocarbamate ions.

⁽⁵⁾ Klopman, G., Ed. "Chemical Reactivity and Reaction Paths"; Wiley: New York, 1974.
(6) Brown, D. A.; Chawla, S. K.; Glass, W. K.; Hussein, F. M. Inorg.

^{1980, 186,} C58.

Chem. 1982, 21, 2726.

by Ramsay's method⁷ except in the case of the nitro complexes where Flett's method was used.⁸ ¹H NMR spectra were recorded on a Perkin-Elmer R12B and a JEOL PS100 FT spectrometer. ¹³C NMR spectra were recorded on a JEOL PS100 FT spectrometer. UV spectra were recorded on Perkin-Elmer 402 and 552 spectrometers. Microanalyses were performed by the microanalytical laboratory of this department. Mass spectra were recorded on a VG micromass 7070H linked to an INCOS 2400 data system.

Preparation of C7H9NCSFe(CO)3 and C7H9SCNFe(CO)3. Addition of 10 mL of NH₄SCN solution (0.13 g) to a well-stirred suspension of $[C_7H_9Fe(CO)_3]BF_4$ (0.5 g) in 50 mL of a dichloromethane/water (1:1) mixture gave a light yellow in the dichloromethane layer and a deep red in the aqueous layer after 20 min. Addition of 50 mL of water, separation of the dichloromethane layer, subsequent washing with degassed water and drying with MgSO₄, filtration, and evaporation gave an orange oil. Further solution in n-pentane, cooling, and filtration gave yellow crystals of 5-exo-C₇H₉NCSFe(CO)₃ (0.27 g, 59%). Exposure to air results in rapid isomerization to give red crystals of 5 $exo-C_7H_9SCNFe(CO)_3$ (0.18 g, 67%). The corresponding 5-exo-C₆H₇NCSFe(CO)₃ and 5-exo-C₆H₇SCNFe(CO)₃ were prepared similarly. Analogous reactions with NH4SeCN solutions gave less stable products.

Preparation of $C_5H_5Fe(CO)_2NCS$ and $C_5H_5Fe(CO)_2SCN$. $[C_5H_5Fe(CO)_3]PF_6$ (1.0 g, 2.9 mmol) and NH₄SCN (0.2 g, 2.6 mmol) were stirred in 75 mL of acetone for 3 h. Subsequent removal of solvent, extraction with water, washing with dichloromethane, and drying of the dichloromethane extract with $MgSO_4$, filtration, and chromatography through a 6-in. Florisil (60/100) column gave a yellow and a red band. Elution with CH_2Cl_2 , reduction in volume to 4 mL, and addition of pentane gave yellow crystals of $C_5H_5Fe(CO)_2NCS$ (0.20 g, 30%). Elution with acetone and removal of solvent gave a red oil that on solution in dry ether and addition of *n*-pentane at -40 °C gave dark red crystals of $C_5H_5Fe(CO)_2SCN$ (0.24 g, 35%). The analogous reactions with NH₄SeCN gave very air-sensitive products.

Preparation of 5-exo-C7H9NO2Fe(CO)3. [C7H9Fe(CO)3]BF4 (0.5 g, 1.6 mmol) and AgNO₂ (0.2 g, 1.3 mmol) were stirred in 75 mL of a dichloromethane/water mixture (1:1) for 30 min during which the dichloromethane layer turned a creamy brown. Addition of 50 mL of water, separation of the organic layer, washing of this with 3×40 mL portions of water, drying with MgSO₄, and evaporation of solvent gave a brown-yellow oil. Solution of the oil in *n*-pentane and cooling to -25 °C gave brown-yellow crystals of C₇H₉NO₂Fe(CO)₃ (0.33 g, 75%). The corresponding 5-exo- $C_6H_7NO_2Fe(CO)_3$ was prepared by the same procedure. Both compounds should be stored at low temperatures and under nitrogen.

Preparation of 5-endo-C6H7NO2Fe(CO)3. Stirring for 30 min of a light cream solution of 5-exo-C₆H₇NO₂Fe(CO)₃ (0.2 g, 0.75 mmol) in dichloromethane resulted in the formation of brown 5-endo- $C_6H_7NO_2Fe(CO)_3$. Efforts to isolate the pure complex resulted in decomposition.

Preparation of 5-exo-C₇H₉RFe(CO)₃ and 5-exo-C₆H₇RFe- $(CO)_3$ (R = N₃, NCO). These compounds were prepared by the procedure described above for 5-exo-C7H9NO2Fe(CO)3. In general, they are unstable in air and so microanalyses (Table I) and spectroscopic measurements (Tables I and II) were made as quickly as possible.

Preparation of 5-exo-C7H9IFe(CO)3 and Rearrangement to $C_7H_9Fe(CO)_2I$. A 5-mL sample of aqueous KI (0.15 g, 0.9 mmol) solution was added to a stirred suspension of [C₇H₉Fe- $(CO)_3$]BF₄ (0.2 g, 0.6 mmol) in 50 mL of a dichloromethane/H₂O (2:1) mixture at 3 °C and stirring continued for 3 min. The dichloromethane layer turned light yellow initially and then brown-yellow. Addition of 30 mL of cold water washing with 3 × 30 mL portions of cold water, subsequent drying with anhydrous MgSO₄, filtration, and removal of solvent gave a brown oil. Solution in *n*-pentane and cooling to -75 °C gave a brown powder that was shown by IR spectroscopy to be a mixture of 5-exo- $C_7H_9IFe(CO)_3$ and $C_7H_9Fe(CO)_2I$. It rearranges rapidly at room temperature to $C_7H_9Fe(CO)_2I$.

Brown et al.

The analogous mixture of $5-exo-C_6H_7IFe(CO)_3$ and C_6H_7Fe- (CO)₂I was prepared similarly, and again rapid rearrangement of the ring product to the metal iodide occurs at room temperature. Preparation of 5-exo-C₇H₉S₂CNR₂Fe(CO)₃ and 5-exo- $C_{6}H_{7}S_{2}CNR_{2}Fe(CO)_{3}$ (R = Me, Et, *n*-Pr; R₂N = O-(CH₂CH₂)₂N). [C₇H₉Fe(CO)₈]BF₄ (0.5 g, 1.6 mmol) in 75 mL of a dichloromethane/water mixture (1:1) was stirred with a slight excess of aqueous NaS₂CNR₂ for 30 min. After addition of 25 mL of water, the dichloromethane layer was separated, washed with 3×30 mL portions of water, dried with MgSO₄, and filtered, and solvent removed to give a light yellow oil. Treatment with *n*-pentane at -25 °C, filtration, and reduction in solvent volume gave light yellow crystals of $5-exo-C_7H_9S_2CNR_2Fe(CO)_3$. An identical procedure employing [C₆H₇Fe(CO)₃]BF₄ gave 5-exo- $C_6H_7S_2CNR_2Fe(CO)_3$. Analytical data are given in Table I.

Preparation of $C_5H_5Fe(CO)_2S_2CNR_2$ (R = Me, Et, n-Pr; $\mathbf{R}_2 \mathbf{N} = \mathbf{O}(\mathbf{CH}_2 \mathbf{CH}_2)_2 \mathbf{N})$ and $\mathbf{C}_5 \mathbf{H}_5 \mathbf{Fe}(\mathbf{CO}) \mathbf{S}_2 \mathbf{CNEt}_2$. The $C_5H_5Fe(CO)_2S_2CNR_2$ series was prepared by the above procedure. Analytical data are given in Table I. A red-brown solution of $C_5H_5Fe(CO)_2S_2CNEt_2$ (0.5 g, 1.5 mmol) in 75 mL of acetonitrile was stirred for 24 h and turned dark brown. Reduction of solvent volume, chromatography on a 6-in. Florisil column, elution with CH₂Cl₂ reduction in solvent volume to ca. 5 mL, and addition of *n*-pentane gave crystals of $C_5H_5Fe(CO)S_2CNEt_2$. Analytical data are given in Table I.

Discussion and Results

The principal reactions are shown in Scheme I. The reactions with thiocyanate and selenocyanate are similar. The main criteria for assignment of the structures of complexes reported here are based on their ¹H NMR spectra. The choice of structural conformation is crucial in the estimation of coupling constants by reference to the dihedral angles associated with the ring geometry from a modified Karplus equation.⁹

⁽⁹⁾ Karplus, M. J. Chem. Phys. 1959, 30, 11.

C H N medium v_{CO} $v_{NCX, MSW}$ 45.8 (45.4) 3.2 (3.1) 4.8 (4.8) KBr 2044, 1980 2110 45.8 (45.4) 3.2 (3.1) 4.8 (4.8) KBr 2044, 1981 2110 45.3 (37.1) 2.9 (3.1) 4.8 (4.8) KBr 2041, 1981 2109 73.3 (45.0) 3.3 (3.2) 4.1 (5.0) McCN 2055, 1975, 1947 ab 2110 43.3 (45.1) 2.9 (3.1) 4.8 (4.8) KBr 2041, 1987 2110 43.3 (45.1) 3.3 (3.2) 3.4 (5.2) 3.4 (3.2) 2.4 (4.3) 2.1 (5.0) 43.1 (43.1) 4.3 (4.5) 3.6 (3.7) x_{Br} 2044, 1976 2155 43.2 (45.6) 4.2 (4.3) 3.3 (3.7) x_{Br} 2044, 1976 2155 43.2 (45.5) 5.2 (5.8) 2.3 (3.7) x_{Br} 2044, 1976 2156 43.2 (45.6) 5.2 (5.8) 2.3 (3.7) x_{Br} 2044, 1976 2156 43.2 (43.3) 2.7 (2.5) 5.1 (5.0) KBr	$ \begin{array}{c c} R \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $		N 4.8 (4.8) 4.8 (4.8) 4.1 (3.9) 4.7 (5.0) 14.8 (14.8) 5.3 (5.0) 4.0 (3.9) 3.6 (3.7) 3.3 (3.7) 3.3 (3.5) 3.3 (3.5)	medium 5-exo-C ₇ H KBr KBr KBr MeCN MeCN CSBr CSBr CSBr CSBr CSBr CSBr CSBr CSBr	^b CO ,,RFe(CO) ₃ 2044, 1981 2046, 1980 2032, 1962	^ν NCX ^{asym}	V _{CM} Sym	an a	-than honde
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	445 445 445 445 445 445 445 45 45 45 45		$\begin{array}{c} 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.1 \\ 3.9 \\ 5.3 \\ 5.0 \\ 5.3 \\ 5.0 \\ 5.1 \\ 3.6 \\ 3.2 \\ 3.3 \\ 3.3 \\ 3.5 \\ 3.3 \\ 3.5 \\ 3.3 \\ 3.5 \\$	5-exo-C ₇ H KBr KBr KBr MeCN MeCN CsBr N=Pentane CsBr KBr liquid CsBr r-nentane	(,RFe(CO), 2044, 1981 2046, 1980 2032, 1962		5	^v cs ^{sym}	OTHER DAHUS
	45.8 45.9 45.3 46.2 46.2 46.2 47.3 46.2 47.3 47.4 46.2 47.3 47.4 47.4 47.4 47.4 47.4 47.4 47.4		$\begin{array}{c} 4.8 & (4.8) \\ 4.8 & (4.8) \\ 4.1 & (3.9) \\ 4.7 & (5.0) \\ 5.3 & (5.0) \\ 5.3 & (5.0) \\ 5.3 & (5.0) \\ 3.6 & (3.7) \\ 3.6 & (3.7) \\ 3.6 & (3.7) \\ 3.6 & (3.3) \\ 3.3 & (3.5) \\ 3.3 & (3.$	KBr KBr MeCN MeCN CSBr CSBr CSBr KBr Hguid CSBr CSBr	2044, 1981 2046, 1980 2032, 1962				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$\begin{array}{c} 4.8 \\ 4.8 \\ 4.8 \\ 4.1 \\ 6.9 \\ 5.3 \\ 5.0 \\ 14.8 \\ 14.8 \\ 5.1 \\ 5.1 \\ 3.6 \\ 3.9 \\ 3.5 \\ 3.3 \\ 3.5$	KBr MeCN MeCN CsBr CsBr n-pentane CsBr KBr CsBr CsBr CsBr	2046, 1980 2032, 1962	2130		860	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20 20 20 20 20 20 20 20 20 20 20 20 20 2		$\begin{array}{c} 4.1 \\ 4.1 \\ 4.7 \\ 5.0 \\ 5.3 \\ 5.3 \\ 5.0 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \end{array}$	MeCN MeCN CsBr MeCN MeCN n-pentane CsBr KBr liquid CsBr	2032, 1962	0110		730	
	20 20 20 20 20 20 20 20 20 20 20 20 20 2		$\begin{array}{c} 4.1 & (3.9) \\ 4.7 & (5.0) \\ 14.8 & (14.8) \\ 5.3 & (5.0) \\ 5.3 & (5.0) \\ 4.0 & (3.9) \\ 3.6 & (3.7) \\ 3.6 & (3.3) \\ 3.3 & (3.7) \\ 3.3 & (3.7) \\ 3.3 & (3.5) \\ 3.3 & ($	MeCN MeCN CsBr MeCN n-pentane CsBr KBr liquid CsBr	4004, 1304	0000		00-	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0		$\begin{array}{c} \begin{array}{c} 4.1 \\ 4.7 \\ 5.3 \\ 5.3 \\ 5.3 \\ 5.3 \\ 5.0 \\ 5.3 \\ 5.1 \\ 8.6 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.5 \\ 3.3 \\ 3.5 \\ 3.3 \\ 3.5 \\ 3.3 \\ 3.5 \\ 3.3 \\ 3.5 \\ 3.3 \\ 3.5 \\ 3.5 \\ 3.3 \\ 3.5 \\ $	ABCN CSBr MeCN n-pentane CSBr KBr liquid CSBr	0092 1000	2002			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	423 423 423 423 424 423 424 424 424 424		$\begin{array}{c} 4.7 \\ 4.7 \\ 5.3 \\ 5.3 \\ 5.3 \\ 5.0 \\ 3.6 \\ 3.7 \\ 3.6 \\ 3.7 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.5 \\ 3.3 \\ 3.5 \\ 3.3 \\ 3.5 \\ 3.5 \\ 3.5 \\ 1 \\ 5.1 \\ 5.0 \\ 1 \\ 1 \\ 5.0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	CSBr MeCN CSBr CSBr KBr KBr CSBr CSBr CSBr CSBr	0000	0117			
	422 422 422 422 422 422 422 422 422 424 42 44 42 44 42 4 24 4 24 4 24 2		$\begin{array}{c} 14.8 \\ 5.3 (5.0) \\ 5.3 (5.0) \\ 3.6 (3.7) \\ 3.6 (3.7) \\ 3.3 (3.3) \\ 3.3 (3.5) \\ 3.3 (3.5) \\ 3.3 (3.5) \\ 3.1 (5.0) \\ \end{array}$	MeCN n-pentane CsBr CsBr KBr liquid CsBr	1975,				1549, 1553 (^p NO
	46.4 10.4 46.2 46.2 10.4 45.2 10.4 45.2 10.4 45.2 42 10.4 45.2 42 42 42 42 42 42 42 42 42 42 42 42 42		5.3 (5.0) 4.0 (3.9) 3.6 (3.7) 3.3 (3.7) 3.3 (3.5) 3.3 (3.5) $3.3 (3.5) $	MeCN n-pentane CsBr KBr KBr CsBr CsBr					
	na 43.1 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2		4.0 (3.9) 3.6 (3.7) 2.6 (3.3) 3.3 (3.5) 3.3 (3.5) 5.1 (5.0)	<i>n</i> -pentane CsBr KBr liquid CsBr <i>n</i> -nentane	2047, 1979	2244			
	43.1 47.5 48.2 18.2 18.2 19.6 19.6 19.6 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7		$\begin{array}{c} 4.0 & (3.9) \\ 3.6 & (3.7) \\ 3.6 & (3.3) \\ 3.3 & (3.5) \\ 3.3 & (3.5) \\ 5.1 & (5.0) \\ \end{array}$	CsBr KBr liquid CsBr r-nentane	2051.1987				
	4422 1422 1422 1422 1523 1535 1544 1525 154 154 154 154 154 154 154 154 154 15		$\begin{array}{c} 3.6 \\ 3.6 \\ 2.6 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.5 \\$	KBr liquid CsBr r-nentane	2031 1960		1508	1064 1034	
	4 (.) 4 4 7 5 7 4 7 5 7 4 7 5 7 4 4 7 5 7 4 4 5 7 5 7		5.1 (5.0)	NDr liquid CsBr r-pentane					
	48.2 45.2 42.8 42.8		$2.6 (3.3) \\ 3.3 (3.5) \\ 5.1 (5.0) $	liquid CsBr n-nentane	2044, 13/0		1403	1000, 200	
45.2 (45.6) 4.2 (4.3) 3.3 (3.5) CsBr 2033, 1977 1460 1026, 1002 ma $5 \cdot erro C_{4} H Re(CO)$, $5 \cdot erro C_{4} H Re(CO)$, 1460 1026, 1002 42.8 (43.3) 2.8 (2.5) 5.1 (5.0) RBr 2036, 1977 2110 705 42.8 (43.3) 2.7 (2.5) 5.1 (5.0) RBr 2063, 1977 2110 705 ma ReCN 2041, 1976 2128 865 705 ma CaBr 2048, 1976 2128 865 705 ma CaBr 2044, 1976 2128 865 705 ma CaBr 2044, 1976 2128 865 1007 ma CaBr 2044, 1976 2128 1007 933 41.7 (41.4) 3.8 (4.1) 4.0 (4.1) 3.6 (3.5) Nujol 2063, 1997 1486 1007 43.2 (44.6) 5.3 (5.2) ChI,Cl, 2043, 1996 2158 1007 1486 1007 43.1 (44.1) 3.6 (3.5)	45.2 na 42.8		3.3 (3.5) 5.1 (5.0)	CsBr n-nentane	2044, 1974		1481	1031, 990	
na r-pentane 2036, 2003 $5 excr.C_{H}/RFe(CO)$, $5 excr.C_{H}/RFe(CO)$, 12.8 (43.3) $2.7 (2.5)$ $5.1 (5.0)$ RBr $2063, 1997$ 2110 705 $42.8 (43.3)$ $2.7 (2.5)$ $5.1 (5.0)$ RBr $2048, 1974, 1966$ 2155 865 $42.8 (43.3)$ $2.7 (2.5)$ $5.1 (5.0)$ RBr $2048, 1976$ 2110 705 aa $BeCN$ $2044, 1976$ 2128 2093 705 aa CBr $2044, 1976$ 2128 2093 705 aa $41.7 (41.4)$ $3.5 (3.0)$ $15.1 (15.6)$ CBr $2043, 1976$ 2128 ab $41.7 (41.5)$ $3.5 (3.0)$ $15.1 (12.6)$ CBr $2043, 1976$ 2128 $41.7 (41.4)$ $3.8 (4.1)$ $4.0 (4.0)$ CBr $2043, 1976$ 2253 1436 $1010, 973$ $41.7 (41.4)$ $3.8 (4.1)$ $4.0 (4.0)$ CBr $2044, 1986$ $1010, 973$ $41.7 (41.4)$ $3.6 (5.3)$ $3.6 (3.5)$ <td>na 42.8</td> <td></td> <td>5.1 (5.0)</td> <td>n-nentane</td> <td>2033, 1977</td> <td></td> <td>1460</td> <td>1026, 1002</td> <td></td>	na 42.8		5.1 (5.0)	n-nentane	2033, 1977		1460	1026, 1002	
			5.1(5.0)	~TTDATI~J.11	2036, 2003				
			5.1(5.0)	5-020-C	[BFa(CO)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			5.1(5.0)	n-ora-c	lynre(UU)3				
				KBr		2155		865	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-		5.1(5.0)	KBr	2050, 1977	2110		705	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				MeCN	1984	2093			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				MeCN	1984.	2128			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				CsBr	1978				1549, 1359 (_{NO}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				CH.Cl.	2056, 1989				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				CH, CI,	2046, 1976				
44.2 (44.5) $3.5 (3.0)$ $5.3 (5.2)$ CH_2Cl_3 2053 1984 2253 44.2 (44.5) $3.5 (3.0)$ $5.3 (5.2)$ $r_{Pentane}$ 2047 1986 1007 45.7 (45.8) $4.7 (4.7)$ $3.8 (4.1)$ $4.0 (4.0)$ $CsBr$ 2038 , 1978 1487 1055 , 1007 45.7 (45.8) $4.7 (4.7)$ $3.8 (3.5)$ $Nujol$ 2050 , 1991 , 1994 1486 1010 , 978 48.2 (48.6) $5.8 (5.3)$ $3.6 (3.5)$ $Nujol$ 2050 , 1991 , 1982 1486 1001 , 978 43.1 (43.1) $4.0 (4.1)$ $3.5 (3.6)$ $n_{Pentane}$ 2034 , 1986 11486 1001 , 978 43.1 (43.1) $4.0 (4.1)$ $3.5 (3.6)$ $n_{Pentane}$ 2034 , 1982 14460 1029 , 996 a $4.0.3 (40.8)$ $2.1 (2.1)$ $5.7 (5.9)$ $CHCl_3$ 2070 , 2027 2122 $40.3 (40.8)$ $2.1 (2.1)$ $5.7 (5.9)$ $CHCl_3$ 2070 , 2027 2122 a $40.3 (40.8)$ $1.8 (2.1)$ $5.7 (5.9)$ $CHCl_3$ 2070 , 2027 2122 a a a $2.7 (3.7)$ $4.9 (4.7)$ RBr 2034 , 1990 11485 a a a 2.666 , 2013 2121 2121 1477 1010 , 973 a a a $2.7 (3.7)$ 2.966 , 2013 2121 1477 1006 , 993 a	39.7		151 (156)	CeBr [°]	2049 1978				2098 (m)
41.7 (41.4) $3.3 (4.1)$ $5.3 (5.3)$ $5.3 (5.3)$ $5.3 (5.3)$ $5.3 (5.3)$ $5.3 (5.3)$ $5.3 (5.3)$ $5.3 (5.3)$ $5.3 (5.3)$ 1487 $1055, 1007$ 45.7 (45.8) $4.7 (4.7)$ $3.8 (3.8)$ C_{SBr} $2034, 1996$ 11487 $1055, 1007$ 45.7 (45.8) $4.7 (4.7)$ $3.8 (3.8)$ C_{SBr} $2041, 1994$ 1486 $1010, 978$ 48.2 (48.6) $5.8 (5.3)$ $3.6 (3.5)$ Nujol $2050, 1991, 1982$ 1486 $1010, 978$ 48.2 (48.6) $5.8 (5.3)$ $3.6 (3.5)$ Nujol $2040, 1985$ 1486 $1010, 978$ 43.1 (43.1) $4.0 (4.1)$ $3.5 (3.6)$ C_{SBr} $2040, 1982$ 14460 $1029, 996$ $a3.1 (40.8)$ $1.8 (2.1)$ $3.5 (3.6)$ C_{SBr} $2070, 2027$ 2122 14460 $1029, 996$ $a0.3 (40.8)$ $1.8 (2.1)$ $5.7 (5.9)$ $CHCl_3$ $2070, 2027$ 2122 2118 $a03 (40.4)$ $a04 (40.4)$ $a03 ($	0.11		E 9 (E 9)		00E0 1004	0069			
	44.2		0.0 (2.6)	UI12U12	2009, 1904 2017, 1000	0077			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				<i>n</i> -pentane	2047, 1980				
	o 41.7	3.8 3.8	4.0(4.0)	CsBr	2038, 1978		1487	1055, 1007	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45.7	4.7	3.8(3.8)	CsBr	2041, 1994		1486	1010, 978	
	48.2	5.8	3.6(3.5)	Nujol			1486	1010,	
na n -pentane 2038, 2001 40.3 (40.8) 2.1 (2.1) 5.9 (5.9) CHCl ₃ 2070, 2027 2122 40.3 (40.8) 2.1 (2.1) 5.9 (5.9) CHCl ₃ 2070, 2027 2122 40.3 (40.8) 1.8 (2.1) 5.7 (5.9) CHCl ₃ 2070, 2027 2122 40.3 (40.4) 1.8 (2.1) 5.7 (5.9) CHCl ₃ 2070, 2027 2123 a 0.0 (40.4) 3.7 (3.7) 4.9 (4.7) KBr 2034, 1987 2118 a 1.0 (40.4) 3.7 (3.7) 4.9 (4.7) KBr 2024, 1990 1473 1473 41.0 (40.13) 4.5 (4.6) 4.2 (4.3) CSBr 2033, 1983 1471 1005, 981 47.3 (44.4) 5.6 (54.6) 4.0 (6.0) CSBr 2036, 1995 1471 1025, 1018, 1471 43.6 (44.4) 5.3 (5.1) 4.5 (4.7) CSBr 2042, 2007 1498 1006, 981	43.1	4.0	3.5(3.6)	CsBr	2040.1985		1460	1029,996	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	na			<i>n</i> -pentane	2038, 2001				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 			н U	Provide the second s				
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	eloopar				
			5.9(5.9)	CHCI,	2070, 2027	2122			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			5.7 (5.9)	CHCI	2056, 2013	2118			
na         MeCN $2041, 2001$ $2121$ $1485$ $1010, 973$ $40.0 (40.4)$ $3.7 (3.7)$ $4.9 (4.7)$ KBr $2024, 1990$ $1485$ $1010, 973$ $44.0 (44.3)$ $4.5 (4.6)$ $4.2 (4.3)$ $CSBr$ $2023, 1990$ $1473$ $1005, 981$ $47.0 (44.3)$ $5.6 (5.4)$ $4.0 (4.0)$ $CSBr$ $2036, 1995$ $1471$ $1025, 1018$ $47.0 (40.3)$ $4.0 (4.2)$ $CSBr$ $2036, 1995$ $1471$ $1025, 1018$ $43.6 (44.4)$ $5.3 (5.1)$ $4.5 (4.7)$ $CSBr$ $2042, 2007$ $1498$ $1006$ $43.6 (44.4)$ $5.3 (5.1)$ $4.5 (4.7)$ $CSBr$ $2042, 2007$ $1498$ $1006$				CHCI	2034, 1987	2118			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				MeCN	2041, 2001	2121			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.0	3.7	4.9 (4.7)	KBr	2024, 1990		1485	1010, 973	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4.2(4.3)	CsBr	2033, 1983		1473	1005, 981	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4.0(4.0)	CsBr	2036, 1995		1471	1018.	
43.6 (44.4) 5.3 (5.1) 4.5 (4.7) CsBr 1935 144.4 106			3.9(3.9)	CsBr	2042, 2007			) 966	
			4.5(4.7)	CsBr	1935		1498	1006	

			J, Hz			
R		assignt	J _{4,5}	J _{5,6-e xo}	J _{5,6} endo	
NCS	3.03, 3.10 (m) 5.54, 5.48 (m) 4.16 (d-t) 2.33 (m)	$xo-C_6H_7RFe(CO)_3$ $H_1, H_4$ $H_2, H_3$ $H_5$ $H_6endo$ $H_2$	3.2	3.2	10.3	
SCN	$\begin{array}{c} 1.71 \ (d\text{-t}) \\ 3.03, 3.08 \ (m) \\ 5.54, 5.48 \ (m) \\ 4.16 \ (d\text{-t}) \\ 2.33 \ (m) \\ 1.71 \ (d\text{-t}) \end{array}$	H _{6exo} H ₁ , H ₄ H ₂ , H ₃ H ₅ H _{6endo} H _{6exo}	3.2	3.2	10.3	
NO2	3.05, 3.08 (m) 5.63, 5.59 (m) 4.93 (d·t) 2.47 (m) 2.10 (d·t)	$H_1, H_4$ $H_2, H_3$ $H_5$ $H_{6-endo}$ $H_{6-exo}$	3.2	2.9	10.3	
Ν,	3.02, 3.08 (m) 5.54 (t) 3.88 (d-t) 2.33 (m) 1.85 (d-t)	$H_{1}, H_{4}$ $H_{2}, H_{3}$ $H_{5}$ $H_{6-endo}$ $H_{6-exo}$	3.2	3.2	10.3	
NCO	3.02 (m) 5.48 (m) 4.00 (d-t) 2.31 (m) 1.58 (d-t)	H ₁ , H ₄ H ₂ , H ₃ H ₅ H _{6-endo} H _{6-exo}	3.2	3.2	10.6	
S2CNMe2	3.37 (m) 5.42 (m) 4.42 (d-t) 2.58 (m) 1.73 (d-t) 3.37 (d)	$H_{1}, H_{4}$ $H_{2}, H_{3}$ $H_{5}$ $H_{6endo}$ $H_{6exo}$ $CH_{3} (Me_{2}NCS_{2})$	3.5	3.5	10.7	
S ₂ CNEt ₂	$\begin{array}{c} 3.16, 3.56 \ (m) \\ 5.54 \ (t) \\ 4.42 \ (d-t) \\ 2.57 \ (m) \\ 1.66 \ (d-t) \\ 3.96 \ (q) \\ 1.23 \ (t) \end{array}$	$H_1, H_4$ $H_2, H_3$ $H_5$ $H_6 endo$ $H_6 exo$ $CH_2 (Et_2 NCS_2)$ $CH_3 (Et_2 NCS_2)$	3.6	3.6	10.5	
S ₂ CN(CH ₂ CH ₂ ) ₂ O	5.40 (m) 3.16, 3.46 (m) 4.44 (d-t) 2.62 (m) 1.73 (m) 4.03 (b s) 3.70 (t)	$H_{2}, H_{3}$ $H_{1}, H_{4}$ $H_{5}$ $H_{6-endo}$ $H_{6-exo}$ $CH_{2} (adjacent to N)$ $CH_{2} (adjacent to O)$	3.4	3.4	10.5	
S ₂ CN- <i>n</i> -Pr ₂	5.39 (t) 3.14, 3.48 (m) 4.42 (d-t) 2.57 (m) 1.70 (m) 3.84 (t) 1.70 (m) 0.91 (t)	$H_{2}, H_{3}$ $H_{1}, H_{4}$ $H_{5}$ $H_{6endo}$ $H_{6exo}$ $CH_{2}(Pr_{2}NCS_{2})$ $CH_{2}(Pr_{2}NCS_{2})$ $CH_{3}(Pr_{2}NCS_{2})$	3.7	3.7	10.5	
		exo-C ₇ H ₉ RFe(CO) ₃				
NCS	3.04 (m) 5.45 (m) 4.06 (m) 2.04 (m) 1.69 (m)	$H_1, H_4$ $H_2, H_3$ $H_5$ $H_6(2), H_7(2)$	1.4	4.2	11.3	
SCN	3.03 (m) 5.38 (m) 4.06 (m) 1.98 (m) 1.62 (m)	$H_{1}, H_{4}, H_{3}, H_{3}, H_{5}, H_{6}(2), H_{7}(2)$	1.4	4.3	11.3	
NO ₂	2.96, 3.13 (m) 5.35, 5.58 (m) 4.83 (m) 2.14 (m) 1.78 (m)	$H_1, H_4$ $H_2, H_3$ $H_s$ $H_6(2), H_7(2)$	1.4	4.4	11.4	

				$J,  \mathrm{Hz}$	
R		assignt	$J_{4,5}$	$J_{5,6-exo}$	$J_{5,6\mathrm{end}}$
N ₃	2.83, 3.00 (m) 5.22, 5.40 (m) 3.58 (m) 2.04 (m) 1.13 (m)	$     H_{1}, H_{4}      H_{2}, H_{3}      H_{5}      H_{6}(2), H_{7}(2) $	1.2	4.4	11.7
NCO	2.86, 2.93 (m) 5.29 (m) 3.83 (m) 2.15 (m) 1.40 (m)	$H_{1}, H_{4}, H_{3}, H_{3}, H_{5}, H_{6}(2), H_{7}(2)$	1.3	4.3	11.5
S ₂ CNMe ₂	3.40 (m) 5.30 (m) 4.48 (m) 2.0 (m) 1.3 (m) 3.40 (d)	$H_{1}, H_{4}$ $H_{2}, H_{3}$ $H_{5}$ $H_{6}(2), H_{7}(2)$ $CH_{3}$ (Me ₂ NCS ₂ )	1.6	4.0	12.5
S ₂ CNEt ₂	3.10, 3.27 (m) 5.29 (m) 4.51 (m) 2.35 (m) 1.8 (m) 4.00 (q) 3.77 (q) 1.25 (t)	$\begin{array}{c} H_{1}, H_{4} \\ H_{2}, H_{3} \\ H_{5} \\ H_{6}(2), H_{7}(2) \\ CH_{2} \ (Et_{2}NCS_{2}) \\ CH_{2} \ (Et_{2}NCS_{2}) \\ CH_{3} \ (Et_{2}NCS_{2}) \end{array}$	1.5	4.2	12.6
S ₂ CN- <i>n</i> -Pr ₂	3.20, 3.54 (m) 5.30 (m) 4.51 (m) 2.38 (m) 2.0 (m) 3.89 (m) 1.72 (m) 1.00 (t)	$H_{1}, H_{4} \\ H_{2}, H_{3} \\ H_{5} \\ H_{6}(2), H_{7}(2) \\ CH_{2} (Pr_{2}NCS_{2}) \\ CH_{2} (Pr_{2}NCS_{2}) \\ CH_{3} (Pr_{3}NCS_{2}) \\ CH_{3} (Pr$		4.0	12.7
S ₂ CN(CH ₂ CH ₂ ) ₂ O	3.10, 3.25 (m) 5.31 (m) 4.55 (m) 2.21 (m) 1.69 (m) 4.08 (b s) 3.72 (m)	$H_{1}, H_{4}$ $H_{2}, H_{3}$ $H_{5}$ $H_{6}(2), H_{7}(2)$ $CH_{2} (adjacent to N)$ $CH_{2} (adjacent to O)$	1.4	4.2	12.5

Table II (Continued)

^{*a*} Me₄Si as internal standard,  $\delta$ .

X-ray studies¹⁰ on a number of 5-exo substituted  $\eta$ -1,4-cyclohexadiene complexes suggest that  $C_1$ ,  $C_2$ ,  $C_3$ , and  $C_4$  form one plane,  $C_1$ ,  $C_4$ ,  $C_5$ , and  $C_6$  forming another. If the substituent is  $\mathbf{R} = \mathbf{H}$ , such a model is symmetrical about a mirror plane perpendicular to the diene system, the  $C_2$ - $C_3$  and  $C_5$ - $C_6$  bonds being bisected. On 5-exo substitution of this model, one would expect that  $J_{1,6\text{-endo}} \geq J_{1,6\text{-exo}} \approx J_{4,5\text{-endo}} \approx 4$  Hz.  $J_{5,6\text{-endo}} \approx 11$  Hz and  $J_{5,6\text{-exo}} \approx$ 5 Hz. In the case of 5-endo substitution,  $J_{5,6\text{-endo}} \approx 4$  Hz,  $J_{5,6\text{-exo}} \approx 11$  Hz, and  $J_{4,5} \approx J_{1,6\text{-exo}} \approx 4$  Hz. Thus while  $J_{4,5\text{-exo}} \approx J_{4,5\text{-endo}}$  in both cases,  $J_{5,6\text{-endo}}$  is large on 5-exo substitution or small on 5-endo substitution, thus providing differentiation of the 5-substituted exo and endo isomers.  $|J_{6\text{-exo}6\text{-endo}}|$  is expected to be in the range 12-18 Hz.

 $|J_{6-exo,6-endo}|$  is expected to be in the range 12-18 Hz. With regard to chemical shift positions, it has previously been noted¹¹ that protons axial to a six-membered ring system are shielded, while protons equatorial are deshielded. In addition, one would expect the substituent at H₅ and proximity of protons to the metal center to have significant effects.

The calculated values of the coupling constants around the  $H_5$  proton, together with  $\delta$  values for all protons, are

given for the complexes studied in this paper in Table II. One would expect  $H_5$  to be most affected by the 5-exo substituent. It may be significant that NO₂ exhibits the largest deshielding effect on  $H_5$  and  $H_{6\text{-exo}}$  while I shows the least, corresponding to the ordering of these substituents in the spectrochemical series. Using  $\delta$  ( $H_5$ ) as a reference, for the 5-exo-substituted complexes studied, the separations  $\delta_{5\text{-6endo}}$  and  $\delta_{5\text{-6exo}}$  lie in the same relative order:  $NO_2^- > dtc^- > NCS^- \approx SCN^- > NCO^- > I^- > N_3^-$ . The nonlinear (bulky) groups are clearly delineated from the linear groups.

From the experimental spectra of 5-exo-C₆H₇NCSFe-(CO)₃, analysis of the H₅ and H₆ proton patterns enable values of  $J_{4,5-\text{endo}} = 3.2$  Hz,  $J_{5,6-\text{exo}} = 3.2$  Hz,  $J_{5,6-\text{endo}} = 10.3$ Hz,  $|J_{6-\text{exo},6-\text{endo}}| = 15.4$  Hz to be obtained, in accordance with the above model. Since H_{6-exo} and H_{6-endo} are symmetrically related with respect to the C₁, C₄, C₅, C₆ plane, "ring current" effects would be expected to be equal in both cases. However, H_{6-endo} is closer to the Fe atom, and, from experiment  $\delta_{6-\text{exo}} \neq \delta_{6-\text{endo}}$ . It has previously been assumed that the metal would¹⁰ deshield the 6-endo position and thus  $\delta_{6-\text{endo}} > \delta_{6-\text{exo}}$ . The occurrence of H₅ at low field is attributed to the substituent effect and proximity to the metal center; the relative proportions of these two effects is difficult to estimate.

Support for the assignment of  $5\text{-}exo-C_6H_7NCSFe(CO)_3$ on the above model is given by  $5\text{-}endo-C_6H_7NO_2Fe(CO)_3$ ,

⁽¹⁰⁾ Bandara, B. M. R.; Birch, A. J.; Raverty, W. D. J. Chem. Soc., Perkin Trans. 1 1982, 1745; unpublished results of A. Dunard and G. B. Robertson.

⁽¹¹⁾ Pople, J. A.; Schneider, W. G.; Bernstein, H. J. "High Resolution Nuclear Magnetic Resonance"; McGraw-Hill: New York, 1959.

^a Values are in ppm referenced to Me, Si ( $\delta$  0).

			-			
C ₁	C ₂	C ₃	C ₄	C _s	C ₆	CO
65.4	103.2	89.9	103.2	65.4	24.7	202.1
55.9	83.1	83.1	59.4	53.6	32.2	210.1
55.9	83.6	88.1	59.4	53.6	32.2	210.1
58.0	83.9	87.3	59.0	56.3	30.8	210.7
57.0	84.0	87.2	62.0	48.0	32.6	208.2
	55.9 55.9 58.0	55.983.155.983.658.083.9	55.9         83.1         83.1           55.9         83.6         88.1           58.0         83.9         87.3	55.9         83.1         83.1         59.4           55.9         83.6         88.1         59.4           58.0         83.9         87.3         59.0	55.983.183.159.453.655.983.688.159.453.658.083.987.359.056.3	65.4         103.2         89.9         103.2         65.4         24.7           55.9         83.1         83.1         59.4         53.6         32.2           55.9         83.6         88.1         59.4         53.6         32.2           55.9         83.6         88.1         59.4         53.6         32.2           58.0         83.9         87.3         59.0         56.3         30.8

C of NCS = 132.5; C of SCN = 132.5

Figure 1. ¹H NMR spectrum of 5-exo-C₆H₇N₃Fe(CO)₃ in CDCl₃ solution.

where  $H_5$  becomes shielded with respect to the 5-exo isomer. Using the experimental coupling constants, theoretical spectra can be calculated for the 5-exo-substituted complexes in excellent agreement with those observed, using the NMRIT program.¹² A sample spectrum and calculated spectrum for 5-exo-C₆H₇N₃Fe(CO)₃ are given in Figures 1 and 2.

The ¹³C NMR spectra (Table III) of these cyclohexadienyl complexes show a nonequivalence of  $C_1$ ,  $C_2$ ,  $C_3$ , and  $C_4$  that is probably due largely to the 5-substituent.

In the series of 5-exo complexes  $[C_7H_9RFe(CO)_3]BF_4$  (R = phosphines, amines) previously reported,  ${}^6J_{4,5}$  was found to be zero and  $J_{5,6}$  exo in the range 11-15 Hz. No detailed analyses have yet been reported for the 5-endo series, but it has been shown that in the phosphine substituted complexes  $J_{4,5} > 0$ . In the 5-exo cycloheptadienyl complexes reported in this paper, the diene protons are associated as (H₁, H₄), (H₂, H₃) in two multiplets. H_{5-endo} occurs as a double doublet at low field to H₁, H₄. To a first approximation H₅ is the X proton of an ABX system, in which the H_{6-endo} protons correspond to AB. The model (Figure 3), possessing a 5-exo substituent R, indicates on the basis of the Karplus equation that  $J_{5,6-exo} \simeq$ 11 Hz,  $J_{5,6-endo} \simeq 4$  Hz, and  $J_{4,5-endo} \simeq 0$  Hz. The experimental results confirm that substitution has occurred in the 5-exo position in these cycloheptadienyl complexes.

**Reactions with NCS⁻, NCSe⁻, N₃⁻, and NCO⁻.** In the case of attack by the thiocyanate, selenocyanate, and cyanate ions, there was no evidence for initial attack at either the metal or a carbonyl carbon atom; e.g., no transient red colors were observed nor any infrared absorption in the 1500–1700 cm⁻¹ region. A preliminary report of this work has appeared.¹³ Reaction of both II and III with

(12) Detar, D. F. "Computer Programs for Chemistry"; W. A. Benjamin: New York, 1968; Vol. 1.



Figure 2. Computer-simulated ¹H NMR spectrum of 5-exo- $C_6H_7N_3Fe(CO)_3$ .



#### Figure 3.

ammonium thiocyanate in dichloromethane/water mixtures forms initially the yellow N-bonded 5-exo products  $C_6H_7NCSFe(CO)_3$  and  $C_7H_9NCSFe(CO)_3$  that rapidly isomerize both in the solid state and solution to the corresponding red S-bonded 5-exo complexes C₆H₇SCNFe- $(CO)_3$  and  $C_7H_9SCNFe(CO)_3$ . In all cases analytically pure samples were obtained. Their structures were confirmed from their infrared and ¹H NMR spectra (Tables I and II); in particular, in the infrared spectra from (a) the position of the CS stretching frequency and (b) the position and integrated absorption intensities of the CN stretch.¹⁴ The isomerization of the isothiocyanate to the thiocyanate could also be followed conveniently from their infrared spectra, e.g., by the decrease in intensity of the band at 2155 cm⁻¹,  $C_6H_7NCSFe(CO)_3$ , and concomitant increase in intensity of the band at 2110 cm⁻¹,  $C_6H_7SCNFe(CO)_3$ . The ¹H NMR spectra of both series were analyzed by means of decoupling experiments and results compared with computer-simulated spectra to give the coupling

⁽¹³⁾ Brown, D. A.; Fitzpatrick, N. J.; Glass, W. K.; Sayal, P. K. J. Organomet. Chem. 1982, 234, C52.

⁽¹⁴⁾ Sloan, T. E.; Wojcicki, A. Inorg. Chem. 1968, 7, 1268.

constants reported in Table II that confirm the 5-exo configuration for both series. Analogous reactions occur with the selenocyanate ion but the corresponding complexes are much less stable and only in the case of 5-exo- $C_7H_9SeCNFe(CO)_3$  could even approximate analytical and spectral data be obtained (Table I). The above isomerism for an isothiocyanate to a thiocyanate is the opposite to that normally observed in alkylthiocyanates and related compounds.¹⁵ Finally the cyclopentadienyl complex I gave no evidence for ring attack but underwent carbonyl substitution and initial formation of the isothiocyanate complex C₅H₅Fe(CO)₂NCS that rearranges to give the corresponding thiocyanate  $C_5H_5Fe(CO)_2SCN$  in both the solid state and solution, and this can be monitored conveniently from the disappearance of the band at  $2122 \text{ cm}^{-1}$  and concomitant appearance of a band at  $2118 \text{ cm}^{-1}$ . An analogous reaction occurred with the selenocyanate ion, but again both isomers undergo rapid decomposition that precluded microanalysis of the products although their infrared spectra were recorded (Table I). The cyanate and azide ions form normal 5-exo-substituted complexes with II and III (Tables I and II) although in the case of the azide ion evidence for initial metal attack has been reported previously.¹⁶

Reaction with the Nitrite Ion. Treatment of both II and III with silver nitrite in dichloromethane/water mixtures gave immediate formation of a light brown cream in the organic layer from which light cream 5-exo adducts were obtained. The choice of solvent and the counterion of the nitrite together with rapid workup were important in the isolation of these products. Their structures were confirmed by infrared and ¹H NMR spectroscopy (Tables I and II). Thus the presence of bands at ca. 1550 and 1360 cm⁻¹ attributable to the asymmetric and symmetric modes of the nitro group¹⁷ confirm bonding via the nitrogen atom which received further confirmation by the absence of bands in the 1600–1700  $cm^{-1}$  region due to modes of the nitrite group.¹⁸ The values obtained for the integrated absorption intensities of the above asymmetric and symmetric modes of the nitro group at 1550 and 1360  $cm^{-1}$ , viz.,  $1.41 \times 10^4$  (asym) and  $0.53 \times 10^4$  M⁻¹ cm⁻² (sym) and  $2.7 \times 10^4$  (asym) and  $0.53 \times 10^4$  M⁻¹ cm⁻² (sym) for the  $C_6H_7NO_2Fe(CO)_3$  and  $C_7H_9NO_2Fe(CO)_3$  complexes, respectively, lie well within the range of organic nitro compounds.⁸ The ¹H NMR spectra (Table II) are typical of 5-exo adducts; in particular, the relative values of  $J_{5,6-exo}$ (2.9 Hz) and  $J_{5.6\text{-endo}}$  (10.3 Hz) obtained from decoupling experiments and a computer-simulated spectrum of C₆- $H_7NO_2Fe(CO)_3$  confirm the exo configuration as discussed above. Similarly the low value of  $J_{4,5}$  (1.4 Hz) and the values of  $J_{5,6-\text{endo}}$  (4.4 Hz) and  $J_{5,6-\text{exo}}$  (11.4 Hz) confirm the exo configuration for  $C_7H_9NO_2Fe(CO)_3$ .

In the case of  $5 - exo - C_6 H_7 NO_2 Fe(CO)_3$ , a dichloromethane solution undergoes rearrangement at room temperature to the 5-endo isomer accompanied by further decomposition. Thus the infrared spectrum exhibited new carbonyl bands at 2046 and 1976 cm⁻¹ attributed to the endo isomer compared with those at 2056 and 1989  $cm^{-1}$ due to the exo compound. This difference in carbonyl frequencies is similar to that in the previously reported

exo and endo phosphine complexes.⁶ The rearrangement was confirmed by ¹H NMR spectroscopy. Although decomposition accompanying the formation of the 5-endo isomer caused a blurring of signals during irradiation experiments, the H₅ proton was clearly identified at 3.91 ppm with an upfield shift relative to  $H_5$  in the exo isomer at 4.93 ppm as expected because of the greater deshielding of the  $H_5$  proton by the metal in the exo case. Preliminary kinetic studies of this rearrangement using these signals and carried out at 28 °C indicated a first-order dissociative mechanism to be operating.

Prolonged study of the rearrangement by infrared spectroscopy gave new bands at 1808 and 1760 cm⁻¹, indicating that the decomposition products may have been unstable metal nitrosyl derivatives formed by attack of the nitrite on the metal tricarbonyl group.

Reaction with Halide Ions. Treatment of both II and III with potassium iodide in dichloromethane/water mixtures gave initially a light yellow solution that changed with time to a dark brown. In both cases the initial yellow product was shown by spectroscopic methods to be the 5-exo iodo ring adduct that rearranges rapidly in both the solid state and solution to the corresponding cyclodienyliron dicarbonyl iodide by metal attack and carbonyl substitution. Attempts to isolate the pure 5-exo products gave only a mixture of the former and the corresponding dicarbonyl iodide. Prompt examination of the infrared spectrum showed two carbonyl peaks at 2051 and 1987  $cm^{-1}$  (*n*-pentane) due to the 5-exo-C₇H₉IFe(CO)₃ that changed rapidly to those at 2036 and 2003 cm⁻¹ due to  $C_7H_9Fe(CO)_2I$ . Similar results apply to the corresponding cyclohexadienyl complexes as noted previously by Lewis and co-workers.¹⁹ These results show that in dichloromethane/water mixtures, initial attack occurs at the 5position of the cyclic diene followed by rearrangement (probably again via a dissociative mechanism) to give carbonyl substitution and metal attack. In contrast in other solvents such as acetonitrile, direct metal attack and carbonyl substitution occurs with no evidence for initial ring attack,¹⁹ demonstrating the important role of the solvent in these addition/substitution reactions that is in general accord with the theoretical treatment¹ although polarity effects are difficult to compare in this case because of the use of a mixed solvent. Analogous reactions with chloride and bromide ions in dichloromethane/water mixtures also appear to give initial ring attack as evidenced by infrared spectroscopy; however these complexes are very unstable and could not be characterized further.

Reaction with Dithiocarbamates. The title compounds II and III react with the monosodium salts of dithiocarbamates  $NaS_2CNR_2$  (R = Me, Et, *n*-Pr;  $R_2N$  =  $O(CH_2CH_2)_2N)$  in dichloromethane/water mixtures to give the corresponding neutral 5-exo adducts  $C_6H_7S_2CNR_2Fe$ - $(CO)_3$  and  $C_7H_9S_2CNR_2Fe(CO)_3$  (Table I) with no evidence for intermediate metal or carbonyl attack. Their structures were confirmed from their infrared and ¹H NMR spectra (Tables I and II). In the case of the infrared spectra the following criteria were applied (a) the position of the "thioureide band" due to the  $\nu(CN)$  stretching vibration in the 1450–1550  $cm^{-1}$  region, (b) the position and number of  $\nu_{\rm CS}$  symmetric modes in the 950–1050 cm⁻¹ region, and (c) the absence of  $\nu_{\rm MS}$  stretching bonds (ca. 350 cm⁻¹) (Table I). The presence of two strong  $\nu_{\rm CS}$  bands in the 1000 cm⁻¹ region indicates monodentate bonding of the dithiocarbamate group to the ring.²⁰ The ¹H NMR spectra

⁽¹⁵⁾ Drobnica, L.; Kristian, P.; Augustin, J. "The Chemistry of Cya-nates and their Thio Derivatives"; Patai, S., Ed.; Wiley: New York, 1977; Chapter 22.

⁽¹⁶⁾ Brown, D. A.; Chawla, S. K.; Glass, W. K. Inorg. Chim. Acta 1976, 19, C31.

⁽¹⁷⁾ Rao, C. N. R. "The Chemistry of the Nitro and Nitroso Groups";
Feuer, H., Ed.; Wiley: New York, 1969; Chapter 2.
(18) Rao, C. N. R.; Bhaskar, K. R. "The Chemistry of the Nitro and

Nitroso Groups"; Feuer, H., Ed.; Wiley: New York, 1969, Chapter 3.

⁽¹⁹⁾ Johnson, B. F. G.; Karlin, K. D.; Lewis, J.; Parker, D. G. J. Or-ganomet. Chem. 1978, 157, C67.

⁽²⁰⁾ Bonati, F.; Ugo, R. J. Organomet. Chem. 1967, 10, 257.

are typical of 5-exo adducts and the respective coupling constants derived from decoupling experiments and computer-simulated spectra confirm the exo configuration in all cases.

In contrast, the cyclopentadienyl complex I undergoes carbonyl substitution to form initially the dicarbonyl derivative  $C_5H_5Fe(CO)_2S_2CNR_2$ , in which the dithiocarbamate ligand is monodentate (Table I). The infrared spectra (Table I) show the presence of two bands in the 1000 cm⁻¹ region confirming monodentate bonding. However, on standing in dichloromethane solution,  $C_5H_5Fe(CO)_2S_2CNEt_2$  undergoes further carbonyl substitution to form  $C_5H_5Fe(CO)S_2CNEt_2$  (Table I), where there is only one carbonyl stretching mode and only one CS stretching mode in the 1000 cm⁻¹ region confirming that the dithiocarbamate ligand is bidentate.

The successive reactions of the dithiocarbamate anion with  $[C_5H_5Fe(CO)_3]^+$  to form first  $C_5H_5Fe(CO)_2S_2CNR_2$ followed by  $C_5H_5Fe(CO)S_2CNR_2$  contrasts with the behavior of  $C_5H_5Fe(CO)_2Cl$  that forms  $C_5H_5Fe(CO)_2S_2CNR^{21}$ and of  $[C_5H_5Fe(CO)_2]_2$  that forms  $C_5H_5Fe(CO)S_2CNR_2$ directly with no evidence for intermediate formation of  $C_5H_5Fe(CO)_2S_2CNR_2$ .²²

(21) O'Connor, C.; Gilbert, J. D.; Wilkinson, G. J. Chem. Soc. A 1969, 84.

Registry No. 5-exo-C7H9NCSFe(CO)3, 83951-02-4; 5-exo-C₇H₉SCNFe(CO)₃, 83951-03-5; 5-exo-C₇H₉NCSeFe(CO)₃, 90064-79-2; 5-exo-C7H9SeCNFe(CO)3, 90064-80-5; 5-exo-C7H9NO2Fe-(CO)₃, 90064-81-6; 5-exo-C₇H₉N₃Fe(CO)₃, 90130-02-2; 5-exo-C₇H₉NCOFe(CO)₃, 90064-82-7; 5-exo-C₇H₉IFe(CO)₃, 90064-83-8;  $5 - exo - C_7 H_9 S_2 CNMe_2 Fe(CO)_3$ , 90064-84-9; 5-exo-C7H9S2CNEt2Fe(CO)3, 90064-85-0; 5-exo-C7H9S2CNPr2Fe(CO)3, 90064-86-1; 5-exo-C7H9S2CN(CH2CH2)2OFe(CO)3, 90064-87-2;  $C_7H_9Fe(CO)_2I$ , 12108-27-9; 5-exo- $C_8H_7NCSFe(CO)_3$ , 83951-00-2; 5-exo-C₆H₇SCNFe(CO)₃, 83951-01-3; 5-exo-C₆H₇NCSeFe(CO)₃, 90064-88-3; 5-exo-C₆H₇SeCNFe(CO)₃, 90064-89-4; 5-exo-C₆H₇SECNFE(CO)₃, 90064-89 C₆H₇NO₂Fe(CO)₃, 90064-90-7; 5-endo-C₆H₇NO₂Fe(CO)₃, 90130-03-3; 5-exo-C₆H₇N₃Fe(CO)₃, 83576-99-2; 5-exo-C₆H₇NCOFe(CO)₃, 90064-91-8; 5-exo-C₆H₇IFe(CO)₈, 68193-47-5; 5-exo- $C_6H_7S_2CNMe_2Fe(CO)_3$ , 90064-92-9; 5-exo- $C_6H_7S_2CNEt_2Fe(CO)_3$ , 90064-93-0; 5-exo-C₆H₇S₂CNPr₂Fe(CO)₃, 90064-94-1; 5-exo- $C_6H_7S_2CN(CH_2CH_2)_2OFe(CO)_3$ , 90064-95-2;  $C_6H_7Fe(CO)_2I$ , 12107-39-0;  $C_5H_5Fe(CO)_2NCS$ , 12317-60-1;  $C_5H_5Fe(CO)_2SCN$ , 12317-59-8;  $C_5H_5Fe(CO)_2NCSe$ , 90064-96-3;  $C_5H_5Fe(CO)_2SeCN$ , 33179-83-8;  $C_5H_5Fe(CO)_2S_2CNMe_2$ , 75900-10-6;  $C_5H_5Fe_2$ (CO)₂S₂CNEt₂, 82404-91-9;  $C_5H_5Fe(CO)_2S_2CNPr_2$ , 90064-97-4; C₅H₆Fe(CO)₂S₂CN(CH₂CH₂)₂O, 90064-98-5; C₅H₅Fe(CO)S₂CNEt₂, 63989-04-8; [C₇H₉Fe(CO)₃]BF₄, 12212-05-4; [C₅H₅Fe(CO)₃]PF₆, 38834-26-3; [C₆H₇Fe(CO)₃]BF₄, 33678-01-2.

(22) Cotton, F. A.; McCleverty, J. A. Inorg. Chem. 1964, 3, 1398.
 (23) Birch, A. J.; Westerman, P. W.; Pearson, A. J. Aust. J. Chem.
 1976, 29, 1671.

## Synthetic, Structural, and Chemical Study of Some $\eta^5$ -Phosphacyclohexadienyl Complexes with Iron and Manganese

Eliane Deschamps,[†] François Mathey,^{•†} Carolyn Knobler,[‡] and Yves Jeannin[‡]

Laboratoire CNRS-SNPE, BP No. 28, 94320 Thials, France, and Laboratoire de Chimie des Métaux de Transition, ERA 608, Université Pierre et Marie Curie, 75230 Paris Cedex 05, France

Received February 16, 1984

The reaction of  $Mn_2(CO)_{10}$  with 4,5-dimethyl-1,2-diphenyl-1,6-dihydrophosphorin *P*-sulfide (5) (HL=S) gives  $HL \rightarrow Mn_2(CO)_9$  (8) through reduction-complexation of the P=S bond and  $(\eta^5\text{-}L=S)Mn(CO)_3$  (9) through metalation and  $\eta^5\text{-}C_5$  complexation of the dihydrophosphorin ring. Upon heating the  $HL \rightarrow Mn_2(CO)_9$  complex undergoes an orthometalation of the *P*-phenyl substituent with loss of  $HMn(CO)_5$ . The reaction of  $Mn_2(CO)_{10}$  with the corresponding oxide (HL=O) (12) gives only the  $\eta^5\text{-}C_5$  complex ( $\eta^5\text{-}L=O$ )Mn(CO)_3 (13), in high yield, since the P=O bond cannot be reduced. Similarly, HL=O reacts with [CpFe(CO)_2]_2 to give ( $\eta^5\text{-}L=O$ )FeCp (14). The reaction of this sandwich complex with *n*-butyllithium leads to a replacement of the P-Ph by a P-*n*-Bu substituent. The acylation by CH₃COCl + AlCl₃ takes place selectively on the Cp ring. The X-ray crystal structure of 14 shows that the Fe-C distances range from 2.05 to 2.13 Å for the heterocycle and from 2.06 to 2.11 Å for the cyclopentadienyl ring. The two planes are nearly parallel (dihedral angle = ~2.2°). The phosphorus atom is out of the C- $C_{\alpha'}$  axis is 38.5°. There is no direct interaction between the iron atom and the endo phosphoryl oxygen.

Numerous  $\eta^5$ -pentadienyl and cyclo- $\eta^5$ -dienyl complexes of transition metals have been recently described in the literature. Of particular significance to us were the discoveries of "open ferrocenes" (1)¹ and "open cymantrenes" (2).² In addition, some  $\lambda^5$ -phosphorin  $\pi$  complexes have been prepared by Dimroth et al.^{3,4} and shown to have

On the other hand, we have found an easy two-step

zwitterionic structure such as 3.5

⁽¹⁾ Wilson, D. R.; Di Lullo, A. A.; Ernst, R. D. J. Am. Chem. Soc. 1980, 102, 5928. (2) Saufarth D.: Coldman F. W.: Pornet J. J. Organomet Chem.

⁽²⁾ Seyferth, D.; Goldman, E. W.; Pornet, J. J. Organomet. Chem.
1981, 208, 189.
(3) Lückoff, M.; Dimroth, K. Angew. Chem., Int. Ed. Engl. 1976, 15,

<sup>503.
(4)</sup> Dimroth, K.; Lückoff, M.; Kaletsch, H. Phosphorus Sulfur 1981, 10, 285.

[†]Laboratoire CNRS-SNPE.

[‡]Université Pierre et Marie Curie.