of the donors to the Petroleum Research Fund, administered by the American Chemical Society, and the University of Oklahoma Research Council is gratefully acknowledged. K.L.B. was supported by a Conoco Fellow-

ship.

Registry No. I, 36333-76-3; II, 36333-78-5; CrCl₃(THF)₃, 10170-68-0; TiCl₄(THF)₂, 31011-57-1; 1-norbornyllithium, 930-81-4; 1-chloronorbornane, 765-67-3; 1,2'-binorbornyl, 18313-42-3.

EPR Spectra of V(CO)₅ and V(CO)₄ in a Krypton Matrix[†]

J. R. Morton* and K. F. Preston

Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R9

Received February 15, 1984

The free radical carbonyls $V(CO)_4$ and $V(CO)_5$ have been detected by EPR spectroscopy at 20 K in a γ -irradiated sample of V(CO)₆ in krypton. V(CO)₄ is in a high-spin d⁵ configuration (⁶A₁ in T_d), whereas $V(CO)_5$ appears to have a 2B_2 ground state in C_{2v} symmetry (distorted trigonal bipyramid).

Introduction

In recent years we have been studying the EPR spectra of free radical carbonyls centered on transition metals of the first row (V-Ni). Our early experiments involved the dissolution of stable carbonyls, for example, $V(CO)_6^1$ or Fe(CO)₅,^{2,3} in single crystals of chromium hexacarbonyl followed by generation of paramagnetic derivatives through UV or γ irradiation. This technique was limited by the poor solvent properties of $Cr(CO)_6$, and we were eventually obliged to seek other hosts. Promising results have been obtained with a krypton matrix.⁴ Solid krypton is a surprisingly good solvent for transition-metal carbonyls, and EPR spectra observed therein are unusually sharp. On the whole these advantages over $Cr(CO)_6$ outweigh the disadvantages, which are the following: first, liquid helium capability is a prerequisite, and second, the spectra are those of a powder, not a single crystal. The last is a grave disadvantage as it means that principal values of ligand hyperfine interactions are often impossible to obtain, as we shall see. Furthermore, heavy reliance must be placed on computer simulation, a technique which does not always lead to a unique solution.

We had modest success with $V(CO)_6$ dissolved in Cr-(CO)₆: the spectra of $OV(CO)_{4075}^{2+}$ and $V(CO)_6$ itself were obtained and analyzed.¹ This paper is a discussion of the results obtained from the $V(CO)_6$ -krypton system; the spectra of $V(CO)_4$ and $V(CO)_5$ will be described and analyzed.

Experimental Section

The bis(diglyme) complex of NaV(CO)₆ was obtained from Alfa Inorganics Inc. and dissolved in sodium-dry tetrahydrofuran. It was then treated with anhydrous H_3PO_4 to liberate the volatile $V(CO)_6$. In order to enrich the $V(CO)_6$ in the isotope ¹³C, the solution of the vanadium salt was placed under ¹³CO (Merck, 99.8%) at a pressure of ca. 30 kP in a Pyrex vessel and irradiated with a 100-W high-pressure Hg lamp for 15 h. After the spent CO was removed and replaced twice with fresh ¹³CO, the solution was treated with H_3PO_4 to liberate the ¹³C-enriched V(CO)₆. An enrichment in excess of 98% was obtained by this method. Appropriate proportions (ca. 1:1000) of $V(CO)_6$ and krypton were mixed in the gas phase and then condensed into a 4-mm o.d. Suprasil sample tube and sealed off at 77 K.

The samples were γ irradiated at 77 K in a 19000 Ci ⁶⁰Co γ cell to a total dose of approximately 0.2 Mrad. Alternatively, they were exposed to the full light of a high-pressure Hg-Xe lamp (λ Table I. Principal g Factors and ⁵¹V, ¹³C Hyperfine Interactions for V(CO), in Krypton

axis	g	a _V /G	a _C /G
x	1.9877	95.2	2 at 3.3, 2 at 12.8
У	2.0559	35.9	2 at 4.8, 2 at 9.0
z	2.0898	38.2	too weak

> 254 nm) at 4 K. They were subsequently examined with a Varian E12 EPR spectrometer equipped with an Oxford Instruments ESR 9 liquid-helium cryostat.

Results

The EPR spectrum of $V(CO)_6$ in $Cr(CO)_6$ and other matrices has been discussed elsewhere. Although krypton is known to be a good solvent for transition-metal carbonyls and in general yields splendid EPR spectra, we have never been able to generate a well-resolved spectrum of $V(CO)_6$ in krypton. This fact continues to be a source of considerable frustration and mystification. Suffice to say that unirradiated and irradiated samples of $V(CO)_6$ -Kr contained a broad (100 G maximum slope width) derivative-shaped line centered at g = 2.066.

The spectrum of irradiated V(CO)₆-Kr (natural abundance of ¹³C) at 20 K is shown in Figure 1a. It is evidently the spectrum of a ⁵¹V (I = 7/2) centered species having low symmetry, since three distinct manifolds (labeled x, y, and z) of 51 V hyperfine structure are apparent. The 24 lines that constitute this spectrum were measured as accurately as possible and, taking $\pm m_{\rm I}$ pairs, were used to compute principal g factors and 51 V hyperfine interactions. The usual method of diagonalization of the spin matrix was used.⁵ The agreement between the four sets of m_I pairs was ± 0.0002 in g and ± 0.5 G in the ⁵¹V hyperfine interaction. The averages of these parameters over the four m_I pairs for x, y, and z are given in Table I.

In Figure 1b a computer simulation obtained by using these parameters is shown.⁶ The agreement between the

Boyer, M. P.; Le Page, Y.; Morton, J. R.: Preston, K. F.; Vuolle,
 M. J. Can. J. Spectrosc. 1981, 26, 181.
 (2) Lionel, T.; Morton, J. R.; Preston, K. F. J. Chem. Phys. 1982, 76,

^{234.}

⁽³⁾ Fairhurst, S. A.; Morton, J. R.; Preston, K. F. J. Chem. Phys. 1982, 77, 5872.

⁽⁴⁾ Fairhurst, S. A.; Morton, J. R.; Preston, K. F. J. Magn. Reson. 1983, 55, 453.

⁽⁵⁾ Abragam, A.; Bleaney, B. "Electron Paramagnetic Resonance of Transition Ions"; Clarendon Press: Oxford, United Kingdom, 1970; Chapter 3

⁽⁶⁾ Belford, R. L.; Nilges, M. J. "Computer Simulation of Powder Spectra", EPR Symposium, 21st Rocky Mountain Conference, Denver, CO, Aug 1979.

Figure 1. (a) The EPR spectrum of $V(CO)_5$ in a krypton matrix at 20 K. (b) A computer simulation of (a) using the spectral parameters (g, a_V) given in Table I.

real spectrum and the simulation is sufficient to confirm the correctness of the analysis.

Using a sample containing 98% ¹³C, the x axis line for $m_I = +\frac{5}{2}$ had the ¹³C hyperfine structure shown in Figure 2a, and the y axis line for $m_I = +\frac{3}{2}$ had the structure shown in Figure 2b. Both of these patterns indicate the presence of two pairs of carbon atoms. Their hyperfine interactions are included in Table I.

A second spectrum was sometimes present in irradiated $V(CO)_6$ -Kr samples. In nonenriched samples it was a single, derivative-shaped line at $g = 1.9583 \pm 0.0001$. In 98% ¹³C-enriched samples the ¹³C hyperfine structure was that of four equivalent ¹³C nuclei having a hyperfine interaction of 7.6 G. No ⁵¹V hyperfine was apparent. This second spectrum was readily distinguished from the first by the fact that it was strongest at 5 K, 20 mW, whereas the spectrum shown in Figure 1a was best at 20 K, 2 mW.

Discussion

We identify the carrier of Figure 1a as $V(CO)_5$ for the following reasons: It contains at least four carbon atoms and probably is uncharged since it was produced by near-UV photolysis. The carrier is therefore $V(CO)_n$, where n = 4, 5, or 6. By analogy with the isoelectronic $Cr(CO)_4^{+,7}$ we would expect $V(CO)_4$ to be in a high-spin 6A_1 state whose spectrum (in a powdered matrix) would show hy-

Figure 2. The EPR spectrum of a V(CO)₅-Kr sample containing ¹³C enriched to 98%: (a) the x axis, $m_I = +\frac{5}{2}$ line; (b) the y axis, $m_I = +\frac{3}{2}$ line.

Figure 3. Energy level diagram for the distortion of a trigonal-bipyramidal $V(CO)_5$ toward C_{2v} symmetry.

perfine structure with four equivalent ¹³C nuclei, not two pairs of ¹³C nuclei as in the present instance. The other possibility, V(CO)₆, has already been detected in a single crystal of $Cr(CO)_6^1$ and has quite different **g** and ⁵¹V hyperfine tensors from those presently reported. In a Kr matrix, it probably gives rise to the broad feature at g =2.066. Thus, discounting the possibility of doubly charged species, we are obliged to conclude that the carrier of Figure 1a is V(CO)₅.

Rossi and Hoffmann,⁸ in their discussion of transitionmetal pentacoordination, describe the energy changes along a Berry pseudorotation coordinate connecting D_{3h} and $C_{4\nu}$ symmetries. The intermediate $(C_{2\nu})$ symmetry has the energy level scheme shown in Figure 3 in which a slight departure from D_{3h} symmetry is envisaged. The molecule $V(CO)_5$ is a d⁵ species, and in D_{3h} symmetry the fifth electron would enter the e' orbital. The ²E' state so formed would be subject to a Jahn-Teller distortion with the formation of a ²B₂ state in $C_{2\nu}$ symmetry.

The experimental data are certainly consistent with this hypothesis. The unpaired electron is in a molecular orbital of the B_2 representation to which V $3d_{yz}$ makes an important contribution. We would therefore expect x to be the direction of largest (negative) ⁵¹V hyperfine interaction

⁽⁸⁾ Rossi, A. R.; Hoffmann, R. Inorg. Chem. 1975, 14, 365.

and negative g shift. The latter is due to spin-orbit interaction between the ground ${}^{2}B_{2}$ state and the excited ${}^{2}A_{1}$ state $(A_1 \times B_2 \text{ transforms as } R_r \text{ in } C_{2\nu})$. In Table I we see that there is a principal direction corresponding to large ⁵¹V hyperfine interaction and negative g shift; it is according labeled x.

The hypothesis of $V(CO)_5$, ${}^{2}B_2$ in $C_{2\nu}$, also requires the y and z axes to be directions of small hyperfine interaction and positive g shift $(B_1 \times B_2 \text{ and } A_2 \times B_2 \text{ transform as } R_z$ and R_{ν} , respectively). Again, in Table I, we see that the hypothesis is in accord with the experimental data. In other words, the conclusion that the carrier of Figure 1a is $V(CO)_5$ can be accommodated by current structural theories.

Spin population in V $3d_{yz}$ can be estimated by the usual method⁹ to be 0.42, assuming the two small principal values of the 51 V hyperfine tensor are positive, the other negative.

As regards the ¹³C hyperfine interactions, we must use caution in any discussion since the values reported in Table I are not principal values of the ¹³C hyperfine tensors. They are merely the ¹³C hyperfine interactions along the principal directions of the g tensor. In fact, the line width variation across the spectra shown in Figure 2 is diagnostic of nonparallel g and hyperfine tensors. In a powder, as opposed to a single crystal, principal values of ligand hyperfine interactions are often not determinable. Association of the measured ¹³C hyperfine interactions with the carbons of the $C_{2\nu}$ structure (Figure 3) is thus impossible. We can, however, unambiguously assign the unique carbon that shows no resolvable interaction along x or y to the equatorial position 3.

We turn now to the second signal observed in V(C- O_{6} -Kr samples: a derivative-shaped line at g = 1.9583without ⁵¹V hyperfine structure, but showing hyperfine interactions of 7.6 G with four equivalent ¹³C nuclei on enrichment. We suspect that this species is $V(CO)_4$, 6A_1 in T_d symmetry. The analogy with $Cr(CO)_4^+$ -Kr leads us to expect a low g signal with almost isotropic ^{13}C hyperfine interactions.⁷ The signal observed is due to the $|m_S = 1/_2\rangle$ $\leftarrow |m_S = -1/2\rangle$ transition which, in a powder, is the only one detectable.¹⁰ This transition, being isotropic, generates a relatively strong signal with full derivative line

shape, as observed. The absence of ⁵¹V hyperfine structure is disconcerting, but examination of $Fe(CO)_5$ or $Ni(CO)_4$ in krypton under similar conditions failed to reproduce the spectrum and convinced us that it was not due to an Feor Ni-containing impurity.

The observed isotropic hyperfine interaction for the metal nucleus in the ${}^{6}A_{1}$ state is due to a net s orbital unpaired spin density arising from three separate contributions: a direct, positive component from valence s orbital participation in the wave function, a negative component due to core polarization, and a positive contribution due to bond polarization.¹¹ The last term is often ignored in treating transition-metal ions but cannot be dismissed in cases such as metal carbonyls, where the ligands are covalently bound. In $V(CO)_4$ it would appear that the three terms cancel, whereas in $Cr(CO)_4^+$ a net Cr 4s spin density of ~0.06 is indicated.⁷ This difference may be attributed to an enhanced metal-carbon bond strength in $Cr(CO)_4^+$ and a concomitant reduction in the bond polarization term. The anticipated stronger interaction of metal 3d and CO σ orbitals in Cr(CO)₄⁺ will also result in a greater separation of the molecular antibonding orbitals and a reduced g shift from free spin vis-à-vis $V(CO)_4$.

We note that our ground-state assignment of ${}^{6}A_{1}$ in T_{d} for $V(CO)_4$ is in accord with the observation¹² of a single $\nu(CO)$ stretching mode for that species. Our finding of a C_{2v} structure for V(CO)₅, however, conflicts with the D_{3h} assignment deduced^{12,13} from infrared spectroscopic data. It would appear, therefore, that certain CO stretching modes observed in the V-CO deposition experiments were misassigned.

Since both of the carriers exhibited hyperfine interactions with four carbon nuclei, we naturally considered the possibility that they were isomers of $V(CO)_4$, viz., a highspin tetrahedral form and a low-spin distorted tetrahedral form. However, Cotton and Wilkinson's14 strongly expressed arguments against the existence of low-spin tetrahedral d⁵ species make us extremely reluctant to associate the spectrum of Figure 1a with low-spin $V(CO)_4$.

Registry No. V(CoO)₄, 59982-53-5; V(CO)₅, 59982-54-6; V-(CO)₆, 14024-00-1.

⁽⁹⁾ Morton, J. R.; Preston, K. F. J. Magn. Reson. 1978, 30, 577.
(10) Wertz, J. E.; Bolton, J. R. "Electron Spin Resonance: Elementary

Theory and Practical Applications"; McGraw-Hill: New York, 1972; Chapter 11.

⁽¹¹⁾ Reference 10, Chapter 6.
(12) Hanlan, L.; Huber, H.; Ozin, G. A. Inorg. Chem. 1976, 15, 2592.
(13) Graham, M. A. Ph.D. Thesis, University of Cambridge, United Kingdom, 1971.

⁽¹⁴⁾ Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry"; Wiley: New York, 1972; p 566.