of the donors to the Petroleum Research Fund, administered by the American Chemical Society, and the University of Oklahoma Research Council is gratefully acknowledged. K.L.B. was supported by a Conoco Fellowship.

Registry No. I, 36333-76-3; II, 36333-78-5; CrCl₃(THF)₃, 10170-68-0; TiCl₄(THF)₂, 31011-57-1; 1-norbornyllithium, 930-81-4; 1-chloronorbornane, 765-67-3; 1,2'-binorbornyl, 18313-42-3.

EPR Spectra of V(CO)₅ and V(CO)₄ in a Krypton Matrix[†]

J. R. Morton" and K. F. Preston

Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada K1A OR9

Received February 15, 1984

The free radical carbonyls $V(CO)_4$ and $V(CO)_5$ have been detected by EPR spectroscopy at 20 K in a -irradiated sample of $V(\text{CO})_6$ in krypton. $V(\text{CO})_4$ is in a high-spin d⁵ configuration (6A_1 in T_d), whereas $V(CO)$ ₅ appears to have a ²B₂ ground state in $C_{2\nu}$ symmetry (distorted trigonal bipyramid).

Introduction

In recent years we have been studying the EPR spectra of free radical carbonyls centered on transition metals of the first row (V-Ni). Our early experiments involved the dissolution of stable carbonyls, for example, $V(CO)₆¹$ or $Fe(CO)_{5}^{2,3}$ in single crystals of chromium hexacarbonyl followed by generation of paramagnetic derivatives through UV or γ irradiation. This technique was limited by the poor solvent properties of $Cr(CO)_{6}$, and we were eventually obliged to seek other hosts. Promising results have been obtained with a krypton matrix. 4 Solid krypton is a surprisingly good solvent for transition-metal carbonyls, and EPR spectra observed therein are unusually sharp. On the whole these advantages over $Cr(CO)₆$ outweigh the disadvantages, which are the following: first, liquid helium capability is a prerequisite, and second, the spectra are those of a powder, not a single crystal. The last is a grave disadvantage as it means that principal values of ligand hyperfine interactions are often impossible to obtain, as we shall **see.** Furthermore, heavy reliance must be placed on computer simulation, a technique which does not always lead to a unique solution.

We had modest success with $V(CO)_6$ dissolved in Cr- $(CO)_6$: the spectra of $\mathrm{OV}(CO)_{4\text{orb}}^{2+}$ and $\mathrm{V}(CO)_6$ itself were obtained and analyzed.' This paper is a discussion of the results obtained from the $V(\overline{CO})_6$ -krypton system; the spectra of $V(CO)₄$ and $V(CO)₅$ will be described and analyzed.

Experimental Section

The bis(diglyme) complex of NaV(CO)_6 was obtained from Alfa Inorganics Inc. and dissolved in sodium-dry tetrahydrofuran. It **was** then treated with anhydrous H3P04 to liberate the volatile $V(CO)_6$. In order to enrich the $V(\text{CO})_6$ in the isotope ¹³C, the solution of the vanadium salt was placed under ¹³CO (Merck, 99.8%) at a pressure of ca. 30 **kP** in a Pyrex vessel and irradiated with a 100-W high-pressure Hg lamp for 15 h. After the spent CO was removed and replaced twice with fresh 13C0, the solution was treated with H3P04 to liberate the 13C-enriched V(CO)& **An** enrichment in excess of 98% was obtained by this method. Appropriate proportions (ca. 1:1000) of $V(CO)_{6}$ and krypton were mixed in the gas phase and then condensed into a 4-mm 0.d. Suprasil sample tube and sealed off at 77 K.

The samples were γ irradiated at 77 K in a 19000 Ci⁶⁰Co γ **cell** to a total dose of approximately 0.2 Mrad. Altematively, they were exposed to the full light of a high-pressure Hg-Xe lamp (λ)

Table **I,** Principal g Factors and **51V, "C** Hyperfine Interactions for **V(CO),** in Krypton

> 254 nm) at 4 K. They were subsequently examined with a Varian E12 EPR spectrometer equipped with **an** Oxford Instruments ESR 9 liquid-helium cryostat.

Results

The EPR spectrum of $V(CO)_6$ in $Cr(CO)_6$ and other matrices has been discussed elsewhere. Although krypton is known to be a good solvent for transition-metal carbonyls and in general yields splendid EPR spectra, we have never been able to generate a well-resolved spectrum of $V(CO)₆$ in krypton. This fact continues to be a source of considerable frustration and mystification. Suffice to say that unirradiated and irradiated samples of $V(CO)₆–Kr$ contained a broad (100 **G** maximum slope width) derivative-shaped line centered at $g = 2.066$.

The spectrum of irradiated $V(CO)_{6}$ -Kr (natural abundance of 13C) at **20** K is shown in Figure la. It is evidently the spectrum of a ⁵¹V ($I = \frac{7}{2}$) centered species having low symmetry, since three distinct manifolds (labeled *x,* y, and *z)* of 51V hyperfine structure are apparent. The **24** lines that constitute this spectrum were measured **as** accurately as possible and, taking $\pm m_{\rm I}$ pairs, were used to compute principal g factors and ^{51}V hyperfine interactions. The usual method of diagonalization of the spin matrix was used.⁵ The agreement between the four sets of m_l pairs was ± 0.0002 in g and ± 0.5 G in the ⁵¹V hyperfine interaction. The averages of these parameters over the four m_l pairs for *x,* y, and *z* are given in Table I.

In Figure lb a computer simulation obtained **by** using these parameters is shown. 6 The agreement between the

⁽¹⁾ Boyer, M. P.; Le Page, **Y.;** Morton, J. R.: Preston, K. F.; Vuolle, **(2)** Lionel, T.; Morton, J. R.; Preston, K. F. J. *Chem.* Phys. **1982,** *76,* M. J. *Can. J.* Spectrosc. **1981,** 26, 181.

^{234.}

⁽³⁾ Fairhurst, S. A.; Morton, J. R.; Preston, K. F. *J. Chem. Phys.* **1982, 77,** 5872.

⁽⁴⁾ Fairhurst, S. A.; Morton, J. R.; Preston, K. F. J. *Magn. Reson.* **1983, 55,** 453.

⁽⁵⁾ Abragam, A.; Bleaney, B. "Electron Paramagnetic Resonance of Transition Ions"; Clarendon Press: Oxford, United Kingdom, 1970; Chapter 3.

⁽⁶⁾ Belford, R. L.; Nilges, M. J. 'Computer Simulation of Powder Spectra", EPR Symposium, 2lst Rocky Mountain Conference, Denver, CO, Aug 1979.

Figure 1. (a) The EPR spectrum of $V(CO)_5$ in a krypton matrix at 20 **K.** (b) **A** computer simulation of (a) using the spectral parameters (g, a_V) given in Table I.

real spectrum and the simulation is sufficient to confirm the correctness of the analysis.

Using a sample containing 98% 13C, the *x* axis line for $m_I = +\bar{5}/2$ had the ¹³C hyperfine structure shown in Figure 2a, and the y axis line for $m_I = +3/2$ had the structure shown in Figure 2b. Both of these patterns indicate the presence of two pairs of carbon atoms. Their hyperfine interactions are included in Table I.

A second spectrum was sometimes present in irradiated $V(CO)₆ - Kr$ samples. In nonenriched samples it was a single, derivative-shaped line at $g = 1.9583 \pm 0.0001$. In 98% ¹³C-enriched samples the ¹³C hyperfine structure was that of four equivalent 13C nuclei having a hyperfine interaction of **7.6** G. **No** 51V hyperfine was apparent. This second spectrum was readily distinguished from the first by the fact that it was strongest at 5 K, 20 mW, whereas the spectrum shown in Figure la was best at 20 K, 2 mW.

Discussion

We identify the carrier of Figure 1a as $V(CO)_{5}$ for the following reasons: It contains at least four carbon atoms and probably is uncharged since it was produced by near-UV photolysis. The carrier is therefore $V(CO)_n$, where $n = 4, 5,$ or 6. By analogy with the isoelectronic $Cr(CO)₄$ ⁺,⁷ we would expect $V(CO)_4$ to be in a high-spin 6A_1 state whose spectrum (in a powdered matrix) would show hy-

Figure 2. The EPR spectrum of a V(CO)₅-Kr sample containing ¹³C enriched to 98%: (a) the *x* axis, $m_I = +⁵/2$ line; (b) the *y* axis, $m_I = +\frac{3}{2}$ line.

Figure 3. Energy level diagram for the distortion of a trigo- nal-bipyramidal $V(CO)$ ₅ toward C_{2v} symmetry.

perfine structure with four equivalent 13C nuclei, not two pairs of 13C nuclei as in the present instance. The other possibility, $V(CO)_6$, has already been detected in a single crystal of $Cr(CO)_6^1$ and has quite different **g** and ⁵¹V hyperfine tensors from those presently reported. In a Kr matrix, it probably gives rise to the broad feature at *g* = 2.066. Thus, discounting the possibility of doubly charged species, we are obliged to conclude that the carrier of Figure 1a is $V(CO)_{5}$.

Rossi and Hoffmann? in their discussion of transitionmetal pentacoordination, describe the energy changes along a Berry pseudorotation coordinate connecting D_{3h} and C_{4v} symmetries. The intermediate $(C_{2\nu})$ symmetry has the energy level scheme shown in Figure 3 in which a slight departure from *D%* symmetry is envisaged. The molecule $V(CO)₅$ is a d⁵ species, and in D_{3h} symmetry the fifth electron would enter the e' orbital. The **2E'** state *so* formed would be subject to a Jahn-Teller distortion with the formation of a ${}^{2}B_{2}$ state in C_{2v} symmetry.

The experimental data are certainly consistent with this hypothesis. The unpaired electron is in a molecular orbital of the B_2 representation to which V $3d_{yz}$ makes an important contribution. We would therefore expect *x* to be the direction of largest (negative) $51V$ hyperfine interaction

⁽⁸⁾ **Rossi, A. R.; Hoffman, R.** *Znorg. Chem.* **1975,** *14,* **365.**

and negative g shift. The latter is due to spin-orbit interaction between the ground ${}^{2}B_{2}$ state and the excited ${}^{2}A_{1}$ state $(A_1 \times B_2)$ transforms as R_r in $C_{2\nu}$). In Table I we see that there is a principal direction corresponding to large $51V$ hyperfine interaction and negative g shift; it is according labeled *x.*

The hypothesis of $V(CO)_5$, ²B₂ in $C_{2\nu}$, also requires the y and *z* axes to be directions of small hyperfine interaction and positive g shift $(B_1 \times B_2 \text{ and } A_2 \times B_2 \text{ transform as } R_z$ and R_y , respectively). Again, in Table I, we see that the hypothesis is in accord with the experimental data. In other words, the conclusion that the carrier of Figure **la** is $V(CO)_{5}$ can be accommodated by current structural theories.

Spin population in V $3d_{vz}$ can be estimated by the usual method⁹ to be 0.42, assuming the two small principal values of the 51V hyperfine tensor are positive, the other negative.

As regards the 13C hyperfine interactions, we must use caution in any discussion since the values reported in Table I are not principal values of the 13C hyperfine tensors. They are merely the 13C hyperfine interactions along the principal directions of the **g** tensor. In fact, the line width variation across the spectra shown in Figure **2** is diagnostic of nonparallel **g** and hyperfine tensors. In a powder, as opposed to a single crystal, principal values of ligand hyperfine interactions are often not determinable. Association of the measured 13C hyperfine interactions with the carbons of the C_{2v} structure (Figure 3) is thus impossible. We can, however, unambiguously assign the unique carbon that shows no resolvable interaction along x or y to the equatorial position 3.

We turn now to the second signal observed in V(C-O)₆-Kr samples: a derivative-shaped line at $g = 1.9583$ without ⁵¹V hyperfine structure, but showing hyperfine interactions of **7.6** *G* with four equivalent 13C nuclei on enrichment. We suspect that this species is $V(CO)₄$, 6A_1 in T_d symmetry. The analogy with $\text{Cr(CO)}_4^{\text{+}-\text{Kr}}$ leads us to expect a low g signal with almost isotropic ¹³C hyperfine interactions.⁷ The signal observed is due to the $|m_S = 1/2\rangle$ to expect a low g signal with almost isotropic ¹°C hyperfine interactions.⁷ The signal observed is due to the $|m_s = 1/2$ \leftarrow $|m_s = -1/2$ transition which, in a powder, is the only one detectable.¹⁰ This transition, b ates a relatively strong signal with full derivative line

shape, **as** observed. The absence **of** 51V hyperfine structure is disconcerting, but examination of $Fe(CO)_5$ or $Ni(CO)_4$ in krypton under similar conditions failed to reproduce the spectrum and convinced us that it was not due to an Feor Ni-containing impurity.

The observed isotropic hyperfine interaction for the metal nucleus in the ${}^{6}A_1$ state is due to a net s orbital unpaired spin density arising from three separate contributions: a direct, positive component from valence s orbital participation in the wave function, a negative component due to core polarization, and a positive contribution due to bond polarization.¹¹ The last term is often ignored in treating transition-metal ions but cannot be dismissed in cases such **as** metal carbonyls, where the ligands are covalently bound. In $V(CO)₄$ it would appear that the three terms cancel, whereas in $Cr(CO)₄$ ⁺ a net Cr 4s spin density of ~ 0.06 is indicated.⁷ This difference may be attributed to an enhanced metal-carbon bond strength in $Cr(CO)₄$ ⁺ and a concomitant reduction in the bond polarization term. The anticipated stronger interaction of metal 3d and CO σ orbitals in Cr(CO)₄⁺ will also result in a greater separation of the molecular antibonding orbitals and a reduced g shift from free spin vis-à-vis $V(CO)₄$.

We note that our ground-state assignment of 6A_1 in T_d for $V(CO)₄$ is in accord with the observation¹² of a single $\nu(CO)$ stretching mode for that species. Our finding of a $C_{2\nu}$ structure for V(CO)₅, however, conflicts with the D_{3h} assignment deduced^{12,13} from infrared spectroscopic data. It would appear, therefore, that certain CO stretching modes observed in the V-CO deposition experiments were misassigned.

Since both of the carriers exhibited hyperfine interactions with four carbon nuclei, we naturally considered the possibility that they were isomers of $V(CO)_4$, viz., a highspin tetrahedral form and a low-spin distorted tetrahedral form. However, Cotton and Wilkinson's¹⁴ strongly expressed arguments against the existence of low-spin tetrahedral d^5 species make us extremely reluctant to associate the spectrum of Figure 1a with low-spin $V(CO)₄$.

Registry No. $V(CoO)_4$, 59982-53-5; $V(CO)_5$, 59982-54-6; V-**(CO),,** 14024-00-1.

⁽⁹⁾ Morton, J. R.; Preston, K. F. *J. Magn. Reson.* 1978, *30*, 577.
(10) Wertz, J. E.; Bolton, J. R. "Electron Spin Resonance: Elementary **Theory and Practical Applications"; McGraw-Hill: New York, 1972; Chapter 11.**

⁽¹¹⁾ Reference 10, Chapter 6.

⁽¹²⁾ Hanlan, L.; Huber, H.; Ozin, G. A. *Inorg.* **Chem. 1976,15, 2592. (13) Graham, M. A. Ph.D. Thesis, University of Cambridge, United Kingdom, 1971.**

⁽¹⁴⁾ Cotton, F. A.; Wilkinson, *G.* **"Advanced Inorganic Chemistry"; Wiley: New York, 1972; p 566.**