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Summary: The rearrangement of -phenyltitanacyclo-
butane (I) to a-phenyltitanacyclobutane (II) is shown
through labeling experiments to proceed by a stepwise
mechanism. Ring opening of I to the metal-methylidene
species followed by readdition of styrene affords both
complexes I and II.

It is now generally accepted that the olefin metathesis
reaction proceeds by a stepwise mechanism with alter-
nating metallacarbene and metallacyclobutane interme-
diates.!? Earlier studies of the rearrangement of platinum
metallacyclobutanes suggested concerted isomerization of
a- to B-substituted complexes.®® We previously have
reported the isolations of stable titanacyclobutanes from
an olefin metathesis system.%” In this paper, we wish to
address the mechanism of the isomerization reaction of
B-phenyltitanacyclobutane (I) to a-phenyltitanacyclo-
butane (II) for comparison to the corresponding platinum
reactions.

As reported before, the reaction of the “Tebbe” reagent
with styrene in toluene solution containing (dimethyl-
amino)pyridine (DMAP) gives a 1:2.5 mixture of the 3-
isomer I and the a-isomer II,? which are easily separated
due to their widely different solubilities in toluene® (eq 1).
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Solutions of complex I in toluene readily isomerize to the
a-isomer II at room temperature (eq 2). The a-isomer is
unreactive under the isomerization conditions, even with
added styrene. The isomerization is characterized by
first-order kinetics.'® By comparison with the results of
other titanacyclobutane reactions, the rate-determining
step in the isomerization of I is considered to be the ring
opening of the titanacyclobutane to the titanium methy-
lidene—olefin complex or the free titanium—carbene spec-
ies.% The detailed mechanism of the isomerization is
further probed by using isotopically labeled I and 2H
NMR.!! 1-2,2-d, isomerizes in toluene at room tempera-
ture to give I1-3,3-d, and II-4,4-d, in a 1.6:1 ratio which
is consistent with a secondary deuterium isotope effect!?

(eq 3). Isomerization reaction of I in the presence of
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PhCHCD, gives I1-3,3-d, as the major product (75%).
I1-4,4-d; and 1-2,2-d, are also detected in 9 and 15% yields,
respectively (eq 4). Since II-4,4-d, can only be formed
from reactions of I-2,2-d,, the above result indicates that
olefin exchange reaction has occurred to give both the a-
and B-isomer in a 3:1 ratio. In the absence of free olefins,

(10) k = 3.0 X 107 57! at 25 °C. E, = 25.5 kcal/mol. First-order
reaction was observed for at least 2.5 half-lives. Addition of styrene (2-10
equiv) does not affect the rate of isomerization. Other trapping agents
such as acetylenes and olefins react more rapidly. For example, cyclo-
pentene yields the corresponding metallacyclobutane with & = 4.4 X 107

(1 1) Deuterium-labeled styrenes prepared by known methods were
used in the synthesis of labeled I. Labinger, J. A.; Hart, D. W.; Seibert,
W. E.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 3851‘

(12) The unusual large secondary isotope effect has been addressed in
the previous paper.%
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isomerization can occur via carbene or olefin rotation in
the metal carbene-olefin complex. High rotation barrier
of the carbene rule out the first.!®* To address the olefin
rotation possibility, we employed stereospecifically labeled
I, since rotation of olefin should define the relative ster-
eochemistry of the a-isomer to be either trans-I1-3-d, or
cis-1I-4-d;. Isomerization of trans-I-2-d, in toluene without
added styrene, however, gives all possible stereoisomers
of II (eq 5). Equal amounts of cis- and trans-11-4-d, are

Cp{?‘ﬁ - SpT 5}
IR L
=

:aZTC>—-¢ — 3927<>—d> -
¢

teans-I-i-4

- e

present as are the scrambled S-isomers I-2-d; and sty-
rene-d;. We therefore rule out olefin rotation as a major
isomerization pathway. From the labeling experiments,
we conclude that isomerization of I is due to readdition
of olefin to the titanium methylene species (Scheme I).

The intermolecular process is further supported by the
following observations. A solution of I-2,2-d, is allowed
to equilibrate at room temperature for 1 h before hy-
drolysis with anhydrous hydrogen chloride. The organic
products are analyzed by GC/MS. Isopropylbenzene is
mostly d, as expected from unreacted I-2,2-d,. The n-
propylbenzene, from hydrolysis of II, contained molecules
containing from d to d; deuteria. The ratio of dyds:d,
n-propylbenzene is approximately 1:2.5:1.1, or that ap-
proaching a statistical olefin exchange!* (Scheme IT). The
presence of odd-numbered deuterium atoms in the n-
propylbenzenes is rationalized in terms of reactions in-
volving titanium hydrides or deuterides that are generated
from the decomposition of .15

In contrast to the rearrangement of platinacyclobutanes
where a concerted mechanism is suggested, titanacyclo-
butane isomerizations proceed through a metal-carbene
intermediate. This result provides an important step for
olefin metathesis in the form of olefin exchange reaction.
If the a-isomer could then ring-open to give a substituted
metal alkyidene!® such as Cp,Ti=CHPh, a complete me-
tathesis system would then be generated.
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Summary: The reaction of Cp’,NdCl, Li(ether),* (Cp' =
n°~(CH3)sCs) with LICH[SI(CH,),], vields the early lan-
thanide alkyl Cp',NdCH[SiI(CH,);], (1). The molecular
structure of this complex features an unusually short Nd-
methyl contact. Reaction of 1 with hydrogen yields the
highly reactive hydride (Cp',NdH), (3). At 25 °C, 1-atm
gas pressure, 3 polymerizes ethylene with N, > 80 000
min~" and hydrogenates 1-hexene with N, = 77000 h™".
Cyclohexene is hydrogenated with N, = 8300 h-". Kinetic
measurements indicate that Nd—C hydrogenolysis is rate
limiting for 1-hexene and that hydride + olefin addition is
rate limiting for cyclohexene.

Despite the recent burgeoning of organoactinide! and
organolanthanide!®? chemistries, few meaningful com-
parisons exist between isoelectronic, isoleptic 4f* and 5f*
systems. A potentially informative comparison to known
Cp’,UR/(Cp’;UH),, chemistry® (Cp’ = °-(CH,);C;) would
require the corresponding, unknown Nd(III) analogues.
Approaches to ether- and halide-free compounds of this
type are circuitous for later lanthanides'®?** and unde-
veloped for early (La-Nd) lanthanides.? We report here
that bulky®® hydrocarbyl groups offer a facile entrée into
such systems, the unusual molecular structure of a
Cpy’Nd™ alkyl, and preliminary chemical/mechanistic
observations portending very high catalytic activity.

The reaction of Cp’,NdCl, Li(ether),* ¢ with [bis(tri-
methylsilyl)methyl]lithium proceeds according to eq 1 to
give hydrocarbyl 1 in 81% isolated yield after recrystal-

toluene, 0 °C
Cp’,NdCl, Li(ether),* + LiCH[Si(CHy)s), -
Cp’sNdCH[Si(CH,)4], + 2LiCl + 2ether (1)
1, blue-green crystals

lization from pentane (-30 °C). Complex 1 was charac-
terized by elemental analysis,’ infrared spectra,”™ iso-

tThis contribution is dedicated to Earl Muetterties, an out-
standing scientist and a friend.
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