# Ruthenium Carbonyl 1.4-Diaza-1.3-butadiene (R-DAB) Complexes.<sup>1</sup> Reactivity of Ru<sub>3</sub>(CO)<sub>8</sub>(R-DAB) toward Diazomethane. Addition of a Methylene Fragment to a Trinuclear Species with Concomitant Rupture of a Single Ru-Ru Bond. Molecular Structure of Octacarbonyl(1,4-dineopentyl-1,4-diaza-1,3-butadiene)-( $\mu$ -methylene)triruthenium: ( $\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(neo-Pen-DAB)

Jan Keijsper, Louis H. Polm, Gerard van Koten, and Kees Vrieze\*

Anorganisch Chemisch Laboratorium, J.H. van't Hoff Instituut, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

### Kees Goubitz and Casper H. Stam

Laboratorium voor Kristallografie, J.H. van't Hoff Instituut, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Received December 27, 1984

Ru<sub>3</sub>(CO)<sub>8</sub>(R-DAB) (R = neo-Pen, i-Bu; R-DAB = 1,4-disubstituted 1,4-diaza-1,3-butadiene; RN=  $CHCH=NR)^2$  reacts with ethereal diazomethane at room temperature to yield the novel addition product  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(R-DAB). During the reaction one single Ru-Ru bond is broken while the eight-electron-coordination mode of the diimine ligand is unaffected. This is shown by an X-ray crystal structure determination for the R = neo-Pen derivative. Crystals of  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(neo-Pen-DÅB) are monoclinic of space group  $P2_1/n$  with cell constants a = 13.819 (2) Å, b = 21.339 (2) Å, c = 9.485 (1) Å,  $\beta = 108.22$ (1)°, and Z = 4. A total of 3159 reflections have been used in the refinement resulting in a final R value of 0.026 ( $R_w = 0.040$ ). Electronically, this species can be considered as a 50-electron trinuclear complex accordingly having only two Ru-Ru bonds: Ru(1)-Ru(2) = 2.8690 (6) and Ru(1)-Ru(3) = 2.9079 (6) Å. The third Ru(2)-Ru(3) distance of 3.1021 (6) Å is considered as a nonbonding distance and is asymmetrically bridged by the methylene moiety: Ru(2)-C(17) = 2.048 (5) and Ru(3)-C(17) = 2.204 (6) Å, which is a rather

unique feature. The Ru(2)-Ru(3)-CC(17) moiety has a butterfly geometry with a dihedral angle of 143.1°. All carbonyls are terminally bonded: two to Ru(1) and Ru(2) each and four to Ru(3). The neo-Pen-DAB ligand is  $\sigma$ -N,  $\sigma$ -N' bonded to Ru(2) with equal Ru(2)-N bond lengths of 2.16 (1) Å. Besides, both imine bonds are  $\eta^2$ -coordinated to Ru(1) as evidenced by the observation that all four atoms of the N(1)=C(1)-C(2)=N(2) part are located at about equal distance (2.21 (2) Å) from Ru(1). Likewise, the three equal bond lengths within the diimine part (1.38 (1) Å) are consistent with an eight-electron  $\sigma$ -N,  $\sigma$ -N',  $\eta^2$ -C=N,  $\eta^2$ -C'=N' bonding mode. The complexes have been further characterized by IR, FD-mass, <sup>1</sup>H NMR, and <sup>13</sup>C NMR spectroscopy. The carbene's chemical shifts are 3.7 (<sup>1</sup>H NMR) and 32.5 ppm (<sup>13</sup>C) NMR), which is in line with the absence of a direct Ru(2)-Ru(3) interaction. The two halves of the R-DAB

ligand are magnetically equivalent, indicating that in solution the "flying" motion of the Ru(2)-Ru-

(1)-Ru(3)-C(17) butterfly is fast on the NMR time scale.

# Introduction

Multisite bonded R-DAB ligands<sup>2</sup> (R-DAB = RN= CHCH=NR = 1,4-disubstituted 1,4-diaza-1,3-butadiene) can exhibit strong activation, resulting in C-C,<sup>3</sup> C-H,<sup>4</sup> N-C,<sup>5</sup> or N-H<sup>6</sup> bond formation. The synthesis of polynuclear R-DAB complexes, in which such multisite bonding

may occur because of possible involvement of the  $\pi$ -electrons in the coordination, 7 therefore is of great interest. One of the possibilities to obtain polynuclear R-DAB species is the reaction of polynuclear metal carbonyls with R-DAB. During the last 5 years we have gained much insight in the  $Ru_3(CO)_{12}/R$ -DAB reaction sequence and several reactive intermediates have been isolated. Attention is now especially focused on the study of the reactivity of these intermediates. It has been found that, e.g.,  $Ru_2(CO)_n(R-DAB)$  (n = 5,6) reacts with several ligands L (L = R-DAB, sulfine, carbodiimide, acetylene, and ketene)to yield R-DAB-L coupled products.<sup>3</sup> Another promising intermediate, i.e., Ru<sub>3</sub>(CO)<sub>8</sub>(R-DAB), reacts quickly and reversibly with CO to yield the 50-electron trinuclear compound Ru<sub>3</sub>(CO)<sub>9</sub>(R-DAB) (see Figure 1).<sup>8a</sup>

Part 8: for earlier parts see ref 3a-c and 8.
 For a recent review on R-DAB chemistry: van Koten, G.; Vrieze, K. Adv. Organomet. Chem. 1982, 21, 151. In this review the nomenclature for the ligands is also explained.

 <sup>(3) (</sup>a) Staal, L. H.; Polm, L. H.; Balk, R. W.; van Koten, G.; Vrieze,
 K.; Brouwers, A. M. F. Inorg. Chem. 1980, 19, 3343. (b) Staal, L. H.; van Koten, G.; Vrieze, K.; van Santen, B.; Stam, C. H. Inorg. Chem. 1981, 20, 3598. (c) Keijsper, J.; Polm, L. H.; van Koten, G.; Vrieze, K.; Abbel, G.; Stam, C. H. Inorg. Chem. 1984, 23, 2142. (d) Keijsper, J.; Polm, L. H.; van Koten, G.; Vrieze, K.; Stam, C. H.; Schagen, J. D. Inorg. Chim. Acta, submitted for publication.

<sup>(4)</sup> Keijsper, J.; Grimberg, P.; van Koten, G.; Vrieze, K.; Cristopherson,
M.; Stam, C. H. Inorg. Chim. Acta 1985, 102, 29.
(5) Polm, L. H.; van Koten, G.; Vrieze, K.; Stam, C. H.; van Tunen,
W. C. J. J. Chem. Soc. Chem. Commun. 1983, 1177.
(6) Keijsper, J.; Mul, J.; van Koten, G.; Vrieze, K.; Ubbels, H. C.; Stam,
C. H. Chem. Chim. 4, 2, 123.

C. H. Organometallics 1984, 3, 1732.

<sup>(7)</sup> See, e.g., ref 2, 3a, and 6.
(8) (a) Keijsper, J.; Polm, L. H.; van Koten, G.; Vrieze, K.; Seignette, F. F. A. B.; Stam, C. H. *Inorg. Chem.* 1985, 24, 518. (b) Staal, L. H.; van Koten, G.; Vrieze, K.; Ploeger, F.; Stam, C. H. *Inorg. Chem.* 1981, 20, 1830. (c) Staal, L. H.; Polm, L. H.; van Koten, G.; Vrieze, K.; Ploeger, S.; Stam, C. H. *Inorg. Chem.* 1981, 20, 1830. (c) Staal, L. H.; Polm, L. H.; van Koten, G.; Vrieze, K.; Ploeger, S.; Stam, C. H. *Inorg. Chem.* 1981, 20, 1830. (c) Staal, L. H.; Stam, St F.; Stam, C. H. Inorg. Chem. 1981, 20, 3590.



Figure 1. The reversible reaction of CO with  $Ru_3(CO)_8(R-DAB)$  showing the schematic structures of the  $Ru_3$  species and the empty coordination site on Ru(2).

This reaction is accompanied with a green to red color change and may occur because of the gap in the coordination sphere of Ru(2), trans to the  $Ru(3)(CO)_4$  unit (see Figure 1). Surprisingly, no metal-metal nor a metal-ligand bond is broken during the CO addition but instead the  $\operatorname{Ru}(2)$ - $\operatorname{Ru}(n)$  (n = 1, 3) and  $\operatorname{Ru}(2)$ - $\operatorname{C}(O)$  bonds are weakened.<sup>8a</sup> It has been argued that this may happen because the extra electron density is moved to an antibonding orbital, mainly localized on Ru(2). The availability of the empty coordination site on Ru(2) to which other ligands L can be bonded, in combination with the proximity of the multisite bonded R-DAB ligand may lead to novel types of interaction between R-DAB and L. We therefore are extensively studying the chemistry of  $Ru_3(CO)_8(R-DAB)$ , and it is has already been found that  $Ru_3(CO)_8(R-DAB)$ reacts with acetylenes, allenes, phosphines, and molecular hydrogen.<sup>9</sup>

Recently, the formal two-electron-donating carbene ligand has drawn much attention because it may play an important intermediate role in FT synthesis and alkyne polymerization.<sup>10</sup> Analogous C–C coupling to that occurring during FT synthesis<sup>11</sup> as well as C–C coupling between a CH<sub>2</sub> fragment and CO or alkyne<sup>12</sup> has been observed. Recently, Herrmann has extensively reviewed the novel structural and chemical features of methylenebridged complexes.<sup>13</sup>

We were interested to find out (i) if a methylene unit could add to  $Ru_3(CO)_8(R-DAB)$  and (ii) if so, whether it may react further with the activated R-DAB ligand. Therefore, we have carried out the reaction of  $Ru_3(CO)_8$ -(R-DAB) with diazomethane, which method is generally the most direct way to obtain a methylene complex,<sup>13</sup> and the results of this reaction are described in this paper.

# **Experimental Section**

Materials and Apparatus. NMR spectra were obtained on a Bruker WM250 (<sup>1</sup>H) and a Bruker WP80 (<sup>13</sup>C) apparatus. IR spectra were recorded with a Perkin Elmer 283 spectrophotometer. mass spectra were obtained with a Varian MAT 711 mass spectrometer, applying field desorption technique. Elemental analyses were obtained from the elemental analysis section of the Institute for Applied Chemistry, TNO, Utrecht, The Netherlands. All



Figure 2. The molecular geometry of  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(neo-Pen-DAB).

preparations were carried out in an atmosphere of purified nitrogen, using carefully dried solvents. Silica gel for column chromatography (60 mesh) was dried and activated before use.  $Ru_3(CO)_8(R-DAB)^{3c}$  and an diethyl ether solution of diazomethane<sup>14</sup> (from KOH and *N*-methyl-*N*-nitrosoureum) have been prepared according to literature procedures.

Synthesis of  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(R-DAB) (R = *i*-Bu, neo-Pen). Ru<sub>3</sub>(CO)<sub>8</sub>(R-DAB) (0.33 mmol; prepared in situ<sup>3c</sup>) was stirred in 30 mL of toluene at room temperature. Diazomethane (dissolved in diethyl ether) was slowly added until all the  $\nu$ (CO) IR peaks due to the starting complex had been replaced by those of the product. During the reaction, the color of the solution changed from green to yellow/green. After additional stirring for 0.5 h, the solvent was evaporated in vacuo at 60 °C and the residue purified by column chromatography (silica, eluent hexane). A yellow fraction was obtained which at -80 °C yielded 80% of yellow crystals. These were identified as  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(R-DAB) by elemental analysis, by IR, FD-mass, <sup>1</sup>H NMR, and <sup>13</sup>C NMR spectroscopy (Table III), and by an X-ray crystal structure determination for the R = neo-Pen derivative.

Crystal Structure Determination of  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>-(neo-Pen-DAB)  $[C_{21}H_{26}N_2O_8Ru_3; Octaconyl(1,4-dineo$ pentyl-1,4-diaza-1,3-butadiene)(µ-methylene)triruthenium]. Crystals of the title compound are monoclinic of space group  $P2_1/n$ . The unit cel has the following dimensions: a = 13.819(2) Å, b = 21.339 (2) Å, c = 9.485 (1) Å,  $\beta = 108.22$  (1)°; Z = 4, V = 2656 (3) Å<sup>3</sup>,  $d_{calcd} = 1.84$  g cm<sup>-3</sup>. A total of 4502 reflections (2.5  $\leq \theta \leq 65^{\circ}$ ; -16  $\leq h \leq 15$ ,  $0 \leq k \leq 24$ ,  $0 \leq l \leq 10$ ) were measured on a NONIUS CAD 4 diffractometer using graphite-monochromated Cu K $\alpha$  radiation. a total of 1343 reflections of the 4502 reflections were below the  $2.5\sigma(I)$  level and treated as unobserved. Crystal dimensions:  $0.08 \times 0.08 \times 0.16$  mm;  $\mu = 143.8$  cm<sup>-1</sup>. The Ru positions were found from an E Fourier obtained by means of the symbolic addition program set SIMPEL.<sup>15a</sup> The remaining non-hydrogen atoms were derived from subsequent  $\Delta F$  syntheses. After isotropic block-diagonal least-squares refinement (R = 0.083) the empirical absorption correction DIFABS<sup>15b</sup> was applied. Subsequent anisotropic refinement converged to R = 0.026 ( $R_w =$ 0.040) for the 3159 reflections observed. During the final cycles the H atoms, which were located in a  $\Delta F$  synthesis, were included in the refinement with isotropic temperature parameters. A weighting scheme of  $w = 1/(2.7 + F_0 + 0.026F_0^2)$  was employed, and an extinction correction was applied. The anomalous scat-

<sup>(9)</sup> Keijsper, J.; Polm, L. H.; Zoet, R.; van Koten, G.; Vrieze, K., in press.

<sup>(10) (</sup>a) Muetterties, E. L.; Stein, J. Chem. Rev. 1979, 79, 479. (b)
Brady, R. C.; Pettit, R. J. Am. Chem. Soc. 1980, 102, 6181; 1981, 103, 1287. (c) Dyke, A. F.; Knox, S. A. R.; Naish, P. J.; Taylor, G. E. J. Chem. Soc., Chem. Commun. 1980, 803 and references therein.

<sup>(11)</sup> Laws, J. W.; Puddephat, R. J. J. Chem. Soc., Chem. Commun. 1984, 116.

<sup>(12) (</sup>a) Morrison, E. D.; Steinmetz, G. R.; Geoffroy, G. L.; Fultz, W. C.; Reingold, A. L. J. Am. Chem. Soc. 1983, 105, 4104.
(b) Colborn, R. E.; Dyke, A. F.; Knox, S. A. R.; Macpherson, K. A.; Orpen, A. G. J. Organomet. Chem. 1982, 239, C15.
(c) Nucciarone, D.; Taylor, N. J.; Carty, A. J. Organometallics 1984, 3, 177.

<sup>(13)</sup> Herrmann, W. A. Adv. Organomet. Chem. 1982, 20, 159.

<sup>(14)</sup> Arndt, F. "Organic Syntheses"; Wiley: New York, 1943; Coll. Vol. 2, p 165.

<sup>(15) (</sup>a) Overbeek, A. R.; Schenk, H. In "Computing in Crystallography" Schenk, H., Olthof, R., van Koningsveld, H., Bassi, G. C., Eds., Delft University Press: Delft, 1978. (b) Walker N.; Stuart, D. Acta Crystallogr., Sect. A 1983, A39, 158. (c) Stewart, J.M.; The X-RAY system, Tech. Rep. TR 446 Computer Science Center; University of Maryland, College Park, Maryland. (d) "International Tables for Crystallography"; Kynock Press: Brimingham, 1974; Vol. IV. (e) Motherwell, S.; Clegg, B. "Pluto, Program for Plotting Molecular and Crystal Structures"; University of Cambridge: England, 1978.

Table I. The Final Atomic Coordinates (Esd) of (µ-CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(neo-Pen-DAB)

| atoms | x           | γ           | z           | atoms  | x          |                        |             |
|-------|-------------|-------------|-------------|--------|------------|------------------------|-------------|
| Bu(1) | 0.27583 (3) | 0 15987 (2) | 0.23603 (5) | C(18)  | 0.1719 (5) | 0 1375 (3)             | -0.1254 (6) |
| Ru(2) | 0.10654(3)  | 0.12365(2)  | 0.33202(4)  | C(19)  | 0.1128(4)  | 0.1570(0)              | -0.0461(6)  |
| Ru(3) | 0.08474(3)  | 0.14212(2)  | -0.00088(4) | C(20)  | -0.0470(5) | 0.0040(2)<br>0.1277(2) | -0.1450 (6) |
| O(13) | 0.3230(4)   | 0.2663(2)   | 0.0617(6)   | C(21)  | 0.0766(4)  | 0.2323(3)              | -0.0250(7)  |
| O(14) | 0.4031(4)   | 0.0772(2)   | 0.1051 (6)  | H(11)  | 0.398 (4)  | 0.129(2)               | 0.516 (6)   |
| O(15) | -0.0079 (3) | 0.0017(2)   | 0.2783 (5)  | H(21)  | 0.336 (4)  | 0.234(2)               | 0.485(6)    |
| O(16) | -0.0003(4)  | 0.1384(2)   | 0.5567 (6)  | H(31)  | 0.255(4)   | 0.005 (3)              | 0.352(6)    |
| O(18) | 0.2225(4)   | 0.1365 (2)  | -0.2009 (5) | H(32)  | 0.370 (4)  | 0.032 (3)              | 0.400 (6)   |
| O(19) | 0.1327(3)   | 0.0026 (2)  | 0.0597 (5)  | H(51)  | 0.312(4)   | -0.094 (3)             | 0.478 (6)   |
| O(20) | -0.1258(3)  | 0.1192 (-)  | -0.2260(5)  | H(52)  | 0.417(4)   | -0.065(3)              | 0.515 (6)   |
| O(21) | 0.0679 (4)  | 0.2852(2)   | -0.0416 (6) | H(53)  | 0.374(4)   | -0.095 (3)             | 0.638 (6)   |
| N(1)  | 0.2638(3)   | 0.0938 (2)  | 0.4144(5)   | H(61)  | 0.464(4)   | 0.029 (3)              | 0.684 (6)   |
| N(2)  | 0.1970 (3)  | 0.2083(2)   | 0.3750 (5)  | H(62)  | 0.366 (4)  | 0.069 (2)              | 0.707 (6)   |
| C(1)  | 0.3346(4)   | 0.1399(2)   | 0.4734 (6)  | H(63)  | 0.404(4)   | 0.005(3)               | 0.805 (6)   |
| C(2)  | 0.2989 (4)  | 0.2004(2)   | 0.4570 (6)  | H(71)  | 0.222(4)   | -0.036 (3)             | 0.710 (6)   |
| C(3)  | 0.3044(4)   | 0.0289 (2)  | 0.4252 (6)  | H(72)  | 0.188(4)   | 0.031 (3)              | 0.618 (6)   |
| C(4)  | 0.3170 (4)  | -0.0070 (3) | 0.5684(7)   | H(73)  | 0.174(4)   | -0.036 (3)             | 0.517 (6)   |
| C(5)  | 0.3595 (6)  | -0.0711 (3) | 0.5484 (8)  | H(81)  | 0.114 (4)  | 0.277(3)               | 0.246 (6)   |
| C(6)  | 0.3931(5)   | 0.0260 (3)  | 0.7017 (7)  | H(82)  | 0.234(4)   | 0.300 (3)              | 0.352 (6)   |
| C(7)  | 0.2165(5)   | -0.0149 (3) | 0.5994 (8)  | H(101) | 0.101 (4)  | 0.388(3)               | 0.339 (6)   |
| C(8)  | 0.1672(4)   | 0.2754(2)   | 0.3467 (7)  | H(102) | 0.216 (4)  | 0.391 (3)              | 0.464 (6)   |
| C(9)  | 0.1302(5)   | 0.3099 (3)  | 0.4629 (8)  | H(103) | 0.122(4)   | 0.403(3)               | 0.508 (6)   |
| C(10) | 0.1423(7)   | 0.3795(3)   | 0.4392(11)  | H(111) | -0.034(4)  | 0.316 (3)              | 0.340 (6)   |
| C(11) | 0.0207(7)   | 0.299 (4)   | 0.4417(13)  | H(112) | -0.001 (4) | 0.251(3)               | 0.457 (6)   |
| C(12) | 0.1955(7)   | 0.2947(4)   | 0.6183(9)   | H(113) | -0.007 (4) | 0.319 (3)              | 0.505(6)    |
| C(13) | 0.3026(4)   | 0.2268(3)   | 0.1266(7)   | H(121) | 0.148(4)   | 0.304 (3)              | 0.676 (6)   |
| C(14) | 0.3546(4)   | 0.1090 (3)  | 0.1550(6)   | H(122) | 0.264(4)   | 0.310(3)               | 0.675 (6)   |
| C(15) | 0.0385(4)   | 0.0476(2)   | 0.2965 (6)  | H(123) | 0.198 (4)  | 0.245(3)               | 0.624(6)    |
| C(16) | 0.0426 (4)  | 0.1334(3)   | 0.4711 (6)  | H(171) | -0.054 (4) | 0.140 (3)              | 0.114 (6)   |
| C(17) | -0.0044 (4) | 0.1588(2)   | 0.1519 (6)  | H(172) | -0.022 (4) | 0.198 (3)              | 0.155(6)    |

tering of Ru was taken into account. The programs were taken from the XRAY 76 system,<sup>15</sup> unless otherwise stated. The scattering factors, dispersion correction, absorption coefficients<sup>15d</sup> and the program for plotting<sup>15</sup>e were taken from the literature.

The molecular geometry of  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(neo-Pen-DAB) with the numbering of the atoms is shown in Figure 2, which is a PLUTO<sup>15e</sup> drawing of the molecule. Atomic parameters, bond lengths, and selected bond angles are given in Tables I and II. All bond angles, anisotropic thermal parameters, and a list of observed and calculated structure factors are included with the supplementary material.

#### Results

Formation of  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(R-DAB). Ru<sub>3</sub>-(CO)<sub>8</sub>(R-DAB) (R = neo-Pe, i-Bu) reacts with diazomethane according to eq 1. The addition of the methylene



unit occurs smoothly and produces the methylenetriruthenium complex in high yield at room temperature, i.e., without any noticeable decomposition of the trinuclear metal carbonyl. Reaction of  $Ru_3(CO)_8$  (R-DAB) with the much less reactive diphenyldiazomethane<sup>16</sup> did not lead to a carbene complex, and instead only slow decomposition was observed.

The methylene complex is soluble in hexane and relatively stable as compared to the starting complex.

Molecular Geometry of  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(neo-Pen-DAB). The molecular geometry of  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>- (neo-Pen-DAB) is depicted in Figure 2. In Tables I and II the atomic coordinates and selected bond distances and angles are given.

The addition of the two-electron-donating methylene group to the 48-electron Ru<sub>3</sub>(CO)<sub>8</sub>(neo-Pen-DAB) complex results in a rupture of one single Ru-Ru bond: Ru(2)... Ru(3) amounts to 3.1012 (6) Å, which can be considered as a nonbonding distance. In the starting complex<sup>9</sup> the analogous Ru-Ru bond distance is 2.768 (1) Å while in Ru complexes in which the methylene bridge is supported by a Ru-Ru bond, this bonding distance is ca. 2.67 Å.<sup>13</sup> We know of only one other Ru complex that contains a methylene group bridging a nonbonding Ru-Ru distance; in fact, in  $[(\eta^5-C_5H_5)Ru(CO)_2]_2(\mu-CH_2)$ , having a Ru--Ru separation of 3.8 Å, it is the  $CH_2$  group that holds together the two Ru centers.<sup>17</sup> The other two Ru-Ru bond lengths in  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(neo-Pen-DAB) can be envisaged as normal single bond lengths (Ru(1)-Ru(2) = 2.8690 (6) Å,Ru(1)-Ru(3) = 2.9079 (6) Å) which are comparable with the single bond lengths found in  $Ru_3(CO)_{12}$  (2.854 (3) Å (mean)).<sup>18</sup> With the exception of a few examples,<sup>8a</sup> such a rupture of a bond (in the present case a metal-metal bond) can be expected when a two-electron donor is added to a 48-electron trinuclear species.<sup>19</sup>

All eight carbonyls in  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(neo-Pen-DAB) are terminally bonded: two to Ru(1) and Ru(2) each and four to Ru(3), all with normal Ru–C and C–O bond lengths and Ru–C–O bond angles. Ru(3) is approximately octahedrally surrounded by C(17), C(18), C(19), C(20), C(21), and Ru(2) (see Table II).

The Ru(1)–Ru(2) bond is bridged by the neo-Pen-DAB ligand, which is bonded to Ru(2) via N(1) and N(2) with equal bond lengths of 2.162 (4) Å (mean). The four central

<sup>(17)</sup> Lin, Y. C.; Calabrese, J. C.; Wreford, S. S. J. Am. Chem. Soc. 1983, 105, 1679.

<sup>(18)</sup> Churchill, M. R.; Hollander, F. J.; Hutchinson, J. P. Inorg. Chem. 1977, 16, 2655.

<sup>(19)</sup> See, e.g.: Chisholm, M. H.; Rothwell, I. P. Prog. Inorg. Chem. 1982, 29, 1. See also ref 13, p 179.

## Table II. Selected Geometric Parameters (Esd) of (µ-CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(neo-Pen-DAB)

| Bond Lengths (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                               |                      |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------|----------------------|--|--|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Metal Ca            | rbonyl Part                                   |                      |  |  |  |  |  |  |  |  |
| Ru(1)-Ru(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.8690 (6)          | Ru(3)-C(21)                                   | 1.937 (6)            |  |  |  |  |  |  |  |  |
| $\operatorname{Ru}(2) - \operatorname{Ru}(3)^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.1021 (6)          | C(13) = O(13)                                 | 1.133 (8)            |  |  |  |  |  |  |  |  |
| $\mathbf{Bu}(1-\mathbf{Bu}(3))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 9079 (6)          | C(14) = O(14)                                 | 1 156 (9)            |  |  |  |  |  |  |  |  |
| $P_{11}(1) C(19)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 969 (6)           | C(14) O(14)<br>C(15) O(15)                    | 1.100 (3)            |  |  |  |  |  |  |  |  |
| Ru(1) = C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.000 (0)           | C(10) = O(10)                                 | 1.104(7)             |  |  |  |  |  |  |  |  |
| Ru(1) = C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.864 (6)           | C(16) = O(16)                                 | 1.149 (9)            |  |  |  |  |  |  |  |  |
| Ru(2) - C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.853 (5)           | C(18) - O(18)                                 | 1.147 (9)            |  |  |  |  |  |  |  |  |
| Ru(2)-C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.814(7)            | C(19)-O(19)                                   | 1.128(6)             |  |  |  |  |  |  |  |  |
| Ru(3)-C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.936 (7)           | C(20)-O(20)                                   | 1.134 (7)            |  |  |  |  |  |  |  |  |
| Ru(3)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.944 (5)           | C(21)-O(21)                                   | 1.140 (7)            |  |  |  |  |  |  |  |  |
| Ru(3) - C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,929 (5)           |                                               |                      |  |  |  |  |  |  |  |  |
| Matal man Daw DAD D+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                               |                      |  |  |  |  |  |  |  |  |
| $\mathbf{N}(1) = \mathbf{N}(1) = N$ |                     |                                               |                      |  |  |  |  |  |  |  |  |
| Ru(1) - N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.249 (4)           | N(2)-C(8)                                     | 1.492 (6)            |  |  |  |  |  |  |  |  |
| Ru(1) - N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.215 (5)           | C(3) - C(4)                                   | 1.520 (8)            |  |  |  |  |  |  |  |  |
| Ru(1)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.183(5)            | C(4) - C(5)                                   | 1.526 (9)            |  |  |  |  |  |  |  |  |
| Ru(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.197 (6)           | C(4) - C(6)                                   | 1.539 (8)            |  |  |  |  |  |  |  |  |
| Ru(2) - N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.163(4)            | C(4) - C(7)                                   | 1.517 (10)           |  |  |  |  |  |  |  |  |
| $B_{11}(2) - N(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 161 (4)           | C(8) - C(9)                                   | 1.540 (10)           |  |  |  |  |  |  |  |  |
| N(1) = C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 277 (6)           | C(0) = C(10)                                  | 1.591 (0)            |  |  |  |  |  |  |  |  |
| N(1) = O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.377 (0)           | C(9) = C(10)                                  | 1.021 (9)            |  |  |  |  |  |  |  |  |
| C(1) = C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.373 (7)           | C(9) - C(11)                                  | 1.496 (12)           |  |  |  |  |  |  |  |  |
| N(2) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.391 (6)           | C(9) - C(12)                                  | 1.504(10)            |  |  |  |  |  |  |  |  |
| N(1)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.486 (7)           |                                               |                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Metal Ca            | rhene Part                                    |                      |  |  |  |  |  |  |  |  |
| $\mathbf{D}_{11}(9) = \mathbf{C}(17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | $\mathbf{D}_{\mathbf{n}}(2) = \mathbf{C}(17)$ | 9 904 (6)            |  |  |  |  |  |  |  |  |
| Ru(2) = C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.048 (5)           | Ru(3) = O(17)                                 | 2.204 (6)            |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bond A              | ngles (deg)                                   |                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.1.0              |                                               |                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Metal Ca            | rbonyl Part                                   |                      |  |  |  |  |  |  |  |  |
| Ru(2)-Ru(1)-Ru(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64.95 (2)           | Ru-C-O(mean) <sup>o</sup>                     | 177.0 (20)           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Metal Ca            | rhene Part                                    |                      |  |  |  |  |  |  |  |  |
| $R_{11}(i) = C(17) = R_{11}(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93.6 (2)            | H(171) = C(17) = H(17)                        | 2) 109 3 (55)        |  |  |  |  |  |  |  |  |
| <b>Ru(I)</b> C(II) <b>Ru(</b> 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35.0 (2)            |                                               | 2) 103.0 (00)        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aroun               | id Ru(1)                                      |                      |  |  |  |  |  |  |  |  |
| Ru(2)-Ru(1)-N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.1 (1)            | N(1)-Ru(1)-C(2)                               | 63.4 (2)             |  |  |  |  |  |  |  |  |
| Ru(2)-Ru(1)-N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.2(1)             | N(1)-Ru(1)-C(13)                              | 166.2 (2)            |  |  |  |  |  |  |  |  |
| Ru(2)-Ru(1)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72.4(1)             | N(1)-Ru(1)-C(14)                              | 97.8 (2)             |  |  |  |  |  |  |  |  |
| Bu(2) - Bu(1) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 721(1)              | N(2) - Ru(1) - C(1)                           | 64 5 (2)             |  |  |  |  |  |  |  |  |
| $D_{11}(2)$ $D_{11}(1)$ $C(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1949 (9)            | $N(2) = D_{11}(1) = C(2)$                     | 04.0 (2)<br>06.0 (0) |  |  |  |  |  |  |  |  |
| Ru(2) = Ru(1) = C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.0 (2)           | N(2) = Ru(1) = C(2)                           | 30.0 (2)             |  |  |  |  |  |  |  |  |
| Ru(2) - Ru(1) - C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 127.8 (2)           | N(2) - Ru(1) - C(13)                          | 101.2 (2)            |  |  |  |  |  |  |  |  |
| Ru(3)-Ru(1)-N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103.7 (1)           | N(2)-Ru(1)-C(14)                              | 167.8 (2)            |  |  |  |  |  |  |  |  |
| Ru(3)-Ru(1)-N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91.4 (1)            | C(1)-Ru(1)-C(2)                               | 36.5(2)              |  |  |  |  |  |  |  |  |
| Ru(3)-Ru(1)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 136.6 (1)           | C(1)-Ru(1)-C(13)                              | 130.4(2)             |  |  |  |  |  |  |  |  |
| Ru(3)-Ru(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 127.9 (1)           | C(1)-Ru(1)-C(14)                              | 103.6 (2)            |  |  |  |  |  |  |  |  |
| Ru(3)-Ru(1)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87.7 (2)            | C(2)-Ru(1)-C(13)                              | 103.5(2)             |  |  |  |  |  |  |  |  |
| Bu(3) - Bu(1) - C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 964(1)              | $C(2) = R_{11}(1) = C(14)$                    | 133 9 (2)            |  |  |  |  |  |  |  |  |
| $N(1) = P_{11}(1) = N(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71.2 (9)            | $C(12) = \mathbf{P}_{11}(1) = C(14)$          | 99.5 (2)             |  |  |  |  |  |  |  |  |
| N(1) = Ru(1) = N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1.2(2))            | C(13) - Ru(1) - C(14)                         | 66.0 (a)             |  |  |  |  |  |  |  |  |
| N(1) - Ru(1) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.2(2)             |                                               |                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aroun               | d Ru(2)                                       |                      |  |  |  |  |  |  |  |  |
| Ru(u) - Ru(2) - N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.8(1)             | N(1)-Bu(2)-C(17)                              | 144.6 (2)            |  |  |  |  |  |  |  |  |
| $R_{1}(1) - R_{1}(2) - N(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49.8 (1)            | N(2) = Ru(2) = C(15)                          | 175 4 (2)            |  |  |  |  |  |  |  |  |
| $\mathbf{P}_{11}(1) = \mathbf{P}_{11}(2) = \mathbf{P}_{11}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1966(1)             | N(2) = Ru(2) = C(10)<br>N(0) = Pu(0) = C(10)  | 170.4 (2)            |  |  |  |  |  |  |  |  |
| Ru(1) = Ru(2) = C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.0 (2)           | N(2) - Ru(2) - C(10)                          | 98.7 (2)             |  |  |  |  |  |  |  |  |
| Ru(1)-Ru(2)-C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 146.1(2)            | N(2)-Ru(2)-C(17)                              | 195.1 (2)            |  |  |  |  |  |  |  |  |
| Ru(1)-Ru(2)-C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96.2 (2)            | C(15)-Ru(2)-C(16)                             | 84.2 (3)             |  |  |  |  |  |  |  |  |
| N(1)-Ru(2)-N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73.8 (1)            | C(15)-Ru(2)-C(17)                             | 87.9 (2)             |  |  |  |  |  |  |  |  |
| N(1)-Ru(2)-C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101.7(2)            | C(16)-Ru(2)-C(17)                             | 99.0 (2)             |  |  |  |  |  |  |  |  |
| N(1)-Ru(2)-C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 115.7(2)            |                                               |                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 1.0. (0)                                      |                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aroun               | d Ru(3)                                       |                      |  |  |  |  |  |  |  |  |
| Ru(1)-Ru(3)-C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91.7 (1)            | C(17)-Ru(3)-C(21)                             | 83.9 (2)             |  |  |  |  |  |  |  |  |
| Ru(1)-Ru(3)-C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83.7 (2)            | C(18)-Ru(3)-C(19)                             | 88.5 (3)             |  |  |  |  |  |  |  |  |
| Ru(1)-Ru(3)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83.2 (1)            | C(18)-Ru(3)-C(20)                             | 100.9 (3)            |  |  |  |  |  |  |  |  |
| Ru(1)-Ru(3)-C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 175.0 (2)           | C(18)-Ru(3)-C(21)                             | 90.1 (3)             |  |  |  |  |  |  |  |  |
| Ru(1)-Ru(3)-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88.1 (1)            | C(19) - Ru(3) - C(20)                         | 94.9 (2)             |  |  |  |  |  |  |  |  |
| C(17) = Ru(3) = C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1726 (2)            | $C(19) = R_{11}(3) = C(91)$                   | 171 9 (9)            |  |  |  |  |  |  |  |  |
| $C(17) = P_{11}(2) C(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 069(0)              | $C(20)$ $B_{11}(2)$ $C(21)$                   | 02.0 (2)             |  |  |  |  |  |  |  |  |
| O(17) = I(0) = O(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>50.5</b> (2)     | $O(20) = \mathbf{Ru}(3) = O(21)$              | 93.9 (2)             |  |  |  |  |  |  |  |  |
| U(17) = Ru(3) = U(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83.9 (2)            |                                               |                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Metal-neo-F         | en-DAB Part                                   |                      |  |  |  |  |  |  |  |  |
| Ru(1)-N(1)-Ru(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81.1 (1)            | Ru(2)-N(2)-C(2)                               | 115.5 (3)            |  |  |  |  |  |  |  |  |
| Ru(1)-N(2)-Ru(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82.0 (1)            | Ru(2)-N(1)-C(3)                               | 128.0 (3)            |  |  |  |  |  |  |  |  |
| Ru(2)-N(1)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116.2 (3)           | Ru(2) - N(2) - C(8)                           | 131 1 (3)            |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                               | ×01.1 (0)            |  |  |  |  |  |  |  |  |
| The neo-Pen-DAB Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                               |                      |  |  |  |  |  |  |  |  |
| N(1)-C(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116.3 (4)           | C(2)-N(2)-C(8)                                | 113.0 (4)            |  |  |  |  |  |  |  |  |
| N(2)-C(2)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116.2 (4)           | N(1)-C(3)-C(4)                                | 117.8 (5)            |  |  |  |  |  |  |  |  |
| C(1)-N(1)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115.7 (4)           | N(2)-C(8)-C(9)                                | 117.7 (5)            |  |  |  |  |  |  |  |  |
| C = C = C(t - Bu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5 (20)          |                                               |                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (mean) <sup>b</sup> |                                               |                      |  |  |  |  |  |  |  |  |

<sup>a</sup> Nonbonding distance. <sup>b</sup> The standard deviation of the mean value is calculated by  $\sigma = \{\sum_{i} (\chi_{i} - \bar{\chi})^{2} / (N-1)\}^{1/2}$ .



Figure 3. A view on the molecule showing its butterfly-like geometry and the two inequivalent halves of the  $\alpha$ -difficult difference of the  $\alpha$ -difference of the  $\alpha$ -difference of the two inequivalent halves of the  $\alpha$ -difference of the two inequivalent halves of the  $\alpha$ -difference of the two inequivalent halves of the  $\alpha$ -difference of the two inequivalent halves of the  $\alpha$ -difference of the two inequivalent halves of the two inequivalent halves of the  $\alpha$ -difference of the two inequivalent halves of the  $\alpha$ -difference of the two inequivalent halves of the  $\alpha$ -difference of the two inequivalent halves of two inequivalent halves of the two inequivalent halves of two inequiv

atoms of the  $\alpha$ -diimine ligand are located at about equal distance (2.21 (2) Å (mean)) from Ru(1). These geometries indicate that the neo-Pen-DAB ligand is  $\sigma$ -N,  $\sigma$ -N' coordinated to Ru(2) and  $\eta^2$ -C=N,  $\eta^2$ -C'=N' coordinated to Ru(1), thus donating its maximum of eight electrons to the metal carbonyl core,<sup>3c,8</sup> just as in the starting complex.<sup>3c,9</sup> The equal intraligand N(1)-C(1), N(2)-C(2), and C(1)-C(2)bond lengths of 1.38 (1) Å (mean) also point to an eightelectron-coordination. In free c-Hex-DAB the corresponding imine and central C-C bond lengths are 1.258 (3) and 1.457 (3) Å, respectively.<sup>20</sup> Obviously,  $\pi$ -backbonding from the metal carbonyl into the LUMO of the  $\alpha$ -diimine extensively weakens the imine bonds in the present compound. The central C(1)-C(2) bond is strengthened because the LUMO has bonding character between these atoms.<sup>20</sup>

The dihedral angle between the flat N(1)C(1)C(2)N(2)skeleton (maximum deviation from the least-squares plane being 0.017 Å) and N(1)Ru(2)N(2) is 12.0°, which is a normal value for an eight-electron-bonded R-DAB complex.<sup>3c,8</sup> The  $\alpha$ -diimine plane, which in the starting compound  $Ru_3(CO)_8$ (neo-Pen-DAB) is about perpendicular to the  $Ru_3$  plane, makes in the present compound an angle of 82.0° with the Ru triangle obviously because of the presence of the  $\mu$ -CH<sub>2</sub> unit (vide infra; see also Figure 3). The central C(1)-C(2) bond remains perpendicular (89.6°) to the Ru(1)-Ru(2) vector.

Surprisingly the methylene moiety  $C(17)H_2$  asymmetrically bridges the nonbonding Ru(2)...Ru(3) distance: Ru(2)-C(17) = 2.048 (5) Å; Ru(3)-C(17) = 2.204 (6) Å. Such a large difference in bond lengths has, to our knowledge, never been observed before in homonuclear methylene complexes. Ru-Ru bond-assisted methylene bridges exhibit Ru-C bond lengths between 1.98 and 2.10 Å<sup>13</sup> while the Ru–C bond lengths in  $[(\eta^5-C_5H_5)Ru (CO)_2]_2(\mu\text{-}CH_2)$  are 2.18 Å.17

The methylene carbon atom C(17) is not in one plane with the three Ru atoms. The dihedral angle between Ru(2)C(17)Ru(3) and the  $Ru_3$  plane is 143.1° (see Figure 3). The "internal" angle Ru(2)-C(17)-Ru(3) of 93.6 (2)° is outside the range of  $81 \pm 7^{\circ}$  given by Herrmann for

M-CH<sub>2</sub>-M systems, again pointing to the absence of a direct metal-metal bond. In other carbene complexes in which such a metal-metal bond is missing, M-C-M angles are found between 88.9 (4) and 123°. It has been noted that this angle corresponds with the M-M distance present.<sup>13</sup> The "external" angle H(171)C(17)H(172) of

<sup>(20)</sup> Keijsper, J.; van der Poel, H.; Polm, L. H.; van Koten, G.; Vrieze, K.; Seignette, P. F. A. B.; Varenhorst, R.; Stam, C. H. Polyhedron 1983, 2.1111

Table III. Spectroscopic Data of (µ-CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(R-DAB)

| compd              | IR $\nu(CO)$ freq <sup>a</sup>                                            | <sup>1</sup> H NMR δ <sup>b</sup>                                                                                                                                                                                                                                                       | <sup>13</sup> C NMR $\delta^b$                                                                                                         | FD-mass <sup>c</sup> |
|--------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| R =<br>neo-<br>Pen | 2085 (s), 2025 (s), 2013 (vs), 1997<br>(s), 1998 (s), 1942 (s), 1930 (s)  | 6.26 (ns, 1 H, imine H), 3.66 (s, 1 H,<br>μ-CH <sub>2</sub> ), 2.67 (d, <sup>e</sup> 1 H, NCH <sub>2</sub> )/1.70<br>(d, <sup>e</sup> 1 H, NCH <sub>2</sub> ), 0.97 (s, 9 H, CH <sub>2</sub> )                                                                                          | 102.9 (imine C), 71.0 (NCH <sub>2</sub> ), 47.9<br>(CMe <sub>3</sub> ), 33.4 (μ-CH <sub>2</sub> ), 28.7 (CH <sub>3</sub> )             | 739<br>(727.7)       |
| R = i-Bu           | 2085 (s), 2025 (m), 2010 (vs), 1997<br>(sh), 1989 (s), 1945 (s), 1930 (s) | 6.16 ns, 1 H, imine H), 3.73 ns, 1 H,<br>μ-CH <sub>2</sub> ), 2.70 (d <sup>f</sup> of d, <sup>e</sup> 1 H,<br>NCH <sub>2</sub> )/1.66 (m, 1 H, NCH <sub>2</sub> ), 1.87<br>(m, 1 H, CH), 0.90 (d, <sup>f</sup> 3 H,<br>CH <sub>3</sub> )/0.84 (d, <sup>f</sup> f 3 H, CH <sub>3</sub> ) | 101.8 (imine C), 67.5 (NCH <sub>2</sub> ), 48.7<br>(CH), 31.7 (μ-CH <sub>2</sub> ), 20.0 (CH <sub>3</sub> )/19.6<br>(CH <sub>3</sub> ) | 711<br>(709.6)       |

<sup>a</sup> Measured in hexane solution; in cm<sup>-1</sup>. <sup>b</sup> Measured in CDCl<sub>3</sub> solution. The chemical shifts are given in ppm, relative to Me<sub>4</sub>Si (multiplicity, integral, assignment). Vertical bars separate diastereotopic pairs. s = singlet; d = doublet; m = multiplet. 'Observed (calculated). The highest peak of the isotope pattern of the molecular ion is given; calculated M values are based on  $^{101}$ Ru.  $^{e}J = 12$  Hz.  $^{f}J = 6$  Hz.

109.3(55) in the present complex is within the range given by Herrmann.<sup>13</sup>

**IR Spectroscopy.**  $\nu$ (CO) **Region.** The new ( $\mu$ -CH<sub>2</sub>)- $Ru_3(CO)_8(R-DAB)$  complexes have a characteristic  $\nu(CO)$ absorption spectrum (see Table III). The spectra show seven intense peaks in the terminal region only, i.e., between 2085 and 1930 cm<sup>-1</sup>.

FD-Mass Spectroscopy. The complexes have also been characterized by field-desorption (FD) mass spectroscopy (see Table III). The spectra show a typical  $Ru_3$ isotopic pattern around the m/z value of the molecular ion. No peaks due to  $[M - CO]^+$  species are observed.

<sup>1</sup>H NMR Spectroscopy. The <sup>1</sup>H NMR data are listed in Table III and are similar over the whole temperature range studied (-20 to +40 °C). The asymmetry that is present in the solid-state structure (vide supra) is not apparent from these data. Both the R-DAB ligand and the methylene fragment give rise to one symmetrical pattern. Obviously, in solution a fast (on the NMR time

scale) flying motion of the butterfly Ru(2)-C(17)-Ru-

(3)-Ru(1) is present, thereby creating a virtual mirror plane through these four atoms. In the tetranuclear cluster  $Ru_4(CO)_8(R-DAB)_2$ , in which the four metal atoms likewise define a butterfly, an identical flying motion has been proposed to account for the symmetrical chemical shift patterns observed.<sup>3c,8c</sup>

The two imine protons give rise to one singlet at about 6.2 ppm, indicating an eight-electron-coordination mode for the  $\alpha$ -diimine ligand, <sup>3c,8</sup> just as found in the solid-state structure.

The methylene protons appear at 3.7 ppm, which agrees fairly well with the 1-3 ppm region, given by Herrmann for the <sup>1</sup>H NMR chemical shifts of  $\mu$ -C(H)R moieties that are unsupported by a metal–metal bond.  $^{\rm 13,21}$   $\,$  In the latter type of compounds chemical shifts have recently been reported at 3.5 ppm for  $[Pt_2-\mu-\{o-C_6H_4P(Ph)-CH_2CH_2PPh_2\}_2(\mu-CH_2)]^{22}$  and at 3.77 ppm for  $(\eta^5-C_5Me_5)_2Mo_2(CO)_4(\mu-CH_2)(CH_2N_2)^{.23}$  When an additional metal-metal bond is present, the  $\mu$ -C(H)R proton appears in between 5 and 11 ppm.<sup>13</sup>

<sup>13</sup>C NMR Spectroscopy. The <sup>13</sup>C NMR data are also listed in Table III. Again the two halves of the molecule are magnetically equivalent as a result of the "flying" motion of the Ru(2)-C(17)-Ru(3)-Ru(1) butterfly. The imine carbon atoms give rise to one signal near 100 ppm while the two neo-Pen groupings give rise to one single neo-Pen pattern at the expected chemical shift positions. The methylene carbon is observed at ca. 32 ppm, which is at a slightly lower field than the 0-10 ppm region, given by Herrmann for bridging carbene atoms in species in which no supporting metal-metal bond is present.<sup>13</sup> However, this range may be too small because chemical shifts as low as 46 ppm  $([Pt_2-\mu-\{o-C_6H_4P(Ph)-CH_2CH_2PPh_2\}_2(\mu-CH_2)])^{22}$  and 64 ppm  $((\eta^5-C_5Me_5)_2Mo_2-Mo_2)^{22}$  $(CO)_4(\mu$ -CH<sub>2</sub>)(CH<sub>2</sub>N<sub>2</sub>))<sup>23</sup> have recently been reported. It must be noted that in case a supporting metal-metal bond is present, the  $\mu$ -C atom resonates between 100 and 210 ppm.<sup>13</sup>

The <sup>13</sup>C NMR data of the present compounds are the first examples of such data for eight-electron-bonded R-DAB derivatives. Accordingly, it is now possible to derive the nature of the coordination mode present in new R-DAB complexes not only from the <sup>1</sup>H NMR chemical shifts of the imine protons<sup>2,3,8</sup> but also from the <sup>13</sup>C NMR pattern for the imine carbons. Thus these imine C atoms in free R-DAB resonate at ca. 160 ppm, and this position hardly changes when the ligand is four electron  $\sigma$ -N,  $\sigma$ -N' coordinated.<sup>24</sup> When R-DAB is six-electron  $\sigma$ -N,  $\mu$ -N',  $\eta^2$ -C==N' bonded, the two imine halves are magnetically inequivalent and accordingly the two C atoms have different chemical shifts. The one of  $\sigma$ -N-coordinated part resonates at ca. 170 ppm, while the one which is  $\eta^2$ -C= N'-coordinated is drastically shifted upfield to about 70 ppm.<sup>24</sup> This upfield shift is the result of shielding caused by  $\pi$ -back-donation from the metal to the ligand. In symmetrically eight-electron  $\sigma$ -N,  $\sigma$ -N',  $\eta^2$ -C'=N' bonded R-DAB complexes, two imine C atoms are equivalent again and give rise to only one peak at about 100 ppm.<sup>25</sup>

## Discussion

Formation of the Complexes. The present reaction can be viewed as an addition (or insertion) of a  $CH_2$  moiety to (into) a single Ru-Ru bond. Carbene addition to multiple metal-metal bonds has been extensively studied by Herrmann et al.,<sup>13</sup> but addition to single bonds is less well documented. In the latter case this is because in the resulting species a supporting metal-metal bond, which generally stabilizes the  $M(\mu$ -CH<sub>2</sub>)M' interaction, is absent. The best known examples of products in which a methylene fragment has inserted into a single metal-metal bond are the so-called A-frame Pt dimers.<sup>22,26</sup> In these complexes the two Pt centers are held together by the bridging methylene group and by a bridging diphos ligand. Only one example is known in which the two metals are held together by the  $\mu$ -CH<sub>2</sub> bridge only: i.e.,  $[(\eta^5-C_5H_5)Ru-$ 

<sup>(21)</sup> In  $[(\eta^5-C_5H_5)Ru(CO)_2]_2(\mu-CH_2)$  the methylene protons give chem-(22) Arnold, D. P.; Bennett, M. A.; McLaughlin, G. M.; Robertson, G

B. J. Chem. Soc., Chem. Commun. 1983, 34.

<sup>(23)</sup> Herrmann, W. A.; Bell, L. K. J. Organomet. Chem. 1982, 239, C4.

<sup>(24)</sup> Staal, L. H.; Keijsper, J.; Polm, L. H.; Vrieze, K. J. Organomet.

Chem. 1981, 204, 101. (25) In  $Mn_2(CO)_6(t$ -Bu-DAB), containing also an eight-electron-bonded  $\alpha$ -diimine ligand, the <sup>13</sup>C NMR chemical shift of the imine carbon atoms is 103.4 ppm. Keijsper, J.; van Koten, G.; Vrieze, K., Organometallics, accepted for publication.

<sup>(26) (</sup>a) Brown, M. P.; Fisher, J. R.; Puddephatt, R. J.; Seddon, K. R. *Inorg. Chem.* 1979, *18*, 2808. (b) Muralidharan, S.; Espenson, J. H. *Ibid.*1983, *22*, 2786. (c) Azam, K. A.; Frew, A. A.; Lloyd, B. R.; Muir, L. M.;
Muir, K. W.; Puddephatt, R. J. J. Chem. Soc., Chem. Commun. 1982, 614.

 $(CO)_2]_2(\mu$ -CH<sub>2</sub>).<sup>17</sup> Also in the present complex the Ru-(2)( $\mu$ -CH<sub>2</sub>)Ru(3) unit is stabilized by the presence of a bridging group, i.e., the Ru(1) center, while the whole cluster itself gains additional stability from the bridging eight-electron-donating R-DAB.

Reaction Sequence. A prerequisite<sup>27</sup> for a reaction of a complex with diazoalkanes to occur seems to be the generation of a coordinatively unsaturated species. Electron-precise Ru<sub>3</sub>(CO)<sub>8</sub>(R-DAB) indeed can react like an unsaturated species because of the presence of an empty coordination site on Ru(2). This has already been shown in the reaction with CO (see Introduction; Figure 1). The reaction of  $Ru_3(CO)_8(R-DAB)$  with  $CH_2N_2$  may start with metal-induced N2 elimination from CH2N2 with concomitant addition of the  $CH_2$  group to the Ru(2) atom. The resulting product is likely to be very unstable because of the presence of the terminal methylene group. A stable product is finally obtained, not through an intramolecular attack of the terminal  $CH_2$  group on the  $\alpha$ -diimine function, as we had anticipated, but via a small rearrangement reaction, yielding the bridging methylene derivative. Interestingly, the  $CH_2$  bridge is a very asymmetric one which until now have never been observed in homonuclear complexes. This may have importance in view of the possible electron-balancing capability of the ligand which may be analogous to that of the carbonyl group.

Another possible, stepwise reaction route involves the intermediate formation of a diazomethane derivative, followed by N<sub>2</sub> elimination and formation of the product. Recently, several diazomethane complexes have been reported containing either a  $\mu$ -N-bridging diazomethane

group<sup>23,28</sup> or a  $\dot{M}$ —N=N-CH<sub>2</sub>- $\dot{M}'$  metallacycle.<sup>29</sup> In some instances these products react further to yield methylene derivatives. In the present case, however, this latter reaction sequence seems to be less likely because diphenyldiazomethane, which is indeed a much less reactive carbene precursor than diazomethane, does not react at all with  $\operatorname{Ru}_3(\operatorname{CO})_8(\operatorname{R-DAB})$  although complexation seems to be possible.

# Conclusions

Reaction of  $\operatorname{Ru}_3(\operatorname{CO})_8(\operatorname{R-DAB})$  with  $\operatorname{CH}_2\operatorname{N}_2$  yields the addition product  $(\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(R-DAB) that may gain its stability from the formation of the asymmetrical methylene bridge and from the presence of the strongly bridging, eight-electron-donating R-DAB ligand. No reaction between the CH<sub>2</sub> function and the  $\alpha$ -diimine function has been observed.

There seems to be a wide range of possible two-electron-donor ligand addition reactions to  $\operatorname{Ru}_3(\operatorname{CO})_8(\operatorname{R-DAB})$  which establishes that through the empty coordination site on Ru(2) (see Figure 1) this 48-electron cluster reacts like an unsaturated species. This two-electron donation results in distinct bond breaking of a Ru–Ru bond (this report) or in overall bond weakening of Ru–Ru and Ru–C(OO) bonds.<sup>8a</sup>

In general the <sup>13</sup>C NMR chemical shift values of the imine C atoms of R-DAB appear to be a good assignment criterion for the bonding mode of the ligand: i, fourelectron coordination, one peak at ca. 160 ppm ( $\pm 20$ ); ii, six-electron coordination, two peaks, one at ca. 175 ppm ( $\pm 20$ ) and one at ca. 70 ppm ( $\pm 20$ ); iii, eight-electron coordinati n, one peak at ca. 100 ppm.

Acknowledgment. We thank Mr. Heijdenrijk for collecting the X-ray data, Mr. R. Bregman for recording the mass-spectra, and Mr. J. M. Ernsting for recording the 250-MHz NMR spectra. We thank the Netherland Foundation for Chemical Research (SON) and the Netherland Organization for pure Research (ZWO) for their financial support.

**Registry No.**  $(\pm$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(neo-Pen-DAB), 97374-14-6; ( $\mu$ -CH<sub>2</sub>)Ru<sub>3</sub>(CO)<sub>8</sub>(*i*-Bu-DAB), 97374-15-7; Ru<sub>3</sub>(CO)<sub>8</sub>(neo-Pen-DAB), 78199-28-7; Ru<sub>3</sub>(CO)<sub>8</sub>(*i*-Bu-DAB), 78199-27-6; CH<sub>2</sub>N<sub>2</sub>, 334-88-3; Ru, 7440-18-8.

Supplementary Material Available: Listings of observed and calculated structure factors, final anisotropic thermal parameters, all geometric data, and analytical data (% C, H, and N) (28 pages). Ordering information is given on any current masthead page.

<sup>(27)</sup> Herrmann, W. A. Pure Appl. Chem. 1982, 54, 65.

 <sup>(28)</sup> Clauss, A. D.; Shapley, J. R.; Wilson, S. R. J. Am. Chem. Soc.
 1981, 105 7387.
 (29) Soc. a.g. 105 12 (p. 176) and references therein.

<sup>(29)</sup> See, e.g., ref 13 (p 176) and references therein.