Registry No. $[Co(As_2S)(triphos)]BF_4$, 88887-22-3; $[Co|SAsC (Ph)_2As$ (triphos)] BF_4 , 97074-05-0; CuI[P(OMe)₃], 34836-53-8; diphenyldiazomethane, 883-40-9.

Supplementary Material Available: Listings of positional and thermal parameters, all bond distances and angles, and structure factors (24 pages). Ordering information is given on any current masthead page.

Synthesis and Structure of $(C_5Me_5)(CO)_2RuP[C(O)(t-Bu)]_2$, the First **Dlacylphosphldo Complex wtth Metal-Phosphorus Coordination**

Lothar Weber,* Klaus Relzig, and Roland Boese'

Znsfifut fur Anorganische Chemie, Universitat Essen 0-4300 Essen, Germany

Received May 7, 1985

Summary: The disilylphosphido complex (C₅Me₅)-**(CO),RUP(S~M~,)~ reacts with 2 equiv** of **pivaloyl chloride to produce the novel dipivaloylphosphido complex (C,Me5)(C0)~uP[C(O)(t-Bu)]** , **in which metal phosphorus coordination is encountered instead** of **the usual chelation via the oxygen atoms. An X-ray structural determination reveals the presence** of **a pair** of **enantiomeric molecules** of **the complex in the asymmetric unit. The two pivaloyl substituents at the trigonal-pyramidal phosphorus atom are accommodated as right- and left-oriented propellers. The ruthenium-phosphorus distance of 2.404 (1) A is in accord with a single bond between these atoms.**

The chemistry of compounds with carbon-phosphorus multiple bonds is an area of current interest to both theoretical and preparative chemists.2 It is known that in solution diacylphosphines exist in a keto-enol equilibrium according to eq $1³$ whereas in the crystalline state the enol

structure B clearly is present (for $R = t$ -Bu).⁴ A similar situation has been encountered in β -diketones, the anions of which are valuable and versatile ligands. Analogously diacylphosphides should readily coordinate to metal, yielding complexes of type A' and/or B'.

In lithium,⁵ aluminum,⁶ chromium, and nickel^{2b,3} derivatives the diacylphosphides serve as chelating ligands via the oxygen atoms (B'). A simple method for the

(6) Becker, G.; Beck, H. P. *Z. Anorg. Allg. Chem.* **1977, 430,** 91.

Scheme **I**

Figure 1. Two views of the molecular structure of $(\eta^5$ - $C_5\widetilde{Me}_5(CO)_2RuP[C(O)(t-Bu)]_2$ (3). (b) approximates a Newman projection down the $P(1)Ru(1)$ bond.

Table **I.** Selected Bond Lengths **(A)** and Angles (deg) with Errors for $(C_5Me_2)(CO)_2RuP[C(O)(t-Bu)]_2$ (Given for Molecule **I)**

atoms	bond length	atoms	angle
Ru-P1	2.404(1)	P1–Ru–C1	96.0 (1)
Ru-C1	1.867(3)	$P1-Ru-C2$	92.0(1)
Ru–C2	1.889(4)	$C1-Ru-C2$	88.4 (2)
$Ru-C_{ring}$ (av)	2.246	Ru–P1–C3	105.9(1)
$P1-C3$	1.873(3)	$Ru-P1-C4$	105.0(1)
P1-C4	1.873(4)	$C3-P1-C4$	101.9(2)
C1-01	1.139(4)	$P1-C4-C9$	123.6(3)
$C2-O2$	1.130(5)	P1–C4–O4	118.6(3)
C3–O3	1.205(4)	O4–C4–C9	116.1(3)
$C4 - O4$	1.204(5)	$P1-C3-C5$	118.3(2)
$C3-C5$	1.554(5)	P1-C3-O3	121.5(3)
$C4-C9$	1.536(4)	$O3 - C3 - C5$	120.1(3)
		Ru-P1-C4-04	-19.9
		$C3-P1-C4-O4$	130.2
		Ru-P1-C3-O3	-86.9
		C4-P1-C3-O3	22.7
		C1–Ru–P1–C3	-14.2
		C2–Ru–P1–C4	-33.0

preparation of a ruthenium diacylphosphido complex, **3,** with the hitherto unknown coordination mode **A',** is reported here along with the X-ray structure analysis of this complex.

0276-7333/85/2304-1890\$01.50/0 *0* 1985 American Chemical Society

⁽¹⁾ Transition Metal Substituted Acyl Phosphines and Phosphaalk- enes. 5. For **part** 4 **see:** Weber, L.; Reizig, K.; Boese, R., *Organometallics,* in press.

⁽²⁾ For summaries see: (a) Appel, R.; Knoll, F.; Ruppert, I. *Angew.* Chem. 1981, 93, 771; Angew. Chem., Int. Ed. Engl. 1981, 20, 731. (b)
Becker, G.; Becker, W.; Mundt, O. Phosphorus Sulfur 1983, 14, 267.
(3) Becker, G.; Rössler, M.; Uhl, G. Z. Anorg. Allg. Chem. 1982, 495, 73.

⁽⁴⁾ Becker, G.; Beck, H. P. Z. Anorg. Allg. Chem. 1977, 430, 77.
(5) Becker, G.; Birkhahn, M.; Massa, W.; Uhl, W. Angew. Chem. 1980, 92, 756; Angew. Chem., Int. Ed. Engl. 1980, 19, 741.

The reaction of $(C_5Me_5)(CO)_2RuP(SiMe_3)_2$ (1)⁷ with 2 equiv of pivaloyl chloride in cyclopentane $(20 °C, 1 h)$ yields a yellow solution. Evaporation to dryness and crystallization of the residue from pentane produces a 77 **Yo** yield of a yellow microcrystalline solid. Recrystallization from pentane at -30 "C yields large orange-yellow crystals suitable for X-ray diffraction (Scheme I).

The structure of **3** was assigned on the basis of spectral evidence and confirmed by a single-crystal X-ray diffraction study. 8 The asymmetric unit of the structure of complex **3** comprises a pair of enantiomeric molecules. One enantiomer is shown in Figure 1, and selected bond distances and angles are presented in Table I. The coordination of the dipivaloylphosphido ligand in **3** is of primary interest. The trigonal-pyramidal phosphorus atom is ligated by the $(C_5Me_5)(CO)_2Ru$ unit and two propeller-like oriented pivaloyl groups. The oxygen atoms of the carbonyl dipoles are directed away from the phosphorus atom, thus minimizing interactions between the π -electrons and the free electron pair on phosphorus.

The phosphorus ligand adopts a conformation in which the lone pair is orthogonal to the ruthenium HOMO. The torsion angle between the $P[C(0)(t-Bu)]_2$ lone pair and the ruthenium fragment HOMO (taken as Ru-C101 bond) is 112°. The position of the lone pair was assumed in the plane bisecting the C3-P-C4 angle. The torsion angle D1-P1-Rul-C1 (D1 symbolizes the middle of the ring ligand) is 100.7°. Stereochemical activity of the phosphorus lone pair in transition-metal phosphido complexes, which has been recently pointed out by Gladysz **as** "gauche effect in transition-metal chemistry"? is also evident in the crystal structures of $(\eta^5$ -C₅Me₅)Fe(CO)₂PPh₂,¹⁰ $(\eta^5$ - $\text{C}_5\text{Me}_5\text{Fe}(\text{CO})_2(\text{PN}(\text{Me})\text{CH}_2\text{CH}_2\text{NMe})$,¹¹ and $(\eta^5\text{-C}_5\text{H}_5)$ - $\text{Re}(\text{NO})(\text{PPh}_3)\text{PPh}_2$ ⁹ The ruthenium to phosphorus bond

(2.404 (1) **A)** is only slightly shorter than the calculated value for a Ru-P single bond (2.43 Å) .^{12,13} The phosphorus carbon (CO) distances are close to the calculated single bond values (1.85 Å) ,¹⁴ whereas the CO distances of the acylic carbonyl functions are essentially those of localized CO double bonds.

The simplicity of the ¹H NMR (C_6D_6 , 200 MHz; δ 1.40 (s, 18 H, t-Bu), 1.54 (d, $J = 1.2$ Hz, 15 H, C_5Me_5)) and ¹³C NMR spectra (C₆D₆, 50.309 MHz; δ_C 9.54 (d, ${}^3J_{PC}$ = 4.6 Hz, $C_5(CH_3)_5$, 27.92 (d, ${}^3J_{PC}$ = 3.7 Hz, C(CH₃)), 49.06 (d, $^{2}J_{\text{PC}} = 29.1 \text{ Hz}, C(\text{CH}_3), 100.29 \text{ (s, } C_5(\text{CH}_3)_5), 202.50 \text{ (s, }$ RuCO), 235.66 (d, ${}^{1}J_{\text{PC}}$ = 71.0 Hz, PC(O)) suggests that in solution both pivaloyl groups rotate freely around the P-C bonds and that this rotation is rapid on the 'H and

Chem. SOC. **1985, 107, 3346.**

¹³C NMR time scale at room temperature. At -100 °C (in toluene- d_8) each tert-butyl group gives rise to a singlet in the ¹H NMR spectrum $(\delta_H 0.86$ and 0.95). The phosphorus signal is a singlet at δ_P 56.7 (85% H_3PO_4 standard) at room temperature (in C_6D_6). At -100 °C (toluene- d_8) this signal is slightly broadened and is seen at 52.58 ppm. From the position of the 13C0 signals of the carbonyl ligands in **3** and 1 (δ _C 204.5) it is clear that the divaloylphosphido group is a much better acceptor ligand than the $P(SiMe₃)₂$ ligand in 1^{15} This evidence is supported by two strong infrared absorptions of the $Ru(CO)_2$ moiety in 3 at 2038 and 1967 cm⁻¹ (in hexane) (1: ν (CO) = 2012, 1953 cm⁻¹ in hexane). In Nujol two strong bands at 1632 and 1610 cm-', which in $CH₂Cl₂$ solution collapse to a broad band at 1620 cm⁻¹ are attributed to the CO stretching modes of the pivaloyl groups.

A probable mechanism for the formation of **3** is depicted in Scheme I. Reaction of 1 with pivaloyl chloride is presumed to give the intermediate complex **2,** which is rapidly consumed by a second mole of pivaloyl chloride, thus preventing the isolation or spectroscopic characterization of **2.** The attempted preparation of **2** by reacting equimolar amounts of 1 and t -BuC(O)Cl yields a 1:1 mixture of **3** and unreacted 1. Although not observed in this case rearrangement products of species such as $2 \text{ (cf. } (C_5H_5)$ - $(CO)_2$ FeP= $C(OSiMe_3)(t-Bu)^{16}$) may be obtained from the reaction of $(C_5H_5)(CO)_2FeP(SiMe₃)_2$ with pivaloyl chloride. Other reactions of $(R_5C_5)(CO)_2\text{MP}(SiMe_3)_2$ with acid chlorides are under investigation.

Acknowledgment. Our work was generously supported by the Deutsche Forschungsgemeinschaft, Bonn, the Fonds der Chemischen Industrie, Frankfurt, and the Degussa AG, Hanau, Germany. This assistance is grateful acknowledged.

Registry No. 1, 97889-65-1; **3,** 97877-48-0; t-BuC(O)Cl, **3282-30-2.**

Supplementary Material Available: Tables of observed and calculated structure factors, anisotropic and isotropic thermal parameters, bond lengths, and bond angles (43 pages). Ordering information is given on any current masthead page.

Isomerization of a Symmetrlcal Metal-Metal Bonded Gold(I1) Yllde Dimer to a Mixed-Valence Gold(I I I)/Gold(I) Species

John P. Fackler, Jr.,^{*} and Barbara Trzcinska-Bancroft

Laboratory for Molecular Structure and Bonding **Department of Chemistry, Texas A&M University** *College Station, Texas 77843*

Received December 27, 1984

Summary: The first example of the spontaneous isomerization of a metal-metal bonded $gold(II)$ ylide dimer to its mixed-valence Au(III)/Au(I) isomer is reported. This isomerization occurs in nitromethane and other weakly protonic solvents, such as acetone. The X-ray structure of the mixed-valence species shows the presence of a
3.184 (1) \AA Au(III)/Au(I) distance.

⁽⁷⁾ Weber, **L.;** Reizig, K.; Boese, R., Organometallics, in press.

⁽⁸⁾ Crystal data for complex 3: space group $P\bar{1}$, $a = 9.954$ (1) Å, $b = 13.563$ (3) Å, $c = 18.072$ (4) Å, $\alpha = 91.59$ (2)°, $\beta = 93.54$ (2)°, $\gamma = 96.84$ (2)°, $V = 2416$ (1) \AA^3 , $Z = 4$, $\rho_{\text{calcd}} = 1.36$ g/cm³; $\mu(\text{Mo } \text{K}\alpha, \text{ graphite-monochromator}) = 7.2 \text{ cm}^{-1}$; $2\theta/\omega$ scan data collection at roomtemperature $(3^{\circ} \leq 2\theta \leq 55^{\circ})$; 6377 unique reflections, 5615 unique observed (F_c) \geq 3.50(F)); Syntex R3-four circle diffractometer; structure solving by Patterson and difference Fourier techniques and refinement by blockcascade least squares, using **sHELXTL** on a NOVA **3** (Data General). All non-hydrogen atoms refined anisotropical with **554** parameters and rigid groups for cyclopentadienylrings and all hydrogen atoms, given the **1.2** fold isotropic temperature factor of the U_{ij} tensor of the corresponding C atom; $R = 0.030$, $R_w = 0.034$, $w^{-1} = \sigma^2(F) + 0.0004F^2$, maximum rest electron density 0.38 e/Å³.
(9) Buhro, W. E.; Georgiou, S.; Hutchinson,

⁽¹⁰⁾ Weber, **L.;** Reizig, K.; Boese, R. Chem. Ber. **1985, 118, 1193. (11)** Hutchins, **L. D.;** Duesler, E. N.; Paine, R. T. Organometallics **1982,** 1, **1254.**

⁽¹²⁾ Bruce, **M.** I.; Duffy, D. N.; Humphrey, M. G.; Swincer, A. G. *J.* Organomet. Chem. **1985,282, 383.**

⁽¹³⁾ Observed Ru-P distances range from **2.206 (4)** to **2.426 (6) A; (14)** Corbridge, D. **E.** C. "The Structural Chemistry of Phosphorus", Guggenberger, **L. J.** Inorg. Chem. **1973, 12, 1317.**

Elsevier: Amsterdam, **1974.**

⁽¹⁵⁾ (a) Braterman, P. *S.;* Milne, D. W.; Randall, E.; Rosenberg, E. *J.* Chem. SOC., Dalton Trans **1973,1027.** (b) Cotton, F. A.; Hunter, D. L.; Lahuerta, P. J. Am. Chem. SOC. **1974,** 96, **7926.**

⁽¹⁶⁾ Weber, **L.;** Reizig, K.; **Boese,** R.; Polk, M. Angew. *Chem.* **1985,97, 583;** Angew. Chem., Int. *Ed.* Engl. **1985,24, 604.**