Preparation of Di-*tert*-butoxytungsten(VI) Alkylidene Complexes by Protonation of Tri-tert-butoxytungsten(VI) Alkylidene Complexes¹

John H. Freudenberger and Richard R. Schrock*

Department of Chemistry, 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received March 8, 1985

 $W(CCMe_3)(OCMe_3)_3$ reacts with 2 equiv of HX (X = Cl, Br, MeCO₂, PhCO₂, OPh, OC₆F₅, O-p-C₆H₄Cl) to give trigonal-bipyramidal neopentylidene complexes of the type $W(CHCMe_3)(OCMe_3)_2X_2$. Octahedral complexes of the type $W(CHCMe_3)(OCMe_3)_2X_2(py)$ (X = Cl, Br, I, O₂CCF₃) in general are more stable than five-coordinate species. A six-coordinate propylidene complex, $W(CHEt)(OCMe_3)_2Cl_2(py)$, can be prepared but analogous five-coordinate species, $W(CHEt)(OCMe_3)_2X_2$ (X = phenoxide, Cl, Br), evidently are too unstable to isolate. Addition of carboxylic acids to $W(CEt)(OCMe_3)_3$ yields unstable complexes of the type $W(CHEt)(OCMe_3)_2(O_2CR')_2$ that rearrange to propylene complexes $W(propylene)(OCMe_3)_2$ - $(O_2CR')_2$ in a reaction that is second order in W. The rearrangement is relatively fast when catalyzed by added R'CO₂H. It is proposed that the α -carbon atom of the alkylidene ligand is protonated to give an alkyl ligand which subsequently loses a proton from the β -carbon atom to give the olefin. Addition of only 1 equiv of $R'CO_2H$ to $W(CR'')(OCMe_3)_3$ (R'' = Me, Et) yields relatively stable alkylidene complexes of the type $W(CH\bar{R}'')(OCMe_3)_3(O_2CR')$.

Introduction

It is generally accepted that tungsten(VI) alkylidene complexes are the active species in systems that will catalytically metathesize olefins.² In spite of this fact, however, few types of tungsten(VI) alkylidene complexes have been identified, isolated, and characterized.^{2,3} Consequently, the relative stability and reactivity of tungsten alkylidene complexes have not been examined systematically. This is unfortunate, since it is likely that only in this manner can one hope to learn how to control side reactions and achieve desirable goals such as the metathesis of functionalized olefins.⁴ In this paper we show that some alkylidene complexes can be prepared by protonating alkylidyne complexes. Protonation has great potential as a general preparative route to a variety of alkylidene complexes, since many alkylidyne complexes, including those containing functional groups, are now available on a millimole scale or larger by the metathetical reaction between an acetylene and the W=W bond in W_2 - $(OCMe_3)_6$.⁵ Among other things we will show here that rearrangement of an alkylidene ligand containing a β proton to an olefin is relatively facile and that this rearrangement is catalyzed by acids, at least in molecules where it is slow enough to follow.

Results

Isolation of Alkylidene Complexes. W(CCMe₃)- $(OCMe_3)_3$ reacts with 2 equiv of gaseous HCl or HBr,

(3) (a) Clark, D. N.; Schrock, R. R. J. Am. Chem. Soc. 1978, 100, 6774.
(b) Churchill, M. R.; Rheingold, A. L.; Youngs, W. J.; Schrock, R. R.; Wengrovius, J. H. J. Organomet. Chem. 1981, 204, C17. (c) Wengrovius, J. H.; Schrock, R. R. Organometallics 1982, 1, 148. (d) Wengrovius, J. H.; Schrock R. R.; Churchill, M. R.; Wasserman, H. J. J. Am. Chem. Soc. A.; Schrock R. R.; Churchil, M. R.; Wasserman, H. J. J. Am. Chem. Soc.
1982, 104, 1739. (e) Rocklage, S. M.; Schrock, R. R. Churchill, M. R.;
Wasserman, H. J. Organometallics 1982, 1, 1332. (f) Pedersen, S. F.;
Schrock, R. R. J. Am. Chem. Soc. 1982, 104, 7483.
(4) Grubbs, R. H. In "Comprehensive Organometallic Chemistry";
Wilkinson, G., Ed.; Pergamon Press: Elmsford, NY 1972; Vol. 8.
(5) (a) Listemann, M. L.; Schrock, R. R. Organometallics 1985, 4, 74.
(b) Schwolk P. P. Listemann, M. L.; Sturger J. C. Law. Chem. Soc.

(b) Schrock, R. R.; Listemann, M. L.; Sturgeoff, L. G. J. Am. Chem. Soc. 1982, 104, 4291.

carboxylic acids, or phenols to give tert-butyl alcohol and neopentylidene complexes of the type shown in eq 1. The

$$W(CCMe_3)(OCMe_3)_3 \xrightarrow{+ 2 HX} Me_3CO_1 \xrightarrow{X} Me_3CO_2 \xrightarrow{X} Me_3CO_2 \xrightarrow{X} Me_3CO_2 \xrightarrow{X$$

halide complexes are analogous to complexes of the type $W(CHCMe_3)(OCH_2CMe_3)_2X_2$ reported by Osborn. 2c,d $W(CHCMe_3)(OCMe_3)_2Cl_2$ and $W(CHCMe_3)(OCMe_3)_2Br_2$ are by far the least stable thermally of this class; they decompose over a period of 1-2 days in the solid state at 25 °C under nitrogen. The phenoxide derivatives are considerably more stable than the halide derivatives, while the carboxylate derivatives appear to be quite stable indeed. We propose that all have the basic structure shown in eq 1 since the neopentylidene ligand in W(O)-(CHCMe₃)(PEt₃)Cl₂^{2b} lies in the equatorial plane of the roughly trigonal-bipyramidal complex, the two tert-butoxide ligands are inequivalent in the $W(CHCMe_3)$ - $(OCMe_3)_2X_2$ species, and the carboxylate ligands are equivalent. The carboxylate ligands are almost certainly bidentate, a fact that contributes to the stability of the carboxylate complexes (cf. higher coordinate adducts of the halide complexes of the type $W(CHCMe_3)$ - $(OCMe_3)_2X_2(py)$ below). In each of these derivatives, and all the others we will be discussing later, the values for $J_{\rm CH}$ in the neopentylidene ligand are in the range of 130–140 Hz (see Table I), characteristic of an "undistorted" neopentylidene ligand in which C_{α} is approximately sp² hybridized, not one in which H_{α} is bridging between C_{α} and W and the $W-C_{\alpha}-C_{\beta}$ angle is large.^{3d,f,6} Any of these reactions can be reversed by treating the neopentylidene complex with 2 equiv of lithium *tert*-butoxide (eq 2).

W(CHCMe₃)(OCMe₃)₂X₂ $-2LiX, -Me_3COH$ +2LiOCMe $W(CCMe_3)(OCMe_3)_3$ (2)

Octahedral pyridine adducts can be prepared by adding pyridine to the five-coordinate complexes, or, alternatively,

⁽¹⁾ Multiple Metal-Carbon Bonds. 37. For part 36 see: Strutz, H.;

⁽¹⁾ Multiple Metal-Carlot Donas. 51: 101 part to see. 51:442, 11.,
Schrock, R. R. Organometallics 1984, 3, 1600.
(2) (a) Schrock, R. R.; Rocklage, S.; Wengrovius, J.; Rupprecht, G.;
Fellmann, J. J. Mol. Catal. 1980, 8, 73. (b) Wengrovius, J.; Schrock, R.
R.; Churchill, M. R.; Missert, J. R.; Youngs, W. J. J. Am. Chem. Soc. 1980, 102, 4515. (c) Kress, J.; Wesolek, M.; LeNy, J.-P.; Osborn, J. A. J. Chem.
Sca. Chem. Commun. 1981, 1039. (d) Kress, L: Wesolek, M.; Osborn, S. A. J. Chem. Soc., Chem. Commun. 1981, 1039. (d) Kress, J.; Wesolek, M.; Osborn, J. A. Ibid. 1982, 514.

^{(6) (}a) Schultz, A. J.; Williams, J. M.; Schrock, R. R.; Holmes, S. J. Acta Crystallogr., Sect. C.: Cryst. Struct. Commun. 1984, C40, 590. (b) Holmes, S. J.; Clark, D. N.; Turner, H. W.; Schrock, R. R. J. Am. Chem. Soc. 1982, 104, 6322.

Table I. Chemical Shifts and Coupling Constants (Hz) for Alkylidene Ligands

Table 1. Chemical Shifts and Coupling Constants (Hz) for Alkylidene Ligands,						
compound	$\delta(\mathbf{H}_{\alpha})$	$\delta(C_{\alpha})$	$J_{ m CH_{lpha}}$	$J_{ m HW}$	$J_{\rm CW}$	
W(CHCMe ₃)(OCMe ₃) ₂ Cl ₂	10.62	289.9	138	12.0	157	
$W(CHCMe_3)(OCMe_3)_2Br_2$	10.99	297.1	133	12.2	154	
$W(CHCMe_3)(OCMe_3)_2(OPh)_2$	9.24	236.6	133	5.6	183	
$W(CHCMe_3)(OCMe_3)_2(OC_6H_4Cl)_2$	9.18	265.2	131	11.0	180	
$W(CHCMe_3)(OCMe_3)_2(OC_6F_5)_2$	9.94	281.1	133	5.9	175	
$W(CHCMe_3)(OCMe_3)_2Cl_2(py)$	10.76	302.3	130	8.4		
$W(CHCMe_3)(OCMe_3)_2Br_2(py)$	11.11	306.1	133	9.8		
$W(CHCMe_3)(OCMe_3)_2I_2(py)$	11.38	314.4	133			
$W(CHCMe_3)(OCMe_3)_2(O_2CCF_3)_2(py)$	11.46	305.1	130	8.1	171	
$W(CHCH_2CH_3)(OCMe_3)_2Cl_2(py)$	11.30	304.0	141	7.8		
$W(CHC_6H_5)(OCMe_3)_2Cl_2(py)$	11.45	290.5	136		157	
$W(CHCMe_3)(OCMe_3)_2(O_2CPh)_2$	11.21	294.8	135	11.0	178	
$W(CHCMe_3)(OCMe_3)_2(O_2CMe)_2$	10.84	293.6	130	11.0	180	
$W(CHCH_2CMe_3)(OCMe_3)_2(O_2CPh)_2$	11.82	288.8	138		178	
$W(CHCH_3)(OCMe_3)_2(O_2CPh)_2$	11.56					
$W(CHCH_2CH_3)(OCMe_3)_2(O_2CPh)_2$	11.50					
$W(CHCH_3)(OCMe_3)_2(O_2CMe)_2$	11.23					
$W(CHCH_2CMe_3)_2(O_2CMe)_2$	11.15					
$W(CHCH_3)(OCMe_3)_2(O_2CPh)_2(py)$	11.64					
$W(CHCH_2CH_3)(OCMe_3)_2(O_2CPh)_2(py)$	11.53					
$W(CHCHMe_2)(OCMe_3)_2(O_2CPh)_2(py)$	11.38	298.2	139		175	
$W(CHCH_2CMe_3)(OCMe_3)_2(O_2CPh)_2(py)$	11.81	288.9	136		178	
$W(CHCH_3)(OCMe_3)_3(O_2CPh)$	10.07	263.4	136		186	
$W(CHCH_2CH_3)(OCMe_3)_3(O_2CPh)$	9.99	271.0	135	4.9	174	
$W(CHCH_3)(OCMe_3)_3(O_2CMe)$	9.95	263.6	137	4.9	186	
$W(CHCH_2CH_3)(OCMe_3)_3(O_2CMe)$	9.85	272.7	136	4.3	183	
$W(CHCD_3)(OCMe_3)_2(O_2CMe)(O_2CPh)$	11.39					

by protonating $W(CCMe_3)(OCMe_3)_3$ with a pyridinium salt (eq 3). They appear to be considerably more stable than

$$W(CCMe_{3})(OCMe_{3})_{3} \xrightarrow{+ 2 pyH \times }_{-Me_{3}COH} \xrightarrow{X \cup CMe_{3}}_{py-W=C \setminus CMe_{3}} (3)$$

$$X = CI, Br, I, CF_{3}CO_{2}$$

their base-free analogues. In all of them the tert-butoxide ligands are inequivalent. We favor the structure shown in eq 3.

Attempts to prepare alkylidene complexes that contain β -protons by protonating W(CCH₂CH₃)(OCMe₃)₃ with 2 equiv of a phenol or HX (X = Br, Cl) produces only intractable and as yet unidentified product mixtures. We assume that the five-coordinate propylidene complexes decompose, since by using pyridinium salts we can prepare stable six-coordinate molecules analogous to those shown in eq 3. An example is shown in eq 4. This compound shows little sign of decomposition even after heating a solution of it in C₆D₆ to 60 °C for 1 day.

$$W(CCH_{2}CH_{3})(OCMe_{3})_{3} + 2pyHCl \xrightarrow{-Me_{3}COH} W(CHCH_{2}CH_{3})(OCMe_{3})_{2}Cl_{2}(py) (4)$$

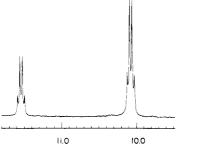
Reactions between $W(CCH_2CH_3)(OCMe_3)_3$ and two or more equivalents of a carboxylic acid proved to be much more interesting. The product contains two inequivalent *tert*-butoxide ligands, two inequivalent carboxylate ligands, and a propylene ligand on the basis of ¹H and ¹³C NMR data. It is relatively stable in the presence of excess carboxylic acid (no change in 1 day). We favor the pseudotrigonal-bipyramidal structure shown in eq 5 in which the

$$w(CCH_2CH_3)(OCMe_3)_3 \xrightarrow{+2RCO_2H} Me_3CO_1H^{-Me}_{O_2CR} (5)$$

$$-Me_3COH^{-Me_3CO}_{O_2CR} (5)$$

$$R = Me_1 Ph$$

olefin does not rotate rapidly on the NMR time scale about the olefin-metal bond axis. An analogous reaction between $W(CCH_3)(OCMe_3)_3$ and 2 equiv of a carboxylic acid yields an analogous ethylene complex. A reaction between W-(CCHMe₂)(OCMe₃)₃ and 2 equiv of a carboxylic acid yields an isobutylene complex in which the *tert*-butoxide ligands are equivalent but the carboxylate ligands are not. All of these data are consistent with molecular geometries analogous to that shown in eq 5. Interestingly, an analogous reaction between W(CCH₂CMe₃)(OCMe₃)₃ and 2 equiv of carboxylic acid gives a stable neohexylidene complex whose structure is believed to be analogous to that of the neopentylidene complex shown in eq 1. The neohexylidene ligand in W(CHCH₂CMe₃)(OCMe₃)₂(O₂CR)₂ does not rearrange to *tert*-butylethylene, an olefin that one might anticipate would be relatively weakly bound compared to the others we have mentioned. In view of this fact, and the fact that we could see alkylidene α -proton resonances in intermediates in several of the reactions above, we investigated the reactions between alkylidyne complexes and carboxylic acids in more detail.


Mechanism of Alkylidene to Olefin Rearrangement. Addition of only 1 equiv of benzoic acid to W-(CCH₃)(OR)₃ (OR = OCMe₃ throughout) cleanly yields an ethylidene complex of composition W(CHCH₃)(OR)₃-(O₂CPh) (eq 6). It can be isolated as an oil. This W(CCH₃)(OR)₃ + PhCO₂H \rightarrow

$$W(CHCH_3)(OR)_3(O_2CPh)$$
 (6)

mono(benzoate) species decomposes only relatively slowly in solution $(t_{1/2} \approx 1 \text{ day})$ to give intractable products. We could see no evidence for formation of a stable ethylene complex. If between 1 and 2 equiv of benzoic acid are used, then a mixture of the relatively stable mono(benzoate) and the relatively unstable bis(benzoate) complex is formed (eq 7). The *tert*-butyl alcohol formed in this reaction can be

$$W(CCH_3)(OR)_3 + 1.XPhCO_2H \rightarrow X = 0-9$$

0.XW(CHCH_3)(OR)_2(O_2CPh)_2 + 1-0.XW(CHCH_3)(OR)_3(O_2CPh) (7)

removed in vacuo and the product mixture isolated as an orange oil. It is especially easy to follow the progress of decomposition of the bis(benzoate) complex in this mixture by ¹H NMR since the signals for the α -protons in the ethylidene ligands in the two complexes are separated by approximately 1 ppm (Figure 1; Table I).

Figure 1. The ethylidene α -proton signals in W(CHCH₃)-(OCMe₃)₂(O₂CPh)₂ (left) and W(CHCH₃)(OCMe₃)₃(O₂CPh) (right).

It can be shown that rearrangement of the ethylidene ligand to an ethylene ligand in the bis(benzoate) complex is catalyzed by excess benzoic acid. If we add exactly 2 equiv of benzoic acid to W(CCH₃)(OR)₃ in ether and remove the solvent and *tert*-butyl alcohol in vacuo, we obtain fairly pure W(CHCH₃)(OR)₂(O₂CPh)₂ as an orange oil. If this product is divided into two parts and a few milligrams of benzoic acid added to one part, the rate of decomposition of the ethylidene complex to the ethylene complex is greatly accelerated ($t_{1/2} \approx 5$ min vs. 30 min). Other experiments involving reactions between W(CCH₂CH₃)-(OR)₃ and an excess of CD₃CO₂D confirm that deuterium is incorporated into the propylene product (eq 8). The

$$W(CCH_{2}CH_{3})(OR)_{3} \xrightarrow{\PiCD_{3}CO_{2}D} \\ 0.90W(CD_{2}CHCH_{3})(OR)_{2}(O_{2}CCD_{3})_{2} + \\ 0.10W(CHDCHCH_{3})(OR)_{2}(O_{2}CCD_{3})_{2} (8)$$

fact that no deuterium is observed in the C(2) position in the propylene ligand and that no deuterium is incorporated into propylene when W(CH₂CHCH₃)(OR)₂(O₂CCH₃)₂ is treated with excess CD₃CO₂D demonstrate that deuterium is incorporated prior to formation of the propylene ligand and that the alkylidene to olefin rearrangement is irreversible under the reaction conditions. A plausible explanation is that the initial α -deuterioethylidene complex is further deuterated at C_{α} to give an ethyl complex which then loses a proton from the β -carbon atom, as shown in eq 9. Formation of some DHC=CHCH₃ complex (1:1,

$$CCH_{2}CH_{3}^{+RCO_{2}D} W=C_{CH_{2}CH_{3}}^{D}$$

$$\xrightarrow{+D^{+}} [WCD_{2}CH_{2}CH_{3}]^{+} \xrightarrow{-H^{+}} W_{-1}^{-}]^{D} (9)$$

w≘

cis:trans) is the result of proton leakage into the acid pool. The result shown in eq 10 lends some support to the

$$W(CHCMe_3)(OR)_2(O_2CMe)_2 \xrightarrow{10MeCO_2D} W(CDCMe_3)(OR)_2(O_2CMe)_2 (10)$$

proposal that the alkylidene α -carbon atom is protonated, although this result is not definitive. We cannot say at this point whether the intermediate alkyl complex is more likely to be cationic ([W(alkyl)(OR)₂(O₂CPh)₂]⁺) or neutral (W(alkyl)(OR)₂(O₂CPh)₃).

In order to examine the rearrangement of W-(CHCH₃)(OR)₂(O₂CPh)₂ in the absence of extraneous benzoic acid, we turned to mixtures of W(CHCH₃)-(OR)₂(O₂CPh)₂ and W(CHCH₃)(OR)₃(O₂CPh). We found that the amount of W(CHCH₃)(OR)₃(O₂CPh) did not change significantly over the time period during which W(CHCH₃)(OR)₂(O₂CPh)₂ decomposed substantially to W(CH₂CH₂)(OR)₂(O₂CPh)₂. The rate of rearrangement of W(CHCH₃)(OR)₂(O₂CPh)₂ to W(CH₂CH₂)(OR)₂-(O₂CPh)₂ was found to be second order in the concentra-

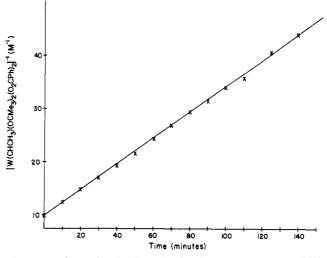


Figure 2. Second-order kinetic plot for rearrangement of W- $(CHCH_3)(OCMe_3)_2(O_2CPh)_2$ to $W(CH_2CH_2)(OCMe_3)_2(O_2CPh)_2$. Starting concentrations are given in Table II, entry 1.

Table II. The Dependency of Rate of Rearrangement of the Ethylidene Ligand in $W(CHCH_3)(OCMe_3)_2(O_2CPh)_2$ upon W

Concentration-				
[W(CHCH ₃)- (OR) ₃ -				
$(O_2 CPh)$], ^o M	$10^3 k_{\rm obsd}, {\rm M}^{-1} {\rm s}^{-1}$			
0.026	4.1 (3)			
0.054	2.2 (2)			
0.107	0.8(1)			
0.013	4.3 (3)			
	$\begin{array}{c} (OR)_{3} \\ (O_2CPh)],^b M \\ \hline 0.026 \\ 0.054 \\ 0.107 \end{array}$			

^{*a*} T = 296 K. ^{*b*} ±0.5%; OR = OCMe₃.

tion of $W(CHCH_3)(OR)_2(O_2CPh)_2$ at any given concentration between 0.01 and 0.11 M. In a typical kinetic run the rearrangement was followed by ¹NMR for approximately 2 half-lives. A typical second-order kinetic plot is shown in Figure 2. Necessarily, any intramolecular rearrangement of $W(CHCH_3)(OR)_2(O_2CPh)_2$ to W- $(CH_2CH_2)(OR)_2(O_2CPh)_2$ must be relatively slow. The simplest explanation is that the rearrangement is still acid catalyzed; i.e., one molecule of $W(CHCH_3)(OR)_2(O_2CPh)_2$ is delivering a proton to the C_{α} of a second molecule of W(CHCH₃)(OR)₂(O₂CPh)₂ and probably receiving one in return from the β -carbon atom of the intermediate ethyl complex. Therefore, for now we can view $W(CHCH_3)$ - $(OR)_2(O_2CPh)_2$ as a source of benzoic acid, although according to the kinetic results $W(CHCH_3)(OR)_2(O_2CPh)_2$ cannot actually lose benzoic acid to give W(CCH₃)(OR)₂- $(O_2CPh).$

As shown by the data in Table II, the rate of rearrangement of $W(CHCH_3)(OR)_2(O_2CPh)_2$ also depends upon the concentration of $W(CHCH_3)(OR)_3(O_2CPh)$, rearrangement being slowed at higher concentrations of $W(CHCH_3)(OR)_3(O_2CPh)$. In this range of concentrations the dependence on the concentration of $W(CHCH_3)$ - $(OR)_3(O_2CPh)$ is not straightforward. Exactly what is happening is not clear, but we might speculate that W- $(CHCH_3)(OR)_3(O_2CPh)$ either interacts with W- $(CHCH_3)(OR)_2(O_2CPh)_2$ to form some intermediate dimeric complex, thereby decreasing the rate of formation of the required intermediate ethyl ligands, or that it reacts with some intermediate in the decomposition reaction to reform $W(CHCH_3)(OR)_2(O_2CPh)_2$ at a rate that is competitive with formation of $W(CH_2CH_2)(OR)_2(O_2CPh)_2$. The details of the inhibition by $W(CHCH_3)(OR)_3(O_2CPh)$ would be interesting to clarify in future studies. However, as we shall see, there are other exchange reactions that

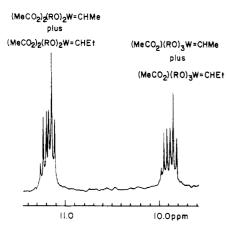


Figure 3. The alkylidene α -proton signals in the mixture of compounds generated in the reaction shown in Scheme I.

Scheme I

 $W(CDEt)(OR)_2(OAc^*)_2 (\sim 60\%)/W(CDEt)(OR)_3(OAc^*) (\sim 40\%)$

 $W(CHMe)(OR)_{2}(OAc)_{2} (\sim 60\%)/W(CHMe)(OR)_{3}(OAc) (\sim 40\%)$

$ \begin{array}{l} & \text{W(CHEt)(OR)}_2(OAc)_2 \\ & \text{W(CHMe)(OR)}_2(OAc)_2 \\ & \text{W(CDEt)(OR)}_2(OAc)_2 \\ & \text{W(CDMe)(OR)}_2(OAc)_2 \end{array} \right\} 1:1 \\ \end{array} $	$ \begin{array}{c} W(CHEt)(OR)_{3}(OAc) \\ W(CHMe)(OR)_{3}(OAc) \\ W(CDEt)(OR)_{3}(OAc) \\ W(CDMe)(OR)_{3}(OAc) \end{array} $
$OAc = O_2CMe; OAc^* =$	$O_{2}CCD_{2}$; $OAc = either$

almost certainly will complicate the issue.

In eq 11 we show a labelling experiment that confirms that mono- and bis(carboxylate) alkylidene complexes interconvert rapidly at 25 °C. After several hours both

 $W(CHCH_2CH_3)(OR)_2(O_2CPh)_2$

 $\begin{array}{l} (10\% \ W(CHCH_2CH_3)(OR)_3(O_2CPh)) \ + \\ W(CHCH_3)(OR)_3(O_2CPh) \ (5\% \ W(CCH_3)(OR)_3) \ \rightleftharpoons \\ W(CHCH_3)(OR)_2(O_2CPh)_2 \ + \\ W(CHCH_2CH_3)(OR)_3(O_2CPh) \ (11) \end{array}$

 $W(CH_2CH_2)(OR)_2(O_2CPh)_2$ and $W(CH_2CHCH_3)(OR)_2$ -($O_2CPh)_2$ were observed in the ¹H NMR spectrum of the mixture.

The result of a more complex version of this type of experiment is shown in Scheme I. The mixture of all eight possible protio- or deuterio-, mono- or bis(carboxylate), and ethylidene or propylidene complexes was formed in minutes (Figure 3). The four protio alkylidene products could be identified by their characteristic alkylidene proton signals in the 10-12 ppm region. The methyl groups of the deuterio ethylidene complexes could be observed in the pattern for the methyl groups of the two protio ethylidene complexes near 5 ppm. This experiment proves that H_{α} and D_{α} in alkylidene ligands and carboxylate ligands exchange between mono- and bis(carboxylate) complexes at a much faster rate than the rate at which the alkylidene ligand in a bis(carboxylate) complex rearranges to an olefin. Rapid H_{α} and D_{α} exchange supports the conclusion drawn from the kinetic studies that one bis(carboxylate) alkylidene complex can act as a source of acid for another.

A clearer demonstration of carboxylate ligand exchange is shown in Scheme II; CD_3 ethylidene complexes were employed here in order to simplify the ¹H NMR spectra as shown in Figure 4. The signal for the ethylidene proton in W(CHCD_3)(OR)₂(O₂CPh)(O₂CMe) must be the one of relative area 2 between the signal for the ethylidene α proton in W(CHCD_3)(OR)₂(O₂CPh)₂ and the signal for the ethylidene α -proton in W(CHCD_3)(OR)₂(O₂CMe)₂.

Finally, the results in eq 12 confirm that alkylidene mono(carboxylate) complexes rapidly interconvert with

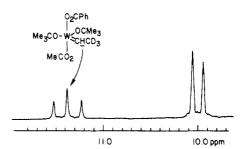


Figure 4. The ethylidene α -proton signals in the mixture of compounds generated in the reaction shown in Scheme II.

Scheme II

 $\sim 2:3 W(CHCD_3)(OR)_2(O_2CMe)_2/W(CHCD_3)(OR)_3(O_2CMe)$

 $\sim 2:3 W(CHCD_3)(OR)_2(O_2CPh)_2/W(CHCD_3)(OR)_3(O_2CPh)$

 $1:2:1 \begin{cases} W(CHCD_3)(OR)_2(O,CPh)_2 & W(CHCD_3)(OR)_3(O,CPh) \\ W(CHCD_3)(OR)_2(O,CPh)(O_3CMe) + W(CHCD_3)(OR)_3(O_3CMe) \\ W(CHCD_3)(OR)_2(O_3CMe)_2 & W(CHCD_3)(OR)_3(O_3CMe) \end{cases}$

alkylidyne complexes. Although we have not studied this reaction in any detail, we suspect that benzoic acid is transferred directly from one metal to another, i.e., W- $(CHMe)(OR)_3(O_2CPh)$ is not in equilibrium with W- $(CMe)(OR)_3$ and benzoic acid.

$$W(CHMe)(OR)_{3}(O_{2}CPh) + W(CEt)(OR)_{3} \xrightarrow{K_{eq} \approx 1} W(CMe)(OR)_{3} + W(CHEt)(OR)_{3}(O_{2}CPh) (12)$$

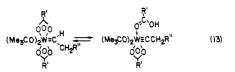
Since olefin complexes of the type W(olefin)-(OCMe₃)₂(O₂CR')₂ are unusual examples of W(IV) olefin complexes, we became interested in knowing whether the olefin could be displaced readily. When W(propylene)-(OCMe₃)₂(O₂CPh)₂ in toluene was treated with ethylene (40 psi) for 1 h at 25 °C, W(C₂H₄)(OCMe₃)₂(O₂CPh)₂ was formed quantitatively. Ethylene was not consumed and approximately 1 equiv of propylene was observed in a GC of the reaction mixture. We saw no evidence for formation of butenes or a propylene/ethylene codimer. Therefore we assume that propylene is simply displaced by ethylene. If a d⁰ metallacyclopentane complex^{7a} is an intermediate, it does not rearrange readily by a β -hydride elimination process to give olefin dimers, a process that is catalyzed by certain tantalum complexes.^{7b}

In spite of the above result, we were still somewhat surprised to find that ethylene and propylene are easily displaced from complexes of the type W(olefin)-(OCMe₃)₂(O₂CR')₂ by 2 equiv of PMe₃ at 25 °C. For example, W(CH₂CHCH₃)(OCMe₃)₂(O₂CCH₃)₂ was prepared as an oil and treated with ~5 equiv of PMe₃ in pentane. After 1 h the solution had turned blue. Large diamagnetic blue crystals of W(OCMe₃)₂(O₂CMe)₂(PMe₃)₂ could be isolated in ~50% yield. Blue-green prisms of W-(OCMe₃)₂(O₂CPh)₂(PMe₃)₂ could be isolated in ~40% yield upon treating W(C₂H₄)(OCMe₃)₂(O₂CPh)₂ in ether with excess PMe₃ for 16 h. NMR spectra of these species show them to be highly symmetric, at least on the NMR time scale. An all-trans structure is a reasonable possibility.

Discussion

There is some evidence in the literature that tungsten alkylidyne complexes can be protonated to give alkylidene complexes. For example, $[W(CCMe_3)Cl_4]^-$ and W-

^{(7) (}a) McLain, S. J.; Wood, C. D.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 4558. (b) Schrock, R. R.; McLain, S. J.; Sancho, J. Pure Appl. Chem. 1980, 52, 729.


Tungsten(VI) Alkylidyne Complexes

 $(CCMe_3)Cl_3(dme)$ react with water or amines in the presence of base and phosphine ligands to give octahedral complexes of the type $W(X)(CHCMe_3)Cl_2L_2$ (X = O^{3c} or NR^{3f} ; L = a phosphine).^{3e} W(CCMe₃)(CH₂CMe₃)₃ is known to react with water to give $[W(O)(CH_2CMe_3)_3]_2(\mu$ -O) in high yield,⁸ and $W(CCMe_3)(OCMe_3)_3$ reacts with water in the presence of NEt₄OH to give [NEt₄][WO₃- (CH_2CMe_3)].⁹ Protonation of the neopentylidyne α -carbon atom in d⁰ tungsten neopentylidyne complexes to give products that contain good π -bonding ligands (O or NR) is not altogether surprising in view of the fact that d^0 neopentylidene and (rare) neopentylidyne complexes of Nb and Ta are formed by what is most consistently a deprotonation of neopentyl and neopentylidene α -carbon atoms, respectively, by either an internal base (e.g., an alkyl ligand) or an external base.¹⁰ $Mo(CCMe_3)(CH_2CMe_3)_3^{11}$ and $W(CCMe_3)(CH_2CMe_3)_3^{12}$ presumably are formed in a series of α -deprotonation reactions related to those better documented for Nb and Ta systems. It is interesting to note that complexes of the type $W(CCH_2R'')(OCMe_3)_3$ do not react with water to give [WO₃(CH₂CH₂R")]⁻ complexes.⁹ There are several possible reasons, one of the most attractive of which is that the intermediate W=CHCH₂R" complex rearranges to an olefin complex.

There is only one report in the literature that clearly documents alkylidene ligand rearrangement; [Re(η^5 - $C_5H_5)(NO)(PPh_3)(CHCHMe_2)]^+$ rearranges to $[Re(\eta^5 C_5H_5$)(NO)(PPh₃)(CH₂CMe₂)]⁺ in a reaction that is first order in Re with $\Delta H^* = 20.4$ (14) kcal mol⁻¹ and $\Delta S^* =$ -2.7 (3) eu.¹² The only report of alkylidene rearrangement in a "high oxidation state" complex came from studies of reactions between Nb and Ta neopentylidene complexes and internal olefins.¹⁴ Complexes such as Ta-(CHCMe₃)(OCMe₃)₂Cl(PMe₃) will metathesize cis-2pentene relatively efficiently (~ 50 turnovers to metathesis products), the reaction being limited by "rearrangement" of intermediate ethylidene and propylidene complexes to ethylene and propylene. Intermediate alkylidene complexes could not be observed. The rearrangements reported here are the first documented in a "high oxidation state" (d⁰) alkylidene complex.

The most surprising feature of the alkylidene ligand rearrangement is that it is catalyzed by acid, either free acid or acid "sequestered" in the alkylidene complex itself. Intramolecular rearrangement, most reasonably via a vinyl hydride intermediate, is relatively slow. Note that we cannot exclude bimolecular decomposition of W- $(CHCH_2R'')(OCMe_3)_2(O_2CPh)_2$ via transfer of a β -proton in an alkylidene ligand directly to the α -carbon atom of another alkylidene ligand nor by direct transfer of H_{α} in one complex to the α -carbon atom in another, although steric factors would appear to prevent such reactions. An interesting possibility that is less likely to be limited by steric factors is that an alkylidene complex is in equilibrium with an alkylidyne complex containing coordinated carboxylic acid (eq 13). The coordinated carboxylic acid

- (12) Schrock, R. R.; Clark, D. N.; Sancho, J.; Wengrovius, J. H.;
 Rocklage, S. M.; Pedersen, S. F. Organometallics 1982, 1, 1645.
 (13) Hatton, W. G.; Gladysz, J. A. J. Am. Chem. Soc. 1983, 105, 6157.
 (14) Rocklage, S. M.; Fellmann, J. D.; Rupprecht, G. A.; Messerle, L.
 W. Schwark, P. B. L. Am. Chem. Soc. 1981, 103, 1440. W.; Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 1440.

could then catalyze the alkylidene ligand rearrangement in a reaction that is bimolecular in tungsten. The carboxylic acid cannot be lost to the bulk solution, since then a reaction order of 3/2 would be expected. This α -deprotonation reaction (eq 13), along with transfer of carboxylate and tert-butoxide ligands between metals in a bimetallic intermediate could account for all the observed labeling results.

Two of the more interesting questions this study generates are why complexes of the type $W(CHCH_2R'')$ - $(OCMe_3)_3(O_2CR')$ are relatively stable vs. W- $(CHCH_2R'')(OCMe_3)_2(O_2CR')_2$ complexes toward rearrangement of the alkylidene ligand to an olefin and why $W(CHCH_2CMe_3)(OCMe_3)_2(O_2CR')_2$ and $W(CHMe_2)$ - $(OCMe_3)_2(O_2CR')_2$ are more stable than $W(CHCH_2Me)$ - $(OCMe_3)_2(O_2CR')_2$ and $W(CHCH_3)(OCMe_3)_2(O_2CR')_2$ in the absence of excess acid. Although we can only speculate, it is worth considering the possibility that the hypothetical equilibrium shown in eq 14 lies further to the left than that

shown in eq 13. A practically opposite point of view is that the higher overall electron count in $W(CHR'')(OCMe_3)_2$ - $(O_2CR')_2$ complexes (16e vs. 14e in W(CHR'')(OCMe_3)_3- (O_2CR') complexes) makes the alkylidene α -carbon atom more nucleophilic and formation of the olefin complex by an acid-catalyzed route therefore easier. The answer to the second question is almost certainly related to the increased steric crowding about the alkylidene α - and β carbon atoms; in more crowded circumstances both the intermolecular delivery of a proton to the alkylidene ligand's α -carbon atom and removal of a proton from the β -carbon atom in the incipient alkyl complex should be slowed down.

The most interesting question is the most difficult to answer. Is the acid-catalyzed or bimolecular arrangement of an alkylidene ligand in high oxidation state systems a general phenomenon, or will an intramolecular rearrangement, perhaps via a vinyl hydride intermediate, also operate in some circumstances? We will be looking for other clear-cut examples of rearrangement in high oxidation state alkylidene complexes to provide the answer.

Experimental Section

General procedures can be found elsewhere.¹² W(CCMe₃)-(OCMe₃)₃ was prepared according to the reported method.¹² Other W(CR)(OCMe₃)₃ complexes were prepared by the reaction between $W_2(OCMe_3)_6$ and the appropriate nitrile^{4b} as described below. Chemical shifts (¹H and ¹³C NMR) are relative to Me₄Si, and coupling constants are in hertz. Routine coupling constants, multiplicities, and intensities usually are not noted individually. Chemical shifts and coupling constants (when available) for alkylidene complexes are collected in Table I. The NMR solvent was C_6D_6 unless otherwise noted.

Preparations. W(CCHMe₂)(OCMe₃)₃. W₂(OCMe₃)₆ (4.00 g, 4.96 mmol) was dissolved in pentane (50 mL), and 1 equiv of Me_2CHCN (451 μ L, 4.96 mmol) was added. The solution turned from dark red to amber over the period of several minutes. During this time $[W(N)(OCMe_3)_3]_x$ precipitated from solution. The solution was filtered, and the solvent was removed in vacuo. The crude product was purified by sublimation at 40 °C (0.01 μ m) to give large colorless prisms (2.01 g, 89%): ¹H NMR δ 4.03 (hept, J = 5.8 Hz, CCHMe₂), 1.44 (OCMe₃), 1.23 (d, J = 5.8 Hz, CCHMe₂); ¹³C NMR δ 268.3 (CCHMe₂), 79.2 (OCMe₃), 46.1

⁽⁸⁾ Feinstein-Jaffe, I.; Gibson, D.; Lippard, S. J.; Schrock, R. R.; Spool, A. J. Am. Chem. Soc. 1984, 106, 6305.
 (9) (a) Feinstein-Jaffe, I.; Pederson, S. F.; Schrock, R. R. J. Am. Chem.

Soc. 1983, 105, 7176. (b) Feinstein-Jaffe, I.; Dewan, J. C.; Schrock, R. R. Organometallics 1985, 4, 1189.

^{(10) (}a) Schrock, R. R. Acc. Chem. Res. 1979, 12, 98. (b) Gal, A. W.; van der Heijden, H. J. Chem. Soc., Chem. Commun. 1983, 420. (11) McCullough, L.; Dewan, J. C.; Murdzek, J. C.; Schrock, R. R.,

submitted for publication.

 $(CCHMe_2)$, 32.7 $(OCMe_3)$, 26.5 $(CCHMe_2)$. Anal. Calcd for $WC_{16}H_{34}O_3$: C, 41.93; H, 7.48. Found: C, 41.80; H, 7.36.

W(CCH₂CMe₃)(OCMe₃)₃. W₂(OCMe₃)₆ (4.00 g, 4.96 mmol) was dissolved in pentane (50 mL), and 1 equiv of Me₃CCH₂CN (0.48 g, 4.9 mmol) was added. Over the period of 3 h the solution turned from dark red to amber and [W(N)(OCMe₃)₃]_x precipitated. The solvent was removed in vacuo and the residue sublimed (60 °C, 0.01 μ m) to give a colorless crystalline solid (1.65 g, 68%): ¹H NMR δ 4.16 (J_{HW} = 7.3 Hz, CCH₂CMe₃), 1.46 (OCMe₃), 1.13 (CCH₂CMe₃); ¹³C NMR δ 274.5 (CCH₂CMe₃), 76.5 (OCMe₃), 56.4 (J_{CW} = 45 Hz, CCH₂CMe₃), 27.5 (CCH₂CMe₃), 25.0 (OCMe₃), 22.2 (CCH₂CMe₃). Anal. Calcd for WC₁₈H₃₈O₃: C, 44.45; H, 7.88. Found: C, 44.23; H, 7.60.

W(CHCMe₃)(OCMe₃)₂X₂. X = Cl. Two equivalents of HCl gas (0.42 mmol, 9.5 mL) were added via syringe to a solution of W(CCMe₃)(OCMe₃)₃ (0.10 g, 0.21 mmol) in toluene (10 mL) at -78 °C. The solution turned orange-red immediately. Upon warming to room temperature the solution became yellow. The solvent was removed in vacuo leaving yellow crystals of product that was essentially pure by NMR. The compound decomposes over several days at room temperature in the solid state: ¹H NMR δ 10.62 (CHCMe₃), 1.44 (CMe₃), 1.40 (CMe₃), 1.13 (CMe₃); ¹³C NMR δ 289.9 (CHCMe₃), 92.0 (OCMe₃), 90.4 (OCMe₃), 42.5 (CHCMe₃), 32.7 (CMe₃), 29.8 (CMe₃), 29.7 (CMe₃).

X = Br. The same procedure as above was followed: ¹H NMR δ 10.99 (CHCMe₃), 1.47 (CMe₃), 1.44 (CMe₃), 1.40 (CMe₃); ¹³C NMR δ 297.1 (CHCMe₃), 93.0 (OCMe₃), 91.5 (OCMe₃), 43.2 (CHCMe₃), 32.0 (CMe₃), 29.7 (CMe₃), 29.5 (CMe₃).

W(CHCMe₃)(OCMe₃)₂(OR')₂ (OR' = OC₆H₅, p-OC₆H₄Cl, OC₆F₅). OR' = OC₆H₅. W(CCMe₃)(OCMe₃)₃ (0.75 g, 1.6 mmol) was added to a solution of phenol (0.30 g, 3.2 mmol) in dichloromethane (10 mL). After 5 min the solvent was removed in vacuo leaving an orange crystalline powder. Recrystallization from pentane at -30 °C gave large orange crystals (two crops, 0.68 g, 73%): ¹H NMR δ 9.24 ($J_{HW} = 5.6$ Hz, CHCMe₃), 7.33, 7.17, 6.91 (H_m, H_o, H_p, respectively), 1.31 (s, 18, OCMe₃), 1.09 (CHCMe₃); ¹³C NMR δ 263.6 ($J_{CW} = 183$ Hz, CHCMe₃), 166.6, 129.2, 119.4, 119.3 (C_{ipso}, C_m, C_o, C_p, respectively), 87.0 (OCMe₃), 41.4 (CHCMe₃), 35.2 (CHCMe₃), 30.7 (OCMe₃). Anal. Calcd for WC₂₅H₃₈O₄: C, 51.20; H, 6.53. Folund: C, 50.75; H, 6.66.

OR' = p-OC₆H₄Cl. The procedure was essentially the same as above starting with W(CCMe₃)(OCMe₃)₃ (0.50 g, 1.1 mmol) and *p*-chlorophenol (0.27 g, 2.1 mmol) in dichloromethane (10 mL). Recrystallization from pentane at -30 °C gave yellow prisms (0.53 g, 77%): ¹H NMR δ 9.18 (J_{HW} = 11.0 Hz, CHCMe₃), 7.25, 6.86 (H_o and H_m), 1.21 (br s, 18, OCMe₃), 0.97 (CHCMe₃); ¹³C NMR δ 265.2 (J_{CW} = 180 Hz, CHCMe₃), 165.0, 129.1. 123.9, 120.4 (C_{ipso}, C_m, C_p, C_o, respectively), 87.5 (OCMe₃), 41.6 (CHCMe₃), 34.9 (CHCMe₃), 30.6 (OCMe₃).

OR' = OC₆F₅. The procedure was essentially the same as in the first starting with W(CCMe₃)(OCMe₃)₃ (0.50 g, 1.1 mmol) and pentafluorophenol (0.39 g, 2.1 mmol) in dichloromethane (10 mL). The crude product crystallized from pentane at -30 °C as a yellow solid (0.53 g, 65%): ¹H NMR δ 9.94 (CHCMe₃), 1.36 (br s, 9, OCMe₃), 1.24 (br s, 9, OCMe₃), 0.81 (CHCMe₃); ¹³C NMR δ 281.1 (CHCMe₃), 141.5, 138.5, 134.2 ($J_{CF} \approx 235-245$ Hz, OC₆F₅), 42.5 (CHCMe₃), 33.4 (CHCMe₃), 30.4 (OCMe₃); C_{ipeo} and OCMe₃ signals were not found. This compound decomposes readily in solution to unidentified products.

 $W(CHCMe_3)(OCMe_3)_2X_2(py)$ (X = Cl, Br, I, O₂CCF₃). The general procedure was to add $W(CCMe_3)(OCMe_3)_3$ to 2 equiv of pyH^+X^- in dichloromethane (25 mL/g of W). After 10 min the solvent was removed in vacuo and the residue was recrystallized from pentane.

X = Cl. A 1.00-g sample of W(CCMe₃)(OCMe₃)₃ (2.12 mmol) and 0.49 g of pyHCl (4.2 mmol) yield 0.92 g of orange crystals (79%): ¹H NMR δ 10.76 (CHCMe₃), 9.44, 6.96, 6.74 (H_o, H_p, H_m, respectively), 1.41 (CMe₃), 1.26 (CMe₃), 1.21 (CMe₃); ¹³C NMR δ 302.3 (CHCMe₃), 149.9, 137.2, 123.9 (C_o, C_p, C_m, respectively), 89.8 (OCMe₃), 88.9 (OCMe₃), 43.1 (CHCMe₃), 34.0 (CMe₃), 30.1 (CMe₃), 29.0 (CMe₃).

X = Br. A 0.30-g sample of W(CCMe₃)(OCMe₃)₃ (0.64 mmol) and 0.20 g of pyHBr (1.3 mmol) yield 0.31 g of orange powder (76%): ¹H NMR δ 11.11 (CHCMe₃), 9.54, 6.96, 6.68 (H_o, H_p, H_m, respectively), 1.39 (CMe₃), 1.28 (CMe₃), 1.24 (CMe₃); ¹³C NMR δ 306.1 (CHCMe₃), 150.7, 136.6, 123.8 (C_o, C_p, C_m, respectively), 91.4 (OCMe₃), 90.3 (OCMe₃), 43.9 (CHCMe₃), 32.9 (CMe₃), 29.9 (CMe₃), 29.1 (CMe₃). Anal. Calcd for $WC_{18}H_{33}NO_2Br_2$: C, 33.82; H, 5.20. Found: C, 33.85; H, 5.19.

X = I. A 0.30-g sample of W(CCMe₃)(OCMe₃)₃ (0.64 mmol) and 0.26 g of pyHI (1.3 mmol) yield 0.30 g of red powder (64%): ¹H NMR δ 11.38 (CHCMe₃), 9.49, 6.93, 6.64 (H_o, H_p, H_m, respectively), 1.38 (CMe₃), 1.33 (CMe₃), 1.29 (OCMe₃); ¹³C NMR δ 314.4 (CHCMe₃), 151.9, 136.7, 123.9 (C_o, C_p, C_m, respectively), 92.4 (OCMe₃), 91.1 (OCMe₃), 45.0 (CHCMe₃), 32.1 (CMe₃), 29.7 (CMe₃), 28.8 (CMe₃).

X = O_2CCF_3 . A 0.50-g sample of W(CCMe₃)(OCMe₃)₃ (1.1 mmol) and 0.41 g of pyHO₂CCF₃ (2.1 mmol) yield 0.55 g of yellow crystals (73%): ¹H NMR δ 11.46 (J_{HW} = 8.1 Hz, CHCMe₃), 8.96, 6.82, 6.55 (H_o, H_p, H_m, respectively), 1.43 (CMe₃), 0.98 (CMe₃), 0.93 (CMe₃); ¹³C NMR δ 305.1 (CHCMe₃), 159.2 (J_{CF} = 38 Hz, O_2CCF_3), 148.1, 138.3, 124.7 (C_o, C_p, C_m, respectively), 117.1 (J_{CF} = 285 Hz, O_2CCF_3), 88.9 (OCMe₃), 44.0 (CHCMe₃), 35.0 (CMe₃), 30.1 (CMe₃), 28.5 (CMe₃). Anal. Calcd for WC₂₂H₃₃F₆NO₆: C, 37.46; H, 4.72. Found: C, 37.06; H, 4.64.

W(CHCH₂CH₃)(OCMe₃)₂Cl₂(**py**). W(CCH₂CH₃)(OCMe₃)₃ (0.30 g, 0.68 mmol) was added to a solution of pyHCl (0.16 g, 1.4 mmol) in dichloromethane (10 mL). The color of the solution changed to orange immediately. The solvent was removed in vacuo and the residue recrystallized from toluene/pentane (1:1) to give the large orange crystals of product (0.27 g, 77%): ¹H NMR δ 11.30 (t, 1, J = 7.8 Hz, CHCH₂CH₃), 9.75, 6.89, 6.64 (H_o, H_p, H_m, respectively), 5.56 (quin, 2, J = 7.8 Hz, CHCH₂CH₃), 1.19 (br s, 18, OCMe₃), 1.13 (t, 3, J = 7.5 Hz, CHCH₂CH₃); ¹³C NMR δ 304.0 (CHCH₂CH₃), 150.2, 137.5, 123.8 (C_o, C_p, C_m, respectively), 87.9 (OCMe₃), 38.4 (CHCH₂CH₃), 29.9 (OCMe₃), 29.2 (OCMe₃), 18.8 (CHCH₂CH₃). Anal. Calcd for WC₁₆H₂₉Cl₂NO₂: C, 36.80; H, 5.60. Found: C, 36.59; H, 5.63.

W(CHC₆H₅)(OCMe₃)₂Cl₂(py). W(CC₆H₅)(OCMe₃)₃ (1.00 g, 2.03 mmol) was added to a solution of pyHCl (0.47 g, 4.1 mmol) in dichloromethane (10 mL). The color changed to red immediately. The solvent was removed in vacuo, and the residue was recrystallized from toluene/pentane at -30 °C (two crops, 0.96 g, 83%): ¹H NMR δ 11.45 (CHC₆H₅), 9.72 (br d, 2, py-H_o), 7.33 (m, 4, C₆H₅-H_o and H_m), 6.90 (t, 1, py-H_p), 6.66 (m, 3, C₆H₅-H_p and py-H_m), 1.23 (OCMe₃), 1.06 (OCMe₃); ¹³C NMR δ 290.5 (CHC₆H₅), 150.3 (py-C_o), 144.0 (C₆H₅-C_{ipso}), 137.8 (py-C_p), 132.4, 129.9, 126.9 (C₆H₅-C_o, C_m, C_p), 123.9 (py-C_m), 89.5 (OCMe₃), 88.7 (OCMe₃), 29.4 (OCMe₃), 29.3 (OCMe₃).

W(**CHR**'')(**OCMe**₃)₂(**O**₂**CR**')₂. **R**'' = CMe₃; **R**' = C₆H₅. Two equivalents of benzoic acid (0.52 g, 4.3 mmol) were added to a solution of W(CCMe₃)(OCMe₃)₃ (1.00 g, 2.12 mmol) in ether (25 mL). After 1 min the solvent was removed in vacuo and the residue was recrystallized from ether/pentane at -40 °C to yield yellow crystals of product (two crops, 1.15 g, 85%): ¹H NMR δ 11.21 (CHCMe₃), 8.45 (H_o), 7.17 (H_m and H_p), 1.49 (CMe₃), 1.37 (CMe₃), 1.31 (CMe₃); ¹³C NMR δ 294.8 (CHCMe₃), 173.2 (O₂CPh), 134.6 (C_{ipse}), 132.1, 130.2, 128.5 (C_p, C_o (or C_m), C_m (or C_o)), 89.1 (OCMe₃), 88.3 (OCMe₃), 43.0 (CHCMe₃), 34.9 (CMe₃), 30.3 (CMe₃), 29.8 (CMe₃). Anal. Calcd for WC₂₇H₃₈O₆: C, 50.48; H, 5.96. Found: C, 50.52; H, 5.97.

 ${\rm R''}={\rm CH_2CMe_3}; {\rm R'}={\rm C_6H_5.}, {\rm Two}\ {\rm equivalents}\ {\rm of}\ {\rm benzoic}\ {\rm acid}\ (0.15\ {\rm g},\ 1.2\ {\rm mmol})\ {\rm were}\ {\rm added}\ {\rm to}\ {\rm a}\ {\rm solution}\ {\rm of}\ {\rm W}({\rm CCH_2CMe_3}). ({\rm OCMe_3})_3\ (0.30\ {\rm g},\ 0.62\ {\rm mmol})\ {\rm in}\ {\rm ether}\ (10\ {\rm mL}). {\rm The}\ {\rm solvent}\ {\rm was}\ {\rm removed}\ {\rm in}\ {\rm vacuo}\ {\rm leaving}\ {\rm a}\ {\rm yellow}\ {\rm oil}\ {\rm which}\ {\rm was}\ {\rm essentially}\ {\rm pure}\ {\rm by}\ {\rm NMR}:\ {}^1{\rm H}\ {\rm NMR}\ {\delta}\ 11.82\ ({\rm t},\ 1,\ J=8.5\ {\rm Hz},\ {\rm CHCH_2CMe_3}),\ 8.46\ ({\rm H_o}),\ 7.16\ ({\rm H_m}\ {\rm and}\ {\rm H_p}),\ 5.45\ ({\rm d},\ 2,\ J=8.5\ {\rm Hz},\ {\rm CHCH_2CMe_3}),\ 1.31\ ({\rm CMe_3}),\ 1.29\ ({\rm CMe_3}),\ 1.07\ ({\rm CMe_3});\ {}^{13}{\rm C}\ {\rm NMR}\ {\delta}\ 288.8\ ({\rm CHCH_2CMe_3}),\ 130.2\ ({\rm C_0}\ {\rm or}\ {\rm C_m}),\ 132.2\ ({\rm C_p}),\ 130.2\ ({\rm C_0}\ {\rm or}\ {\rm C_m}),\ 132.5\ ({\rm C_m}\ {\rm or}\ {\rm C}),\ 130.2\ ({\rm C_0}\ {\rm or}\ {\rm C_m}),\ 132.5\ ({\rm Cme_3}),\ 58.1\ ({\rm CHCH_2CMe_3}),\ 58.1\ ({\rm CHCH_2CMe_3}),\ 58.1\ ({\rm CHCH_2CMe_3}),\ 58.1\ ({\rm CHCH_2CMe_3}),\ 29.6\ ({\rm br}\ {\rm q},\ {\rm OCMe_3}),\ 30.2\ ({\rm CHCH_2CMe_3}),\ 29.6\ ({\rm br}\ {\rm q},\ {\rm OCMe_3}).$

R'' = CMe₃; R' = CH₃. Two equivalents of acetic acid (120 μL, 2.1 mmol) were added to a solution of W(CCMe₃)(OCMe₃)₃ (0.50 g, 1.1 mmol) in ether (10 mL). The solvent was removed in vacuo to give highly pentane-soluble, oily, yellow crystals that were pure by ¹H NMR: ¹H NMR δ 10.84 (CHCMe₃), 1.98 (O₂C-CH₃), 1.37 (CMe₃), 1.35 (CMe₃), 1.34 (CMe₃); ¹³C NMR δ 293.6 (CHCMe₃), 177.9 (O₂CCH₃), 88.6 (OCMe₃), 87.8 (OCMe₃), 42.6 (CHCMe₃), 34.7 (CMe₃), 30.1 (CMe₃), 29.6 (CMe₃), 23.2 (O₂CCH₃).

The following bis(carboxylate) alkylidene complexes were prepared in situ by adding slightly less than 2 equiv of carboxylic

Tungsten(VI) Alkylidyne Complexes

acid (usually 1.8–1.9 equiv) to an ethereal solution of the appropriate $W(CR'')(OCMe_3)_3$ complex. The deficiency of acid allowed the resulting $W(CHR'')(OCMe_3)_2(O_2CR')_2$ complex to be observed conveniently by slowing down the rearrangement of the alkylidene ligand to an olefin. ¹H NMR samples were contaminated with $W(CHR'')(OCMe_3)_3(O_2CR')$ as well as the corresponding olefin complex. Only ¹H NMR resonances characteristic of the alkylidene ligand in $W(CHR'')(OCMe_3)_2(O_2CR')$ are given below. Carboxylate and *tert*-butoxide resonances were not assigned.

 $\mathbf{R}'' = \mathbf{CH}_3$; $\mathbf{R}' = \mathbf{C}_6\mathbf{H}_5$: ¹H NMR δ 11.56 (q, 1, J = 7.9 Hz, CHCH₃), 5.28 (d, 3, J = 7.9 Hz, CHCH₃).

 $R'' = CH_2CH_3$; $R' = C_6H_5$: ¹H NMR δ 11.50 (t, 1, J = 7.5 Hz,

 $CHCH_2CH_3$), 5.51 (quintet, 2, J = 7.5 Hz, $CHCH_2CH_3$).

 $\mathbf{R}'' = \mathbf{CH}_3$; $\mathbf{R}' = \mathbf{CH}_3$: ¹H NMR δ 11.23 (q, 1, J = 7.9 Hz, CHCH₃), 5.10 (d, 3, J = 7.9 Hz, CHCH₃).

 $R'' = CH_2CH_3$; $R' = CH_3$: ¹H NMR δ 11.15 (t, 1, J = 7.9 Hz, CHCH₂CH₃), 5.30 (quintet, 2, J = 7.5 Hz, CHCH₂CH₃).

W(**CHR**'')(**OCMe**₃)₂(**O**₂**CC**₆**H**₅)₂(**py**). **R**'' = **CH**₃. W-(**CCH**₃)(**OCMe**₃)₃ (0.50 g, 1.2 mmol) was dissolved in ether (10 mL) and 2 equiv of pyridine were added (190 μ L, 2.3 mmol) followed by two equivalents of benzoic acid (0.28 g, 2.3 mmol). The solvent was removed immediately in vacuo from the solution, and the residue was recrystallized from ether/pentane at -40 °C to give fine yellow needles (two crops, 0.62 g, 78%). The product is too unstable in solution to obtain a reliable ¹³C NMR spectrum and decomposes substantially in the solid state after 1 day at room temperature: ¹H NMR δ 11.64 (q, 1, J = 8.0 Hz, CHCH₃), 8.76 (py-H₀), 8.51 (C₆H₅-H₀), 7.21 (C₆H₅-H_m and H_p), 7.01 (py-H_p), 6.70 (py-H_m), 5.43 (d, 3, J = 8.0 Hz, CHCH₃), 1.22 (s, 18, OCMe₃).

R'' = CH₂CH₃. The same procedure as that above was followed for R = CH₃ starting with W(CCH₂CH₃)(OCMe₃)₃ (0.50 g, 1.1 mmol). The product was isolated as yellow needles from ether-/pentane at -40 °C (two crops, 0.40 g, 51%). This compound is unstable in solution and in the solid state: ¹H NMR δ 11.53 (t, 1, J = 8.1 Hz, CHCH₂CH₃), 8.76 (py-H_o), 8.50 (C₆H₅-H_o), 7.19 (C₆H₅-H_m and H_p), 6.99 (py-H_p), 6.68 (py-H_m), 5.64 (quintet, 2, J = 7.6 Hz, CHCH₂CH₃), 1.24 (s, 18, OCMe₃), 1.17 (t, 3, J = 7.8 Hz, CHCH₂CH₃).

R" = CHMe₂. The above procedure was repeated starting with W(CCHMe₂)(OCMe₃)₃ (0.30 g, 0.66 mmol). The product was isolated as yellow crystals (0.39 g, 85%). This compound was sufficiently stable in solution to obtain a ¹³C NMR spectrum but it decomposed substantially in the solid state in 1 day at room temperature: ¹H NMR δ 11.38 (d, J = 9.7 Hz, CHCHMe₂), 8.74 (py-H_o), 8.49 (C₆H₅-H_o), 7.20 (C₆H₅-H_m and H_p), 6.99 (py-H_p), 6.68 (py-H_m), 5.27 (m, CHCHMe₂), 1.33 (d, 6, J = 6.4 Hz, CHCHMe₂), 1.26 (OCMe₃), 1.25 (OCMe₃); ¹³C NMR δ 298.2 (CHCHMe₂), 172.3 (O₂CC₆H₅), 149.8 (py-C_o), 136.2 (py-Cp), 135.0 (C₆H₅-C_{ipso}), 131.9 (C₆H₅-Cp), 130.2 (C₆H₅-C_m or C_o), 128.5 (C₆H₅-C_{ipso}), 123.8 (py-C_m), 87.2 (OCMe₃), 43.7 (CHCHMe₂), 30.2 (OCMe₃), 29.5 (OCMe₃), 28.6 (CHCHMe₂).

 ${\rm R}''={\rm CH_2CMe_3}.$ The above procedure was repeated beginning with $W({\rm CCH_2CMe_3})({\rm OCMe_3})_3$ (0.30 g, 0.62 mmol). The product was obtained as orange prisms (two crops, 0.38 g, 84%) from ether/pentane at -40 °C: $^{1}{\rm H}$ NMR δ 11.81 (t, 1, J = 8.3 Hz, CHCH_2CMe_3), 8.74 (py-H_o), 8.48 (C_6H_5-H_o), 7.20 (C_6H_5-H_m and H_p), 7.01 (py-H_p), 6.69 (py-H_m), 5.60 (d, 2, J = 8.3 Hz, CHCH_2CMe_3), 1.28 (OCMe_3), 1.26 (OCMe_3), 1.06 (CHCH_2CMe_3); 1^3C NMR δ 288.9 (CHCH_2CMe_3), 173.4 (O_2CC_6H_5), 150.1 (py-C_o), 135.7 (py-C_p), 134.8 (C_6H_5-C_{ipso}), 132.1 (C_6H_5-C_p), 130.2 (C_6H_5-C_m or C_o), 123.6 (py-C_m), 87.8 (OCMe_3), 87.6 (OCMe_3), 58.0 (CHCH_2CMe_3), 37.9 (CHCH_2CMe_3), 30.4 (CHCH_2CMe_3), 29.7 (OCMe_3). Anal. Calcd for WC_{33}H_{45}O_6N: C, 53.88; H, 6.17. Found: C, 53.67; H, 6.11.

 $W(CHR'')(OCMe_3)_3(O_2CR')$. All of these compounds were prepared in the same way. One equivalent of carboxylic acid was added to a solution of $W(CR'')(OCMe_3)_3$ in ether (10 mL ether per 100 mg W). The solution was then stripped in vacuo to give a dark yellow oil. ¹H NMR showed these products to be 90–95% pure $W(CHR'')(OCMe_3)_3(O_2CR')$.

pure w (CHR) (OCMe₃)₃(O₂CR). R'' = CH₃; R' = C₆H₅: ¹H NMR δ 10.07 (q, 1, J = 7.9 Hz, CHCH₃), 8.39 (H_o), 7.13 (H_m and H_p), 5.03 (d, 3, ³J_{HH} = 7.9 Hz, CHCH₃), 1.42 (s, 9, OCMe₃), 1.28 (br s, 18, eq OCMe₃); ¹³C NMR δ 263.4 (CHCH₃), 179.6 (O₂CC₆H₅), 135.3 (C_{ipso}), 132.2 (C_p), 129.7 (C_m or C_o), 128.6 (C_m or C_o), 84.8 (eq OCMe₃), 77.0 (ax OCMe₃), 31.8 (OCMe₃), 30.2 (br q, OCMe₃), 28.6 (CHCH₃).

 $R'' = CH_2CH_3$; $R' = C_6H_5$: ¹H NMR δ 9.99 (t, 1, J = 7.9 Hz, CHCH₂CH₃), 8.38 (H_o), 7.18 (H_p and H_m), 5.25 (quin, 2, J = 7.6Hz, CHCH₂CH₃), 1.47 (s, 9, ax OCMe₃), 1.30 (s, 18, eq OCMe₃), 1.10 (t, 3, J = 7.4 Hz, CHCH₂CH₃); ¹³C NMR δ 271.0 (CHCH₂-CH₃), 179.6 (O₂CC₆H₅), 135.0 (C_{ipse}), 132.2 (C_p), 129.7 (C_m or C_o), 128.4 (C_m or C_o), 84.7 (br s, eq OCMe₃), 76.4 (s, ax OCMe₃), 36.8 (CHCH₂CH₃), 31.7 (q, ax OCMe₃), 30.1 (br q, eq OCMe₃), 21.6 (CHCH₂CH₃).

R^{''} = CH₃; R' = CH₃: ¹H NMR δ 9.95 (q, 1, J = 7.9 Hz, CHCH₃), 4.98 (d, J = 7.9 Hz, CHCH₃), 1.88 (O₂CCH₃), 1.38 (s, 9, ax OCMe₃), 1.31 (s, 18, eq OCMe₃); ¹³C NMR δ 263.6 (CHCH₃), 184.6 (O₂CCH₃), 84.5 (eq OCMe₃), 76.8 (ax OCMe₃), 31.8 (ax OCMe₃), 30.1 (br q, eq OCMe₃), 28.4 (CHCH₃), 24.1 (O₂CCH₃).

R'' = CH₂CH₃; R' = CH₃: ¹H NMR δ 9.85 (t, 1, J = 8.0 Hz, CHCH₂CH₃), 5.12 (quin, 2, J = 7.6, CHCH₂CH₃), 1.87 (O₂CCH₃), 1.39 (s, 9, ax OCMe₃), 1.31 (s, 18, eq OCMe₃), 1.02 (t, 3, J = 7.4 Hz, CHCH₂CH₃); ¹³C NMR 272.7 (CHCH₂CH₃), 184.7 (O₂CCH₃), 84.6 (eq OCMe₃), 76.3 (ax OCMe₃), 36.7 (CHCH₂CH₃), 31.7 (ax OCMe₃), 30.1 (br q, eq OCMe₃), 24.1 (O₂CCH₃), 21.6 (CHCH₂CH₃).

W(olefin)(OCMe₃)₂(O₂CR')₂. Olefin = CH₂==CH₂; R' = C₆H₅. A slight excess of benzoic acid (1.07 g, 8.76 mmol) was added to a solution of W(CCH₃)(OCMe₃)₃ (1.80 g, 4.18 mmol) in ether (25 mL). The solution was stirred for 3 h, and then the solvent was removed in vacuo. The residue was recrystallized from ether/ pentane (~1:1) at -40 °C. Large orange cubes were obtained (1.81 g, 72%): ¹H NMR δ 8.51 (H₀), 7.17 (H_m and H_p), 3.22 (s, J_{HW} = 6.1 Hz, C₂H₄), 1.03 (s, 18, OCMe₃); ¹³C NMR δ 184.1 (O₂CC₆H₅), 134.7 (C_{ipso}), 133.0 (C_p), 130.2 (C_m or C₀), 128.6 (C_m or C₀), 83.9 (OCMe₃), 49.6 (t, J_{CH} = 158 Hz, J_{CW} = 27 Hz, C₂H₄), 20.9 (OCMe₃).

Olefin = CH₃CH=CH₂; R' = C₆H₅. Two equivalents of benzoic acid (83 mg, 0.68 mmol) were added to a solution of W-(CCH₂CH₃)(OCMe₃)₃ (0.15 g, 0.34 mmol) in ether (10 mL). The solvent and *tert*-butyl alcohol (1 equiv) were removed in vacuo to give an orange oil. The oil was redissolved in ether (10 mL), and the solution was left stirring overnight. The solvent was removed in vacuo leaving a red oil. By ¹H NMR this oil was essentially pure product: ¹H NMR δ 8.55 (H_o), 8.43 (H_o), 7.16 (H_m and H_p), 3.94 (CH₃CH=CH₂), 3.72 (dd, J = 6.8 Hz, J = 11.7 Hz, CH₃CH=CH_AH_B), 3.16 (d, J = 6.3 Hz, CH₃CH=CH₂), 2.87 (dd, J = 6.8 Hz, J = 12.6 Hz, CH₃CH=CH_AH_B), 1.07 (OCMe₃), 1.01 (OCMe₃); ¹³C NMR δ 183.36 (C₂CC₆H₅), 176.3 (O₂CC₆H₅), 135.3 (C_{ipso}), 133.7 (C_{ipso}), 133.0 (C_p), 131.9 (C_p), 130.2 (C_m or C_o), 129.9 (C_o or C_m), 128.6 (C_o or C_m), 128.4 (C_o or C_m), 87.3 (OCMe₃), 87.2 (OCMe₃), 71.0 (d, J _{CW} = 29 Hz, J_{CH} = 152 Hz, CH₃CH= CH₂), 58.3 (t, J_{CW} = 27 Hz, J_{CH} = 158 Hz, CH₃CH=CH₂), 29.4 (OCMe₃), 28.9 (OCMe₃), 24.8 (CH₃CH=CH₂).

Olefin = Me₂C=CH₂; R' = C₆H₅. Slightly more than 2 equiv of benzoic acid (0.50 g, 4.1 mmol) were added to a solution of W(CCHMe₂)(OCMe₃)₃ (0.90 g, 2.0 mmol) in ether (20 mL). Ether and *tert*-butyl alcohol were removed in vacuo to give an orange oil. The oil was redissolved in ether (20 mL). After 24 h the ether was removed in vacuo leaving an orange-red oil. This oil was dissolved in ~15 mL of pentane. Small orange crystals slowly formed in the solution at room temperature (two crops, 0.99 g, 80%): ¹H NMR δ 8.65 (H_o), 8.40 (H_o), 7.3-7.1 (H_p and H_m), 3.36 (s, 2, J_{HW} = 6.8 Hz, Me₂C=CH₂), 3.04 (Me₂C=CH₂), 1.09 (OCMe₃); ¹³C NMR δ 186.6 (O₂CC₆H₅), 172.3 (O₂CC₆H₅), 136.5 (C_{ipso}), 133.6 (Cp), 133.1 (C_{ipso}), 131.1 (C_p), 130.4 (C_o or C_m), 129.8 (C_o or C_m), 128.2 (C_o or C_m), 87.5 (OCMe₃), 85.1 (Me₂C=CH₂), 61.7 (t, J_{CW} = 27 Hz, J_{CH} = 156 Hz, Me₂C=CH₂), 34.7 (Me₂C=CH₂), 29.4 (OCMe₃). Anal. Calcd for WC₂₆H₃₆O₆: C, 49.69; H, 5.77. Found: C, 49.81; H, 5.80.

Olefin = CH₂=CH₂; R' = CH₃. Two equivalents of acetic acid (53 μ L, 0.93 mmol) were added to a solution of W(CCH₃)(OCMe₃)₃ (0.20 g, 0.46 mmol) in ether (10 mL). Ether and *tert*-butyl alcohol were removed in vacuo to give an orange oil. The oil was redissolved in ether (10 mL), and the solution was stirred overnight. The solvent was then removed in vacuo leaving a red oil of essentially pure product: ¹H NMR δ 2.93 (s, 4, CH₂=CH₂), 2.03 (s, 6, O₂CCH₃), 1.04 (s, 18, OCMe₃): ¹³C NMR δ 184.9 (O₂CCH₃), 23.8 (O₂CCH₃).

Olefin = $CH_3CH=CH_2$; R' = CH_3 . This compound was produced in the same manner as $W(CH_2=CH_2)(OCMe_3)_2(O_2CCH_3)_2$ above. It was isolated as a red oil which was essentially pure by

¹H NMR: ¹H NMR δ 3.70 (m, CH₃CH=CH₂), 3.46 (dd, J = 6.9 Hz, J = 11.7 Hz, CH₃CH=CH_AH_B), 3.05 (d, J = 6.2 Hz, CH₃CH=CH₂), 2.58 (dd, J = 6.9 Hz, J = 12.6 Hz, CH₃CH=CH₄H_B), 2.15 (O₂CCH₃), 1.96 (O₂CCH₃), 1.10 (OCMe₃), 1.04 (OCMe₃); ¹³C NMR δ 189.6 (O₂CCH₃), 179.6 (O₂CCH₃), 86.7 (OCMe₃), 86.6 OCMe₃), 70.6 (d, J_{CH} = 153 Hz, J_{CW} = 28 Hz, CH₃CH=CH₂), 57.0 (t, J_{CH} = 156 Hz, J_{CW} = 26 Hz, CH₃CH=CH₂), 29.2 (OCMe₃), 28.7 (OCMe₃), 24.7 (CH₃CH=CH₂), 24.0 (O₂CCH₃), 23.8 (O₂CCH₃).

W(**OČMe**₃)₂(**O**₂**CC**₆**H**₅)₂(**PMe**₃)₂. An excess of trimethylphosphine (210 μL, 2.06 mmol) was added to a solution of W-(C₂H₄)(OCMe₃)₂(O₂CC₆H₅)₂ (0.25 g, 0.42 mmol) in ether (25 mL). After 24 h the solvent was removed in vacuo. The resdue was recrystallized from toluene at -40 °C to give large blue-green prisms (0.12 g, 40%): ¹H NMR δ 8.83 (H_o), 7.34 (H_m), 7.22 (H_p), 1.47 (d, 18, *J* = 8.4 Hz, PMe₃), 1.20 (OCMe₃); ¹³C NMR δ 173.3 (O₂CC₆H₅), 138.0 (C_{ipso}), 130.8 (C_m or C_o), 130.4 (C_p), 128.0 (C_m or C_o), 85.2 (OCMe₃), 30.3 (OCMe₃), 24.8 (PMe₃); ³¹P NMR δ -31.6 (*J*_{PW} = 439 Hz). Anal. Calcd for WC₂₈H₄₆O₆P₂: C, 46.42; H, 6.40. Found: C, 46.72; H, 6.26.

W(OCMe₃)₂(O₂CCH₃)₂(PMe₃)₂. A solution of W-(CCH₂CH₃)(OMe₃)₃ (0.75 g, 1.7 mmol) in ether (10 mL) was treated with ~2.2 equiv of acetic acid (210 μL, 3.7 mmol). After 30 min the solvent and *tert*-butyl alcohol (1 equiv) were removed in vacuo giving W(CH₂==CHCH₃)(OCMe₃)₂(O₂CCH₃)₂ as an oil. The oil was dissolved in pentane (20 mL) and an excess of trimethylphosphine (800 μL, 7.9 mmol) added. After 1 h the solution was dark blue. The solvent and excess PMe₃ were removed in vacuo, and the residue was recrystallized from pentane at -40 °C to give large blue crystals (0.49 g, 49%): ¹H NMR δ 2.39 (O₂CCH₃), 1.39 (PMe₃), 1.27 (OCMe₃); ¹³C NMR δ 178.1 (O₂CCH₃), 84.7 (OCMe₃), 30.1 (OCMe₃), 24.7 (PMe₃), 24.7 (O₂CCH₃). Anal. Calcd for WC₁₈H₄₂O₆P₂: C, 36.01; H, 7.05. Found: C, 35.98; H, 6.92.

Rearrangement of W(CHMe)(OCMe₃)₂(O₂CPh)₂. Mixtures of $W(CHMe)(OCMe_3)_2(O_2CPh)_2$ and $W(CHMe)(OCMe_3)_3(O_2CPh)$ were prepared for kinetic study by adding the desired amount of benzoic acid (\sim 1.6–1.9 equiv) to a solution of W(CMe)(OCMe₃)₃ (0.200 g, 0.465 mmol) in ether (10 mL). The solvent and tert-butyl alcohol were removed in vacuo. The resulting yellow oil was diluted to 2.00 mL in a volumetric flask with C_6D_6 ([W]_{Tot} = 0.233 M). The solution was then divided between several NMR tubes and frozen at -78 °C until needed. The reaction was monitored by ¹H NMR at 296 K for approximately 2 half-lives. The data were obtained by integrating the $W(CHCH_3)(OCMe_3)_2(O_2CPh)_2$ doublet vs. the combined phenyl meta and para resonances of both starting alkylidenes and the product [W(CH₂CH₂)-The concentration of W(CHMe)- $(OCMe_3)_2(O_2CPh)_2].$ $(OCMe_3)_3(O_2CPh)$ could be derived similarly by integrating the

 $W(CHMe)(OCMe_3)_3(O_2CPh)$ doublet vs. the combined meta and para resonances. The concentration of $W(CHMe)(OCMe_3)_3$ - (O_2CPh) did not vary significantly over the reaction time. Plots of $[W(CHMe)(OCMe_3)_2(O_2CPh)_2]^{-1}$ vs. time were linear (see Figure 2). Correlation coefficients to the linear least-squares best-fit line were >0.999. The rate constants obtained are listed in Table II.

Acknowledgment. We thank the National Science Foundation for support through Grant CHE 84-02892.

Registry No. W(CHCMe₃)(OCMe₃)₂Cl₂, 91230-62-5; W-(CHCMe₃)(OCMe₃)₂Br₂, 98268-59-8; W(CHCMe₃)(OCMe₃)₂-(OPh)₂, 98268-60-1; W(CHCMe₃)(OCMe₃)₂(OC₆H₄-p-Cl), 98268-61-2; $W(CHCMe_3)(OCMe_3)_2(OC_6F_5)_2$, 98268-62-3; W- $(CHCMe_3)(OCMe_3)_2Cl_2(Py), 98268-43-0; W(CHCMe_3)-(OCMe_3)_2Br_2(py), 98268-44-1; W(CHCMe_3)(OCMe_3)_2I_2(py),$ 98268-45-2; W(CHCNe₃)(OCMe₃)₂(O₂CCF₃)₂(py), 98303-55-0; $W(CHCH_2CH_3)(OCMe_3)_2Cl_2(py), 98268-46-3; W(CHC_6H_5)-$ (OCMe₃)₂Cl₂(py), 98268-47-4; W(CHCMe₃)(OCMe₃)₂(O₂CPh)₂, 98268-63-4; W(CHCMe₃)(OCMe₃)₂(O₂CMe)₂, 98268-64-5; W-(O₂CPh)₂, 98268-67-8; W(CHCH₃)(OCMe₃)₂(O₂CMe)₂, 98268-68-9; $W(CHCH_2CMe_3)(OCMe_3)_2(O_2CMe)_2$, 98268-69-0; $W(CHCH_3)$ -(OCMe₃)₂(O₂CPh)₂(py), 98268-48-5; W(CHCH₂CH₃)(OCMe₃)₂-(O₂CPh)₂(py), 98268-49-6; W(CHCHMe₂)(OCMe₃)₂(O₂CPh)₂(py), 98268-50-9; W(CHCH₂CMe₃)(OCMe₃)₂(O₂CPh)₂(py), 98268-51-0; $W(CHCH_3)(OCMe_3)_3(O_2CPh), 98268-70-3; W(CHCH_2CH_3)-$ (OCMe₃)₃(O₂CPh), 98268-71-4; W(CHCH₃)(OCMe₃)₃(O₂CMe), 98268-72-5; Ŵ(CHCH₂CH₃)(OCMe₃)₃(O₂CMe), 98268-73-6; W-(CHC₃)(O₂CMe)₂(O₂CPh), 98268-74-7; W₂(OCMe₃)₆, 57125-20-9; W(N)(OCMe₃)₃, 82209-24-3; W(CCHMe₂)(OCMe₃)₃, 98268-75-8; $W(CCH_2CMe_3)(OCMe_3)_3$, 98268-76-9; $W(CCMe_3)(OCMe_3)_3$, 78234-36-3; W(CC₆H₅)(OCMe₃)₃, 82228-87-3; W(CMe)(OCMe₃)₃, $\begin{array}{l} 82209-23-2; \ W(CEt)(OCMe_3)_3, \ 82228-88-4; \ W(CHCH_2CH_3)-(OCMe_3)_2(O_2CCH_3)_2, \ 98268-77-0; \ W(CH_2=CH_2)(OCMe_3)_2-(O_2CC_6H_5)_2, \ 98268-52-1; \ W(CH_3CH=CH_2)(OCMe_3)_2(O_2CC_6H_5)_2, \ 98268-52-1; \ W(CH_3CH=CH_2)(OCMe_3)_2(O_3CC_6H_5)_2, \ W(CH_3CH=CH_2)(OCMe_3)_2(O_3CC_6H_5)_2, \ W(CH_3CH=CH_2)(OCMe_3)_2(O_3CC_6H_5)_2, \ W(CH_3CH=CH_2)(OCMe_3)_2(O_3CC_6H_5)_2, \ W(CH_3CH=CH_2)(OCME_3)_2(O_3CC_6H_5)_2, \ W(CH_3CH=CH_2)(OCME_3)_2, \ W(CH_3CH=CH_2)(OCME_$ 98268-53-2; W(Me₂C=CH₂)(OCMe₃)₂(O₂CC₆H₅)₂, 98268-54-3; $W(CH_2 = CH_2)(OCMe_3)_2(O_2CCH_3)_2, 98268-55-4; W(CH_3CH = 0.000)$ CH_2)(OCMe₃)₂(O₂CCH₃)₂, 98268-56-5; W(OCMe₃)₂(O₂CC₆H₅)₂- $(PMe_3)_2$, 98268-57-6; $W(OCMe_3)_2(O_2CCH_3)_2(PMe_3)_2$, 98268-58-7; $W(CHCD_3)(OCMe_3)_2(O_2CMe)_2$, 98268-78-1; $W(CHCD_3)$ -(OCMe₃)₃(O₂CMe), 98268-79-2; W(CHCD₃)(OCMe₃)₂(O₂CPh)₂, 98268-80-5; W(CHCD₃)(OCMe₃)₃(O₂CPh), 98268-81-6; W- $(CHCD_3)(OCMe_3)_2(O_2CPh)(O_2CMe), 98268-82-7; Me_2CHCN,$ 78-82-0; Me₃CCH₂CN, 3302-16-7; HOC₆H₅, 108-95-2; p-HOC₆H₄Cl, 106-48-9; HOC₆F₅, 771-61-9; pyHCl, 628-13-7; pyHBr, 18820-82-1; pyHI, 18820-83-2; pyHO₂CCF₃, 464-05-1; HO₂CCH₃, 64-19-7.