

at silicon.¹³ Although a silyl shift from oxygen to carbon would be endothermic, it can occur if there is some suitable driving force, such as the concomitant formation of a carbon-oxygen π -bond at the expense of a weaker carbon-carbon π -bond.¹³ In Scheme I, the necessary driving force would be provided by the initial addition, forming a "hot" intermediate that is chemically activated for the 1,3-shift.

(v) **A** similar stepwise mechanism would then account for the reaction of **2** with methoxytrimethylsilane and with trimethylchlorosilane, involving 1,3-silyl shifts from oxygen to oxygen and from chlorine to oxygen, respectively. **As** the "hot" intermediate formed initially would be "hotter" than in Scheme I because of the enhanced reactivity of **2** toward nucleophiles, θ a wider range of silyl shifts would be expected than are observed in unactivated molecules.¹³ While it is conceptually convenient to envisage these reactions as occurring in two distinct stages, there is probably no intermediate minimum along the reaction coordinate (cf. the dimerization of silanone⁹).

A further indicator of mechanistic dichotomy is provided by the measured *A* factor differences; reactions **2** and **3** have about the same *A* factor, while the *A* factor for reaction 1, which presumably does occur via a tight fourcenter transition state, is almost two powers of 10 lower. These reactions are illustrated in Scheme 11.

(vi) Of the reactions in Schemes I and 11, reaction 3 requires the highest activation energy, probably because C1 is a poorer nucleophile than 0 and does not form a positive, two-coordinate intermediate as readily. These factors could account for the failure of **3** to react with trimethylchlorosilane.

(vii) According to the foregoing ideas, neither **2** nor **3** would be expected to react readily with Et_2O , CH_2Cl_2 , or Me,SiH because these molecules are too bulky for the four-center reaction and do not have labile groups which would undergo 1,3-shifts in the stepwise mechanism.

(viii) We can only speculate as to the structure of the 1:l adducts of **2** with acetone and acetaldehyde because our evidence is based solely on mass spectra. The adducts were observed to decompose at **440** "C, accounting for earlier failures to observe them with sources of **2** that required higher temperatures. If they are cyclic adducts, they could have been formed by addition followed by ring closure, as in Scheme 111.

In our earlier comments⁴ on the mechanism of formation of D_3 from 2 we showed that D_3 formation could not result from self-reaction of 2, forming successively "D₂" and then D,, if the rate constant for dimerization of **2** was similar to that1' for dimerization of **3.** As noted in (i) above, it now seems that **3** is sufficiently less polar than **2** to undergo cycloadditions more readily than **2;** if so, self-reaction of 2 to form \mathbf{D}_2 " then D_3 may occur by head-to-tail addition

Scheme I11

with a rate constant sufficiently higher than that for the cyclodimerization of **3** for self-reaction of **2** to be a feasible route to D_3 [see comment on *A* factors in (v) above]. Nevertheless, we continue to think it more likely that D_3 is mainly formed in a cycle of reactions involving a molecular species with which **2** reacts rapidly, either homogeneously or heterogeneously, such as water.4

Acknowledgment. We thank the SERC and Dow Corning (Europe) Ltd. for support. We also thank Elsa Brackenbury and Richard Pocock for some of the kinetic measurements, undertaken during their undergraduate project work.

Registry No. 1, 65181-02-4; **2,** 47956-45-6; **3,** 61153-00-2.

Reactions at the *ß***-Carbon of Anionic Tungsten Acetyllde Complexes: Ion Palrlng, Vinylidene Formation, and CO, Binding**

K. R. Birdwhistell and J. L. Templeton"

W. R. Kenan, Jr. Laboratories Department of Chemistry, The University of North Carolina Chapel Hill, North Carolina 27514

Received July 16, 1985

Summary: Addition of CO₂ to the β -carbon of Li β fac- $(OC)_3$ (dppe)WC= CR (R = Me, n-Bu) followed by methylation yields vinylidene products, $mer-(OC)_{3}(dppe)W=$ C= C (R)CO₂Me. Ion-pair formation at the β -carbon may act as a kinetic mediator in this system. We also report syntheses of mer- $(OC)₃(dppe)W=CC=CRR' complexes,$ including the parent $C=CH₂$ derivative.

Coordination of acetylide anions to tungsten(0) effectively transfers the nucleophilicity of the C_2 fragment from C_{α} to C_{β} . Anionic complexes 1–4 (Scheme I) were prepared as alkali-metal salts by addition of the appropriate acetylide reagent to a THF solution of $(a$ cetone).¹ Table I contains v_{CO} and $v_{\text{C}=\text{C}}$ infrared data for the lithium, sodium, and PPN salts of $[fac-(OC)_3(dppe)WC=CR]$ ⁻ $(R =$ H, 1; Me, **2).** Changing the cation from PPN' to Na' to Li+ results in an increase in the carbonyl CO frequencies. The simultaneous decrease observed for $v_{\text{C=C}}$ in 2 is evidence of site selective ion pairing between the β -carbon and the alkali cations (Scheme I). This site selectivity is

⁽¹³⁾ Brook, **A.** *G.;* Bassindale, **A.** R. *Org. Chem. (N.Y.)* **1980,** *42,* 149.

⁽¹⁾ Yellow M[fac-(OC)₃(dppe)WC \equiv CR] salts (M = Li, Na; dppe = $Ph_2PCH_2CH_2Ph_2$) were isolated in good yields (60–95%). PPN salts (PPN = bis(triphenylphosphine)nitrogen(1+)) were prepared by ion ex-
change in CH₂Cl₂. IR data for 1-4 are presented in Table I. See ref 18
for preparation of (OC)₃(dppe)W(acetone). [PPN][fac-(OC)₃(dppe)-
WC=CH],

Scheme I1

All frequencies are reported **as** cm-'. Spectra were recorded in THF solution unless otherwise specified. δ Recorded in CH₂Cl₂ solution. Prepared by addition of **1** equiv of hexamethylphosphoramide (HMPA) to the lithium salt of 1 in $CH₂Cl₂$.

in accord with the known reactivity of transition-metal acetylide complexes;2 molecular orbital calculations on $(\pi$ -C₅H₅)Fe(CO)₂(C=CR) indicate that the HOMO is localized on the acetylide β -carbon.³ Similar infrared changes have been reported for other tight ion pairs involving anionic metal carbonyl complexes with ligands other than CO acting as nucleophiles⁴ (e.g., in Na[Fe(C- O_{ℓ} CN] ion pairing lowers ν_{ℓ} while the CO frequencies increase⁵).

Lithium salts of 2 and 3 react with $CO₂$ between -78 and 0 "C to produce a meridional intermediate (I), assumed to be the carboxylate derivative formed by addition of $CO₂$ to C_{β} . Methylation with $[Me_3O][BF_4]$ and chromatographic workup yield carbomethoxyvinylidene complexee $mer-(OC)_3(dppe)W=C=CR(CO_2Me)$ (R = Me, 5; R = n-Bu, **6,** Scheme II).6 The vinylidene ligand in **6** was

(5) Darensbourg, M. **Y.;** Barros, H. L. C. *Inorg. Chem.* 1979,18,3286.

Scheme I11

identified by ¹³C NMR: δ 333.7 (dd, ²J_{CP} = 17, 7 Hz, C_a), 119.8 (d, $({}^{3}J_{CP} = 10 \text{ Hz}, \text{C}_\beta)$.⁷ The ¹³C NMR parameters are close to those of mer- $(OC)_3$ (dppe)W=C=CH- $(CO₂Me)⁸$ The lithium salt of the phenyl acetylide derivative 4 does not react with $CO₂$ over a 24-h period. Attempts to make dithiocarbomethoxy analogues of *5* and 6 by addition of $CS₂$ to the acetylide reagents resulted in intractable mixtures.⁹

The PPN salt of 2 does not react with CO₂ over a period of 24 h. Sodium salts of 1 and **2** react rapidly to generate analogues of intermediate I, but addition of alkylating reagents leads to decomposition rather than formation of carbomethoxyvinylidene products. Large counterion effects have been observed previously in reactions of transition-metal complexes with carbon dioxide.¹⁰ It has been suggested that alkali cations interact with $CO₂$ oxygens in the transition state for $CO₂$ insertion into the metal-alkyl bond of $[W(CO)_5Me]$ ⁻ and also form a tight ion pair with the carboxylate product.¹¹ The low-frequency $\nu_{\rm CO}$ of the carboxylate group in intermediate I (1669 cm^{-1}) suggests a similar interaction here.

Fluoroboric acid reacts immediately with a THF slurry of the fac-acetylide complex **4** while methyl iodide reacts more slowly with **2** or **4** to form mer-vinylidene complexes (Scheme 111). We believe the unsubstituted vinylidene **7,** synthesized from HBF4 and the sodium salt of 1 in CH2C12, is the first group **6** parent vinylidene to be iso- lated^{12} (R = R' = H, 7; R = R' = Me, 8; R = H, R' = Ph,

(9) See: Selegue, J. P. *J. Am. Chem.* **SOC.** 1982,104, 119 for formation of **dithiocarbomethoxyvinylidene** products from iron reagents and CS,.

(11) Darensbourg, D. **J.;** Rokicki, A. *J. Am. Chem. SOC.* 1982,104, **349.**

^{(2) (}a) Bruce, M. I.; Wallis, R. C. *J. Organomet. Chem.* 1978,161, C1. (b) Davison, A.; Selegue, J. P. J. *Am.* Chem. SOC. 1978, *100,* 7763. (c) Wong, A.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 4948. (d) Wolf, **J.;** Werner, H.; Serhadli, 0.; Ziegler, M. L. *Angew. Chem., Jnt. Ed. Engl.* 1983, *22, 414. (e) Berke, H. Z. Naturforsch., B. Anorg. Chem., Org.
<i>Chem.* 1980, 35B, 86. (f) Mayr, A.; Schaefer, K. C.; Huang, E. Y. J. A*m. Chem.* SOC. 1984,106, 1517.

⁽³⁾ Kostic, **N.** M.; Fenske, R. F. *Organometallics* 1982, I, 974.

^{(4) (}a) Collman, **J.** P.; Cawse, J. N.; Brauman, J. I. J. *Am. Chem.* SOC. 1972,94,5905. (b) Pannell, K. H.; Chen, Y. S.; Belknap, K. L. *J. Chem.* Soc., Chem. Commun. 1977, 362. (c) Darensbourg, M. Y.; Burns, D. *Inorg.*
Chem. 1974, 13, 2970. (d) Kao, S. C.; Darensbourg, M. Y.; Schenk, W.
Organometallics 1984, 3, 871. (e) Darensbourg, M. Y.; Darensbourg, D.
J.; Bur J. P.; Finke, R. G.; Cawse, J. N.; Brauman, J. I. *J. Am. Chem. Soc.* 1977, **99,** 2515.

⁽⁶⁾ Preparation of Complex **5** To **fac-(OC),(dppe)W(acetone)** (0.79 g, 1.09 mmol) in **40** mL of **THF** was added Li(CCMe) (0.10 g, 2.11 mmol) yielding a yellow solution in 5 min. When the reaction was judged complete by IR, the mixture was cooled **to** -78 "C and dry CO, was bubbled into the solution for 4 min. The sealed reaction flask was slowly warmed to 0° C (the CO₂ pressure was periodically released). IR showed a meridional CO pattern $(2010 \text{ m}, 1920 \text{ s}, 1899 \text{ vs } \text{cm}^{-1})$ at 0 °C . To this mixture at 0 °C was added [Me₃O][BF₄] (0.30 g, 2.02 mmol). The reaction was stirred at 0 °C for 5 min and stirred at room temperature for another 15 min. The solvent was removed and the residue was purified by chromatography on Florisil eluting an orange band with a **1:l** ether/THF mixture. An orange powder was obtained in 63% yield. Orange crystals are obtained from $\text{CH}_2\text{Cl}_2/\text{hexanes: IR (CH}_2\text{Cl}_2, \text{cm}^{-1}) \nu_{\text{CO}}$ 2010 m, 1945 m, 1908 **s,** *ucoo* 1663 m; 'H NMR (CDC13) 6 7.78-7.25 (m, Ph), 3.37 **(s,** OMe), 2.65 (m, PCH2CH2P), 1.92 *(8,* Me).

Complex 6 was prepared analogously to 5: IR (CH_2Cl_2, cm^{-1}) ν_{CO} 2010 3.32 **(s, OMe), 2.66** (m, PCH₂CH₂P), 2.28 **(t,** ${}^{3}J_{\text{HH}} = 7$ **Hz, C=C(R)-
(CH₂Pr), 1.63-1.18 (m, C=C(R)CH₂CH₂CH₂Me), 0.88 (t,** ${}^{3}J_{\text{HH}} = 8$ **Hz,** C=C(R)(CH₂)₃CH₃); ¹³C ¹H-decoupled NMR (CDCl₃) δ 333.7 (dd, ²J_{CP} = 17, 7 Hz, M=C=CRR'), 209.5 (br d, ²J_{CP} = 14 Hz, CO trans to P), 202.2 (br s, 2 trans CO's), 169.5 (s, -C(O)OMe), 136.5-128.4 (m, Ph m, 1945 m, 1908 **s;** *ucoo* 1655 m; f H NMR (CDC1,) 6 7.86-6.92 (m, Ph),

⁽⁷⁾ Bruce, M. I.; Swincer, **A.** G. *Adu. Organomet. Chem.* 1983,22, 59. (8) Birdwhistell, K. R.; Burgmayer, S. J. N.; Templeton, J. L. *J. Am. Chem. SOC.* 1983, *105,* 7789.

^{(10) (}a) Fachinetti, G.; Floriani, C.; Zanazzi, P. F. J. *Am. Chem. SOC.* 1978,100,7405. (b) Darensbourg, **D.** J.; Kudaroski, R. A. *Adu. Organomet. Chem.* 1983,22, 129.

9; R = Me, R' = Ph, 10^{13}

Proton NMR spectra of **7** and **8** display only one signal for the two vinylidene substituents at -95 °C (a doublet of doublets for 7 at 3.48 ppm with ${}^4J_{HP} = 4.5$ and 3.0 Hz; a singlet for the methyl protons of **8** at 2.04 ppm). The structure of mer-(OC)₃(dppe)W=C=C(H)CO₂Me,⁸ with the vinylidene ligand nearly in the WP_2 plane, has the two vinylidene substituents in different environments. The 'H NMR data and the expected ground-state vinylidene orientation indicate that vinylidene rotation is rapid on the NMR time scale, in accord with a calculated barrier of only 5.9 kcal/mol for the model compound *mer-* $(OC)_3(H_2PCH_2CH_2PH_2)W=C=CH_2.14$ The orientational preference of the vinylidene ligand is small in **7** and **8** because the dominant π -acceptor orbital of the α -carbon finds a filled $d\pi$ orbital of similar energy and extension in all orientations. Vinylidene¹⁵ and allenylidene¹⁶ ligands rotate rapidly in other systems.

To probe whether the facial to meridional rearrangement accompanying conversion of the acetylide reagent **4** to the vinylidene product **9** involved CO loss, a solution of **4** in THF was protonated under 1 atm of ¹³CO. The absence of 13C0 in the vinylidene product **9** suggests that the isomerization is intramolecular. Facile intramolecular rearrangements of six-coordinate carbonyl derivatives are well documented;17 the facial to meridional isomerization of $M(CO)_{3}(dppe)(\eta^{2}-olefin)(M=Mo, W)$ complexes is particularly relevant.¹⁸

Acknowledgment. We thank the National Science

 slurry of Na $fac-(OC)_{3} \text{dppeW}$ (CCH)] $(0.33 \text{ g}, 0.46 \text{ mmol})$ at $0 °C$ resulted in an immediate red color. The mixture **wa~** kept at 0 OC and dried over MgS04. The mixture was filtered, and the filtrate **was** reduced to **5** mL. Addition **of** hexanes precipitated **7** as a green powder in **53%** yield IR (CHzClz, cm-') *uco* **2000** m, **1925 s, 1883** vs, *ucs* **1593** m; 'H NMR (C-D,Cl,) **6 7.91-6.84** (m, Ph), **3.48** (dd, **4J~p** = **4.5, 3** Hz), **2.72** (m, PCH,CH,P); I3C NMR (CD2C12) **6 332.7** (m, W=C=CH,), **212.9** (m, CO trans to P), **203.9** (m, **2** trans CO's), **136.1-126.3** (m, Ph), **97.2** (td, **JCH* = **157** Hz, 3Jcp ⁼**14** Hz, W=C=CH2), **30.5** (m, PCH2CH,P), **28.0** (m, w. 9: IR (KBr, cm⁻¹⁾ $v_{\rm CO}$ 2000 m, 1895 s, 1875 vs, $v_{\rm cm}$ 0 1612 m, 1578 m.
10 has been previously reported, see: Birdwhistell, K. R.; Tonker, T. L.;

Templeton, J. L. *J. Am. Chem.* **SOC. 1985,107,4474. (14)** The extended Huckel program QCPE **358** from the Quantum Chemistry Program exchange of Indiana University was used. The parameters used can be found in (a) Hoffmann, R. *J. Chem. Phys.* **1963,39, 1397.** (b) Stockis, **A.;** Hoffmann, R. *J. Am. Chem. SOC.* **1980,102,2952. (c)** Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. L. *J. Am. Chem.* **SOC. 1979,101, 585.** (d) Kubacek, **P.;** Hoffmann, R. *J. Am. Chem.* **SOC. 1981, 103, 4320.** The bond distances and angles were taken from the structure in ref **8.**

(15) (a) Bellerby, J. M.; Mays, M. J. J. Organomet. Chem. 1976, 117, C21. (b) Boland, B. E.; Fam. S. A.; Hughes, R. P. J. Organomet. Chem. 1979, 172, C29. (c) Bruce, M. I.; Wallis, R. C. Aust. J. Chem. 1979, 32, 1471. (d)

gerter, F.; Darpin, C.; Morandini, F.; Lucchini, V. Organometallics 1984,

3, 1446. (f) For a high vinylidene rotational barrier see ref 2c.

(16) (allenylidene = M=C—C—C—R-). (a) Berke, H. Angew. Chem.,
 Int. Ed. Engl.

Foundation (CHE8310121) and donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this work.

Registry No. l.Li, 98586-58-4; l.Na, 98586-59-5; l.PPN, 98586-6 1-9; **1** -Li/ HMPA, 98686-62-0; 2.Li, 98586-63- 1; 2.Na, 98586-64-2; 2-PPN, 98586-66-4; 3.Li, 98586-67-5; 4-Li, 98586-68-6; 88035-90-9; 10,96454-56-7; I (R = Me), 98586-69-7; I (R = n-Bu), 98586-70-0; fac - $(OC)_3$ (dppe) W (acetone), 84411-66-5; mer- $(OC)_3$ - $(H_2PCH_2CH_2PH_2)W=C=CH_2$, 98586-74-4; LiCCH, 1111-64-4; LiCCMe, 4529-04-8; LiCCBu, 17689-03-1; LiCCPh, 4440-01-1; NaCCH, 1066-26-8; NaCCMe, 10486-71-2; CO₂, 124-38-9. **5,** 98586-71-1; **6,** 98611-58-6; **7,** 98586-72-2; 8, 98586-73-3; **9,**

A Reverslble Metal Framework Rearrangement Assisted by Coordinated Iodide. X-ray Structure Analysis of $[(Ph_3P), N][H_2Os_4(CO),2(1)]$

José Puga, *^{1a} Roberto Sánchez-Delgado, ^{1a} Antida Andriollo,^{1a} Julian Ascanio,^{1a} and Darlo Braga^{*1b}

Chemistry Center, Znstituto Venezolano de Investigaciones Cientificas, I VIC apartado 1827, Caracas 10 10-A, Venezuela and Zstituto Chimico G. Ciamician Dell'Universita, 40 126 Bologna, Italy

Received June 10, 1985

Summary: The complex $[(PPh_3)_2N]^+[H_2Os_4(CO)_{12}(I)]^-,$ obtained by deprotonation of the butterfly cluster H₃Os₄- $(CO)_{12}(\mu-I)$ with $[(PPh_3)_2N][NO_2]$, is shown by X-ray analysis to consist of a tetrahedral arrangement of metal atoms with the two hydrides bridging adjacent edges and a terminally bonded iodide ligand. Protonation of the anion regenerates the parent neutral complex in a novel reversible structural transformation assisted by the iodide ligand. Crystal data: monoclinic, space group P2,/a, a $= 90.91$ (2)^o, $V = 10194.7$ Å³, and $Z = 8$. $= 16.841$ (2) Å, $b = 20.699$ (1) Å, $c = 29.249$ (3) Å, β

The catalytic potential of coordinatively saturated metal clusters is conditioned by the formation of a vacant coordination site at some stage in the cycle. In the catalytic hydrogenation of ethylene with $HOs₃(CO)₁₀(OSi=),$ for instance, the formation of the required vacant site **has** been proposed to involve the reversible opening of the Os-0-0s $bridge.²$ Therefore, the presence of ligands with such ability to modify their bonding mode could result in an enhanced reactivity of metal clusters.

Halide ligands on metal clusters can be bound either as doubly bridging, 3e donors, or terminal, 1e donors.³ Thus,

⁽¹²⁾ (a) Rudler proposed (OC)5W=C=CH2 **as** an intermediate. Lev-isalles, J.; Rudler, H.; Jeannin, **y.;** Dahan, F. *J. Organomet. Chem.* **1979, 178,** C8. (b) For other terminal unsubstituted vinylidenes, see ref 2b,c. (c) Werner H.; Wolf, J.; Zolk, R.; Schubert, U. *Angew. Chem., Int. Ed. Engl.* **1983, 22, 981.** (d) For bridging unsubstituted vinylidenes see Wemer. H.: **Wolf.** J.: Muller. G.: Krueer. C. *Aneew. Chem.. Int. Ed. Enel.* **1984**, 23, 431. (e) Kao, S. C.; Lu, P. P. Y.; Pettit, R. *Organometallics* **1982**, 1, 911. (f) Al-Obaidi, Y. N.; Green, M.; White, N. D.; Taylor, G. E. J.
Chem. Soc., Dalton Trans. 1982, 319. (g) Dawkins, G. M.; Green, M.;
Jeffery, J. C.; Sambale, C.; Stone, F. G. A. J. *Chem. Soc., Dalton Trans*. **1983, 499.** (h) Folting, K.; Huffman, J. C.; Lewis, L. N.; Caulton, K. G. *Inorg. Chem.* **1979**, *18*, 3483. *(13)* Complex 7: Addition of 0.1 **mL** of 0.1 **M HBF**₄(aq) to a yellow

^{(1) (}a) Chemistry Center, Instituto Venezolano de Investigaciones Cientificas, IVIC, apartado **1827,** Caracas **1010-A,** Venezuela. (b) Istituto Chimico "G. Ciamician" Dell' Universita, Via Selmi **2, 40126** Bologna, Italy.

⁽²⁾ Besson, B.; Choplin, A.; D'Ornelas, L.; Basset, J. M. *J. Chem. Soc.,* Chem. *Commun.* **1982, 843.**

^{(3) (}a) Johnson, B. F. G.; Lewis, J.; Nicholls, J. N.; Puga, J.; Whitmire, K. J. Chem. Soc., Dalton, Trans. 1983, 787. (b) Cowie, A. G.; Johnson, B. F. G.; Lewis, J.; Nicholls, J. N.; Raithby, P. R. Rosales, M. J. J. Chem *Commun.* **1981,1009.**