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bond of la8 Finally, this reaction demonstrates that all 
steps in a hypothetical catalytic olefin hydration are 
possible. Investigations into the use of Pt(0) phosphine 
complexes as olefin hydration catalysts are in progress. 
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18251-90-6; perfluorocyclopentene, 559-40-0; perdeuterated tet- 
rahydrofuran, 1693-74-9. 

Registry NO. 1,82405-058; 2,91993-689; 3,93503-83-4; CzF4, 

(8) Which is particularly interesting in light of calculations in: 
Bickvall et al. J. Am. Chem. SOC. 1984,106, 4369-4373 which suggest 
hydroxide ligands wi l l  always migrate more slowly to coordinated olefins 
(on four-coordinate Pd complexes) than alkyl ligands. 
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Summary: The hydride affinity of iron pentacarbonyl, 
D [(CO),FeCO-H-] , has been determined from binary hy- 
dride-transfer reactions in the gas phase to be 56.1 f 4.0 
kcal/mol. From this, the heat of formation of the iron- 
formyl anion, AH,[(CO),FeCHO-,g] = -194.4 f 4.3 
kcal/mol, and the associated metal-acyl bond energies, 
D [(CO),Fe--CHO] = 43.9 f 9.1 kcal/mol and D [(CO),- 
Fe-CHO-] = 101.1 f 6.1 kcal/mol, have been derived. 
The direct reaction of hydride ion with Fe(CO), occurs at 
40.0% of the cotlision-limited rate and produces roughly 
equal amounts of HFe(CO),- and HFe(C0)3- as products. 
The relationship of these data to metal-formyl reactivity 
in solution is discussed. 

Transition-metal formyls and hydrides have received 
considerable attention over the last decade as key inter- 
mediates in the metal-catalyzed reduction of CO and C02 
by H2.'t2 Model formyl complexes have been generated 
in solutions of the corresponding metal carbonyl and bo- 
rohydride reagents and have been reported to function as 
hydride reducing agents in the presence of simple ketones, 
aldehydes, and other metal ~arbonyls .~ While the syn- 
thesis and reactivity of metal formyls has been extensively 
in~estigated,~ there are only scant thermochemical data 

(1) (a) Storch, H. H.; Golumbic, N.; Anderson, R. B. 'Fischer-Tropsch 
and Related Synthesis"; Witey: New York, 1951. (b) Olive', G. H.; Olive', 
S. Angew. Chem., Znt. Ed. Engl. 1976,15,136. (c) Thomas, M. G.; Bier, 
B. F.; Muetterties, E. L. J. Am. Chem. SOC. 1976,98,1296. (d) Demitras, 
G. C.; Muetterties, E. L. J. Am. Chem. SOC. 1977,99, 2796. 

(2) (a) Vannice, M. A. J.  Catal. 1976,37,449,462. (b) Emmett, P. H., 
Ed. 'Catalysis"; Reinhold: New York, 1956; Vol. 4. 

(3) (a) Collman, J. P.; Winter, S. R. J. Am. Chem. SOC. 1973,95,4089. 
(b) Casey, C. P.; Neumann, S. M. J. Am. Chem. Soc. 1976,98,5395. (c) 
Winter, S. R.; Cornett, G. W.; Thompson, E. A. J. Organomet. Chem. 
1977,133,339. (d) Gladysz, J. A.; Selover, J. C. Tetrahedron Lett. 1978, 
4,319-322. (e )  Gladysz, J. A.; Williams, G. M.; Wilson, T.; Johnson, D. 
L. J.  Organomet. Chem. 1977,140, C 1 4 6 .  (0 Gladysz, J. A.; Wilson, T. 
J. Am. Chem. SOC. 1978, 100, 2545. 

(4) (a) Casey, C. P.; Neumann, S. M. J. Am. Chem. SOC. 1978, 100, 
2544. (b) Casey, C. P.; Neumann, S. M. Adu. Chem. Ser. 1979, No. 173, 
131-9. (c) Casey, C. P.; Neumann, S. M.; Andrew, M. A,; McAlister, D. 
R. Pure Appl. Chem. 1980,52,625. (d) Gladysz, J. A. Ado. Organomet. 
Chem. 1983,20, 1. 
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available to guide the rational design off more effective 
formyl-based catalysts. Recently, a wealth of new ther- 
modynamic data for transition-metal compounds has 
emerged from studies of organometallic ions in the gas 
phase., In the course of our own studies of the gas-phase 
chemistry of anionic metal acyls related to homogeneous 
catalysis,6 we have recently observed the simple iron- 
formyl ion, (C0)4FeCHO-, as a product of binary hy- 
dride-transfer reactions. In this note we report a deter- 
mination of the hydride affinity of Fe(C0)5 and a deriv- 
ation of AHf[ (C0)4FeCHO-,g]. 

Our experiments have been carried out at 300 f 2 K in 
a flowing afterglow apparatus that has been described in 
detail previously.6 Hydride donor anions such as 
C6H5CHCH3, HCO2-, and CH3CHCOCH3 are produced 
from proton-transfer reactions between an appropriate 
neutral precursor (C6H5CH2CH3, HCO2H, and CHSCH2- 
COCH3, respectively) and NH,, the latter being generated 
by electron impact on NHB. A fast flow of helium buffer 
gas' carries these ions the length of a 100 cm X 7 cm i.d. 
flow reactor where they interact with Fe(CO), added to 
the system through a moveable injector. The steady-state 
ion composition in the flow tube is continuously monitored 
by a quadrupole maw spectrometer located behind a small 
sampling orifice. 

Before proceeding on to the results for hydride transfers, 
it is important to first consider the direct reaction of Fe- 
(CO), with hydride ion itself. Stable signals of H- may be 
produced in the flow reactor from adding excess Hz to 
N H c  and the ensuing proton transfer. An exceedingly 
rapid reaction with Fe(C0)5 is observed which yields two 
hydridoiron carbonyl ions as primary products in roughly 
equal abundance (eq 1).8 

50x HFe(CO),- t CO 

50x HFe(COI3- t 2c0  
H- t FeCO), E ( 1 )  

The bimolecular rate coefficient for this reaction has 
been determined to be (4.93 f 0.66) X lo4 cm3 molecule-' 
s-l which indicates, when compared with the ion-molecule 
collision rate (kLangevin = 1.24 X cm3 molecule-' s-~),~ 
that reaction is occurring on approximately every other 
encounter. Interestingly, we find that the HFe(C0)3- ion 
undergoes secondary reactions with excess Fe(C0)5 to 
produce the dinuclear hydrides HFez(C0)6- and HFe,- 
(CO),- as well as a fast addition reaction with COz to 
produce HFe(C0)3(C02)-.10 In contrast, the 18-electron 
tetracarbonyl ion HFe(C0); appears to be relatively inert 
toward either Fe(CO), or COP We have noted similar 
gas-phase reactivity patterns in other saturated (18 elec- 
tron) vs. unsaturated (16-electron) M(CO),L- ions.'' 

(5) (a) Simoes, J. A. M.; Beauchamp, J. L. Chem. Rev., in press, and 
references cited therein. (b) Allison, J.; Ridge, D. P. J.  Am. Chem. SOC. 
1979,101,4998. (c) Allison, J.; Freas, R. B.; Ridge, D. P. J. Am. Chem. 
SOC. 1979,101,1332. (d) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. SOC. 
1983, 105, 7484. (e) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. SOC. 
1983, 105, 7492. 

(6) (a) Lane, K. R.; Lee, R. E.; Sallans, L.; Squires, R. R. J. Am. Chem. 
Soc. 1984,106,5767. (b) Sallans, L.; Lane, K.; Squires, R. R.; Freiser, B. 
S. J. Am. Chem. SOC. 1983,105,6352. (c) Lane, K.; Sallans, L.; Squires, 
R. R. J. Am. Chem. SOC. 1984,106, 2719. (d) Lane, K. R.; Sallans, L.; 
Squires, R. R. Inorg. Chem. 1984,23, 1999. 

(7) Standard experimental conditions for our experiments are P(He) 
= 0.40 torr, F(He) = 180 STP cm3 s-l, Y = 8970 cm s-l, and T = 300 k 
2 K. 

(8) The HFe(C0)3- ion has been observed previously, cf. McDonald, 
R. N.; Chowdhury, A. K.; Schell, P. L. Organometallics 1984, 3, 644. 

(9) Su, T.; Bowers, M. T. In 'Gas Phase Ion Chemistry"; Bowers, M. 
T., Ed., Academic Press: New York, 1979; Vol. 1, Chapter 3. 

(10) Darensbourg, D. J.; Kudarosk, R. A. Adu. Organomet. Chem. 
1984, 22, 129. 
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Table I. Hydride-Transfer Reactions with Fe(CO), (300 K )  
~~~ 

hydride 
affinity, 
HA(X), % H- 

anion, XH- neutral, X kcal mol klIobsda transfer b other products (%) 

C,H,CHCH, C,H,CH=CH, 50.4 t 2.5 1.08 (0.72)  3.0 (0.03) 

HC0,- CO, 51.7 t 2.5 0.16 (0.08) 13.0 (0.01) 

(CH,),CCN CH,=C(CH,)CN 56.1 t 2.5 1.16 (0.67) 5.0 (0 .03)  

CH,CHCN CH,=CHCN 57.6 t 2.5 1.16 (0.61)  <0.5 (0.003) 

CH,CHCOCH, CH,=CHCOCH, 59.3 t 2.5 1.05 (0.61)  G0.1 (0.0006) 

(C,H,CHCH,)Fe(CO),- (77)  
(C,H,CHCH,)Fe(CO),- (10) 
HFe(CO),- (10) 
(HCO,)Fe(CO),- (75)  
HFe(CO),- (12)  

((CH, ),CCN)Fe(CO 14- (23)  
HFe(CO),- ( 3 )  
(CH,CHCN)Fe( CO),- (7 8) 
(CH,CHCN)Fe(CO),- (20) 
(CH,CHCN)Fe( CO),- (2) 
(CH,CHCOCH,)Fe(CO),- (100) 

((CH3)2CCN)Fe(C0)5- (69) 

a Observed bimolecular rate coefficient for disappearance of reactant anion in units of cm-3 molecule-' s" . 
Efficiency for hydride-transfer channel Overall reaction efficiency = k(obsd)/k(Langevin) shown in pa ren the~es .~  

shown in parentheses. 

Binary hydride-transfer reactions are of particular in- 
terest since their occurrence may give rise to useful ther- 
modynamic data pertaining to hydride reductiod2 (i.e., 
hydride affinities). The hydride affinity of a neutral 
compound, HA(X), is defined as the enthalpy of dissoci- 
ation of the corresponding anion HX- to free hydride and 
the neutral X (eq 2).13 These data may be readily cal- 

(2) HX- - H- + X 
AH 

HA(X) = AH = AHf(H-) + AHf(X) - AHf(HX-) 

culated from known heats of formation of neutrals and the 
corresponding anions, the latter being derived from gas- 
phase acidity  measurement^.'^ From known hydride af- 
finities, values for other neutrals (i.e., Fe(COI5) may be 
determined experimentally by bracketing techniques, 
much the same way as proton affinities are bracketed.13 

Table I presents a summary of results for Fe(C0)5. 
Hydride transfer yielding the iron-formyl anion ( m / z  197) 
is a minor, though observable reaction channel for the 
l-phenylethyl anion, formate, and isobutyronitrile anions, 
but not for the propionitrile anion and 2-butanone enolate. 
Rate coefficients and complete primary product distribu- 
tions were determined6 for the five reactant anions shown 
in the table. These data are further supported by quali- 
tative observations involving other anion/neutral pairs 
which span a 40 kcal/mol range in hydride affinity.l3 The 
reverse reaction, wherein (CO),FeCHO- donates hydride 
to a neutral acceptor is not observed under our conditions 
(eq 3), even when thermodynamically favorable. Thus, the 

(CO),FeCHO- + X ++ Fe(CO), + HX- (3) 

preformed iron formyl ion does not appear to react with 
CH2=CHCN (HA = 57.6 kcal/mol), CH2=CHCOCH3 
(HA = 59.3 kcal/mol), or CH2=CF2 (HA = 63.1 kcal/mol) 
within the time scale of the flowing afterglow. We prefer 
a kinetic as opposed to a thermodynamic interpretation 
for these observations and suggest that the back-reaction 
(eq 3) is impeded by unfavorable charge localization re- 

(11) Lane, K. R.; Sdans,  L.; Squires, R. R., submitted for publication 
in J. Am. Chem. SOC. 

(12) (a) Depuy, C. H.; Bierbaum, V. M.; Schmitt, R. J.; Shapiro, R. H. 
J. Am. Chem. SOC. 1978,100,2920. (b) Murphy, M. K.; Beauchamp, J. 
L. J. Am. Chem. SOC. 1976,98,1433. (c) Ingemann, S.; Kleingeld, J. D.; 
Nibbering, N. M. M. In 'Ionic Processes in the Gas Phase"; Ferreira, M. 
A. A., Ed.; D. Reidel Publishing Co.: Dordrecht, 1984. 

(13) Bartmess, J. E.; McIver, R. T., Jr. In 'Gas Phase Ion Chemistry"; 
Bowers, M. T., Ed.; Academic Press: New York, 1979 Vol. 2, Chapter 
11. 

quirements in (C0)4FeCHO-. 
We therefore assign the hydride affinity of Fe(C0)5 to 

be 56.1 f 4.0 kcal/mol.14 Combining this value with 
AHf[Fe(CO)5,g] = -173.0 f 1.5 kcal/mol and AHf[H-,g] = 
34.7 f 0.5 kcal/mol leads to a heat of formation for the 
iron formyl, AHf[(CO),FeCHO-,g] = -194.4 f 4.3 kcal/mol. 
We may further derive the two homolytic metal-carbon 
bond energies, D[(C0)4Fe-CHO-] = 101.1 f 6.1 kcal/mol 
and D[(C0)4Fe--CHO] = 43.9 f 9.1 kcal/mol, from these 
data.', The latter value compares well with other iron-acyl 
bond energies determined in our lab~ratory. '~ 

Several important implications immediately arise from 
these results. First of all, they confirm earlier ideas from 
condensed-phase studies concerning the relative stability 
of the iron formyl and the corresponding viz., 
decarbonylation is thermodynamically favorable (eq 4).14 

(CO),FeCHO- - (C0)4FeH- + CO (4) 
AH = -10.3 f 7.4 kcal/mol 

Moreover, the borohydride-based synthesis of (CO),Fe- 
CHO- in solution as well as its reported action as a hydride 
donor must be strongly influenced by solvation, com- 
plexation, and counterion effects since hydride transfer 
from trialkylborohydride ions (HA(R3B) I 70 kcal/mol)16 
t o  Fe(C0)5 and from (CO)$eCHO- to simple aldehydes 
and ketones (HA)R2C=O) = 40-46 k~a l /mol ) '~  are in- 
trinsically endothermic reactions. This implies that, in 
addition to changing ligands about the metal, the variation 
of solvents and/or Lewis acid catalysts would be a fruitful 
approach to the activation of formyl-based reductions.l' 
Further thermochemical studies with other metal formyls 

(14) All thermodynamic data was taken from the following: Pedley, 
J. B.; Rylance, J. 'Sussex-NPL Computer Analyzed Thermochemical 
Data"; V. Sussex, 1977 and ref 5a: AHf[Fe(CO)4,g] = 105.6 k kcal/mol; 
AHf[Fe(C04-,g] = -160.9 7.3 kcal/mol; AHf[CHO,g] = 10.4 f 3.2 
kcal/mol; AHf[CHO-,g] = 12.3 i 3.5 kcal/mol; AHf[(CO)4FeH-,g] = 
-178.3 i 6 kcal/mol. 

(15) From AHf[(CO)4FeCOOH-,g] 5 -257 kcal/mol& a value for D- 
[(CO)4Fe%00H] 2 46.1 kcal/mol may be derived. For other examples, 
see: Lane, K. R.; Sallan~, L.; Squires, R. R., submitted for publication 
in J. Phys. Chem. 

(16) We have recently established this lower limit for the hydride 
affinities of (CH3CH2)3B and (CH,O),B from binary hydride-transfer 
reactions: Workman, D. B.; Lane, K. R.; Squires, R. R., manuscript in 
preparation. The hydride affinity of BH3 has been estimated to be 75 * 5 kcal/mol: Altshuller, A. P. J. Am. Chem. SOC. 1956, 77,5455. See 
also: Kayser, M. M.; McMahon, T. B. Tetrahedron Lett. 1984,25,3379. 

(17) (a) Kao, S. C.; Darensbourg, M. Y.; Wolfdieter, S. Organo- 
metallics 1984, 3, 871. (b) Darensbourg, D. J.; Kudaroski, R. J. Am. 
Chem. SOC. 1984,106,3672. (c) Darensbourg, D. J.; Ovailles, C. J. J. Am. 
Chem. SOC. 1984,106,3750. 
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are currently in progress and will be reported in a future 
publication. 
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Summary: The bidentate Lewis acids dichloro-l,2- 
phenylenedimercury (1) and dibromo-l,2-phenylenedi- 
mercury (2) form complexes with halides. These are the 
first anionic complexes of organomercury compounds 
which have been isolated and characterized. 

The coordination chemistry of multidentate Lewis bases 
is a subject of great theoretical and practical importance, 
and the study of analogous Lewis acids promises to be 
equally interesting.2 In this paper, we describe the co- 
ordination chemistry of three bidentate Lewis acids, 1,2- 
phenylenedimercury dihalides 1-3: and we report the first 
isolation and structural characterization of anionic com- 
plexes of organomercury compounds. 

1 I X - C I J  

2 I X = B r )  

3 I X - I I  

4 - 5 - 

Although inorganic halomercurate anions are well- 
known, analogous complexes of organomercury compounds 
have been remarkably e l ~ s i v e . ~ , ~  Since halogen bridges 

(1) Presented in part at the 67th Conference of the Canadian Institute 
of Chemists, MontrBal, June 4,1984. 

(2) Newcomb, M.; Azuma, Y.; Courtney, A. R. Organometallics 1983, 
2, 175-177. Karol, T. J.; Hutchinson, J. P.; Hyde, J. R.; Kuivila, H. G.; 
Zubieta, J. A. Ibid. 1983,2,106-114. Hosseini, M. W.; Lehn, J. M. J. Am. 
Chem. SOC. 1982,104,3526-3527. Dietrich, B.; Hosseini, M. W.; Lehn, 
J. M.; Sessions, R. B. Ibid. 1981,103, 1282-1283. Schmidtchen, F. P. 
Angew. Chem., Int. Ed. Engl. 1981,20,466-468. V6gtle, F.; Sieger, H.; 
Muler, W. M. Fortschr. Chem. Forsch. 1981,98,107-161. Seetz, J. W. 
F. L.; Akkerman, 0. S.; Bickelhaupt, F. Tetrahedron Lett. 1981, 22, 
4857-4860. Gladfelter, W. L.; Gray, H. B. J.  Am. Chem. SOC. 1980,102, 
5909-5910. Park, C. H.; Simmons, H. E. Ibid. 1968, 90, 2431-2432. 
Shriver, D. F.; Biallas, M. J. Zbid. 1967, 89, 1078-1081. 

(3) Prepared by modifications of the methods oE Wittig, G.; Ebel, H. 
F. Jutu Liebigs Ann. Chem. 1961,650, 20-34. Wittig, G.; Bickelhaupt, 
F. Chem. Ber. 1958,91,883-894. 

(4) For a useful introduction, see: Wardell, J. L. in "Comprehensive 
Organometallic Chemistry"; Wilkinson, G., Stone, F. G. A., Abel, E. W., 
Eds.; Pergamon: Oxford, 1982; Vol. 2, pp 863-978. 
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Figure 1. Relationship between the I*Hg chemical shift of 
dichloro-1,2-phenylenedimercury (1; 0.1 M in Me2SO) and the 
molar concentration of added tetraphenylphosphonium chloride." 

are a typical structural feature of inorganic halomercurate 
anions? we suspected that the bidentate organomercury 
compounds 1-3 might form halide complexes stable 
enough to be isolated. Dichloro-l,2-phenylenedimercury 
(1) is nearly insoluble in dichloromethane, but the addition 
of an approximately equimolar amount of tetraphenyl- 
phosphonium chloride at  25 "C rapidly produced a ho- 
mogeneous solution. Addition of hexane precipitated 
crystals of the 2:l complex 4 (mp 205-207 "C) in 75% 
yield.' The reactions of other phosphonium and ammo- 
nium halides with compounds 1 and 2 yielded similar 
complexes.8 However, an analogous experiment with 
chlorophenylmercury and tetraphenylphosphonium chlo- 
ride yielded only diphenylmercury and tetraphenyl- 
phosphonium tetrachloromercurate, the products of a re- 

(5) (a) Studies of coordination in solution are reported by: Goggin, P. 
L.; Goodfellow, R. J.; Hurst, N. W. J. Chem. SOC., Dalton Trans. 1978, 
561-566. Lucchini, V.; Wells, P. R. J. Organomet. Chem. 1975, 92, 
283-290. Beletakaya, I. P.; Butin, K. P.; Ryabtaev, A. N.; Reutov, 0. A. 
Ibid. 1973,59,1-44. Relf, J.; Cooney, R. P.; Henneike, H. F. Ibid. 1972, 
39,75-86. Plazzogna, G.; Zanella, P.; Doretti, L. Ibid. 1971,29, 169-173. 
(b) The isolation and elemental analysis of halide complexes of per- 
fluoroalkylmercury compounds have been reported by: EmelBus, H. J.; 
Lagowski, J. J. J. Chem. SOC. 1959,1497-1501. However, this work has 
been criticized by: Downs, A. J. Ibid. 1963, 5273-5278. 

(6) For recent references, see: (a) Bats, J. W.; Fuess, H.; Daoud, A. 
Acta Crystallogr., Sect. B 1980, B36, 2150-2152. (b) Sandstrom, M.; 
Liem, D. H. Acta Chem. Scand., Ser. A 1978, A32, 509-514. Biscarini, 
P.; Fusina, L.; Nivellini, G.; Pelizzi, G. J.  Chem. SOC. Dalton Trans. 1977, 
664-668. Barr, R. M.; Goldstein, M. Ibid. 1976, 1593-1596. 

(7) The structure assigned to this new compound is consistent with ita 
elemental analysis and ita IR, far-IR, Raman, 'H NMR, lmHg NMR, and 
mass spectra. 

(8) With a variety of phosphonium and ammonium halides, dichloro- 
1,2-phenylenedimercury (1) yielded 2:1 complexes analogous to 4. In 
contrast, elemental analysis suggests that dibromo-1,2-phenylenedi- 
mercury (2) favors 5 3  complexea. Diiodc-l,2-phenylenedimercury (3) and 
1,8-naphthalenedimercmercury dihalides appeared to form related complexes, 
but these compounds were too unstable to be isolated. 
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