Rate constants accurate to $\pm 10\%$ yield activation values accurate to ± 0.5 kJ.

Acknowledgment. This research was supported by the National Science Foundation. T.B.R. is a fellow of the Camille ahd Henry Dreyfus and Alfred P. Sloan Foundations. Field desorption mass spectra were obtained in the Mass Spectrometry Laboratory, University of Illinois, supported in part by a grant from the National Institute of General Medical Sciences (No. GM 27029). The 360- MHz NMR spectra were measured at the University of Illinois NSF Regional NMR Facility (NSF Grant No. CHE

(30) Sandström, J. "Dynamic NMR Spectroscopy"; Academic Press: New York, 1982.

79-16100). We thank Mr. Gregg Zank for some NMR measurements.

Registry **No.** la, 12170-34-2; lb, 79816-63-0; **2a,** 94161-38-3; 2b, 94161-39-4; 3, 94161-40-7; Cp₂Ti(SMe)₂Mo(CO)₄, 94234-84-1;
Li₂[Cp₂TiS₂Mo(CO)₄], 94161-41-8; Cp₂Ti- $Li₂[Cp₂TiS₂Mo(CO)₄],$ **(SCH2CH2C02CH3)2Mo(CO)4,** 94161-42-9; Cp,Ti(SMe),, 12089- 78-0; CpTiCl₃, 1270-98-0; CpTi $[S_2C_2(CN)_2]_2$, 94161-43-0; **(PPN)2[(MeCp)2TiS2Mo(C0)4],** 94202-27-4; Cp,Ti(SPh),, 1292- 47-3; $\text{Cp}_2\text{Ti(SePh)}_2$, 12290-57-2; Cp_2TiS_5 , 12116-82-4; 14- $[(\text{MeCp})_2\text{Ti}]_2\text{S}_4$, 79816-62-9; $(\text{MeCp})_2\text{TiCl}_2$, 1282-40-2; H_2S , 7783-06-4; $C_7H_8Mo(CO)_4$ (C_7H_8 = norbornadiene), 12146-37-1; $C_7H_8W(CO)_{4}$ (C_7H_8 = norbornadiene), 12129-25-8; (C_9H_5CN)₃W- $(CO)_3$, 84580-21-2; CH₂=CHCO₂CH₃, 96-33-3; Na₂[S₂C₂(CN)₂], 18820-77-4; Ph_2S_2 , 882-33-7; Ph_2Se_2 , 1666-13-3; S_8 , 10544-50-0; $(MeCp)_{2}TiS_{5}$, 78614-86-5.

Electronic Structure and Photochemistry of the $(n^5 - C_6H_5)$ **, TiI, Complex**

Mitchell R. M. Bruce and David R. Tyler'

Department of Chemistry, Columbia University, New York, New York 10027

Received March 6, 1984

The photochemistry of the Cp₂TiI₂ (Cp = η^5 -C₅H₅) complex can be interpreted in terms of a low-energy **I** \rightarrow Ti charge-transfer excited state. Low-energy irradiation (λ > 600 nm) of unpurged solutions of Cp₂TiI₂ in benzene produces $(Cp_2TiI)_2$ and 0.5 mol of I_2/mol of Cp_2TiI_2 photolyzed. Under similar conditions, photolysis of Cp₂TiI₂ in CCl₄ produces Cp₂Ti(I)Cl. In inert-gas-purged solutions, titanocene is formed
as well as 1 mol of I₂/mol of Cp₂TiI₂ photolyzed. Under no conditions were nitrosodurene spin-trapped Cp radicals observed by **ESR.** These results are interpreted in terms of a mechanism involving stepwise loss of I. from the Cp₂TiI₂ complex to produce $(Cp_2T_{i}I)_{2}$. Further irradiation of this dimer then forms titanocene and more I_2 . The electronic spectrum of the Cp_2TH_2 complex is reported. Previously reported spectra were complicated by the following equilibrium: $Cp_2TH_2 + nS = [(Cp_2Ti(I_{2-n})S_n)^{n+(nT)^{n-1}}]$ (S = solvent = CH_2Cl_2 or CH_3CN). In benzene, the equilibrium above does not occur to any appreciable extent, while in CH_2Cl_2 $n = 1$ and the equilibrium constant is $K = 3 \times 10^{-3}$ and in CH_3CN $n = 2$ and $K = 2.5$ $\times 10^{-3}$.

We are interested in the photochemistry of ligand-tometal charge-transfer excited states **as** a way of photoreducing organometallic complexes. One aspect of our work involves the study of halide \rightarrow metal charge-transfer excited states. For that reason, we have been investigating the Cp_2TiX_2 (X = F, Cl, Br, I; Cp = $\eta^5-C_5H_5$) complexes. We recently reported the results of self-consistent-field- $X\alpha$ -scattered-wave (SCF-X α -SW) molecular orbital calculations on these complexes.' Of interest to the photochemistry of these complexes is the calculational result that the lowest energy excited states in the fluoride, chloride, chemistry of these complexes is the calculational result that
the lowest energy excited states in the fluoride, chloride,
and bromide complexes are $Cp \rightarrow Ti$ charge-transfer ex-
sited states when then helide in Ti charge t the lowest energy excited states in the fluoride, chloride,
and bromide complexes are $Cp \rightarrow Ti$ charge-transfer ex-
cited states rather than halide $\rightarrow Ti$ charge transfer. These calculational results are consistent with the known photochemistry: Cp-Ti bond cleavage occurs when the chloride and bromide complexes are irradiated.2 The calculation could not be used to definitively assign the lowest energy excited state in the Cp_2TiI_2 complex because the lation could not be used to definitively assign the lowest
energy excited state in the Cp_2Ti_2 complex because the
 $\text{Cp} \rightarrow \text{Ti}$ and $\text{I} \rightarrow \text{Ti}$ CT transitions have nearly equal

energies (within the accuracy of the calculation) in this complex.

A study of the photochemistry of Cp_2TiI_2 seemed worthwhile for three reasons. First, it is likely that the photochemistry would result from the desired halide \rightarrow Ti charge-transfer excited state. Second, with proper caution we could use the photochemical results to suggest assignments for the low energy excited states of the comcaution we could use the photochemical results to suggest
assignments for the low energy excited states of the com-
plex. And third, the close proximity of the I \rightarrow Ti and Cp
 \rightarrow Ti charge-transfer bands might lead to wavelength dependent photochemistry. This paper reports the results of our photochemical study of the Cp_2TiI_2 complex.

Experimental Section

All manipulations were carried out under argon on a Schlenk line, in a Vacuum Atmospheres glovebox or in a glove bag. Acetonitrile (spectrograde, Kodak), benzene (spectranalyzed, Fisher), carbon tetrachloride (certified, Fisher), chloroform (Amend), methylene chloride (certified, Fisher), and toluene (certified, Fisher) were dried,³ distilled under nitrogen, and degassed before use. Thallium hexafluorophosphate (Strem Chemicals, Inc.) and C_6D_6 (99.5 atom % D, Aldrich) were used as received. Nitrosodurene was synthesized by a published procedure.*

⁽¹⁾ Bruce, M. R. M.; Kenter, A.; Tyler, D. R. *J.* Am. Chem. Soc. 1984, 106.639-644.

^{106, 053&}lt;del>–044.
(2) (a) Harringan, R. W.; Hammond, G. S.; Gray, H. B. J. Organomet.
Chem. 1974, 81, 79–85. (b) Vitz, E.; Brubaker, C. H., Jr. *Ibid.* 1975, 84,
C16–C18. (c) Vitz, E.; Brubaker, C. H., Jr. *Ibid.* 1976, 104, Lee, J. G.; Brubaker, C. H., Jr. *Inorg. Chim.* Acta 1977,25,181-184. *(0* Tsai, Z.; Brubaker, C. H., Jr. *J.* Organomet. Chem. 1979,166, 199-210.

⁽³⁾ Perrin, D. D.; Amarego, W. L.; Perrin, D. R. "Purification of Laboratory Chemicals"; Pergamon Press: Oxford, 1966.

Nuclear magnetic resonance spectra were obtained on Bruker WM 250 and Varian XL 200 spectrometers. Peak assignments are relative to the appropriate solvent peak: CHDC1_2 , 5.28; C_6H_6 , 7.17. Infrared spectra were recorded with Perkin-Elmer 621 and Perkin-Elmer 983 infrared spectrophotometers. Electronic absorption spectra were obtained with a Cary 17 spectrophotometer. Electron paramagnetic resonance spectra were obtained by using a Varian E-line spectrometer. A 200-W Oriel Co. high-pressure mercury arc lamp was used for the photochemical experiments and quantum yield measurements. Appropriate Corning glass filters and interference filters (Edmund Scientific) were used to isolate the wavelengths for irradiation. Absolute quantum yield measurements were made with the assistance of a Beckman DU spectrophotometer. Solutions were irradiated at room temperature in 1.00-cm quartz cells and were stirred during irradiation. The lamp intensity was measured by Reinecke's salt actinometry.⁵ Elemental analyses were performed by Galbraith Laboratories, Knoxville, Tenn.

Preparation of Titanocene Halides. Bis(cyclopentadieny1)titanium dichloride (Alfa) was recrystallized from acetonitrile. **Bis(cyclopentadieny1)titanium** dibromide and bis- **(cyclopentadieny1)titanium** diiodide were prepared by the method of Lappert⁶ and recrystallized from acetonitrile and/or toluene. The purity of **bis(cyclopentadieny1)titanium** diiodide was confirmed by infrared spectroscopy, $\overset{8}{ }$ nuclear magnetic resonance spectroscopy,⁷ and elemental analysis. Anal. Calcd for $C_{20}H_{20}TiI_2$: C, 27.81; H, 2.33; I, 58.77. Found: C, 27.80; H, 2.31; I, 58.83. $\mathrm{Bis}(\text{cyclopentadienyl})$ titanium(III) iodide dimer, (Cp₂TiI)₂, was prepared by using Coutts, Wailes, and Martin's method II.⁸ The precursors $\mathrm{Cp}_2\mathrm{Ti}\check{\mathrm{BH}}_4{}^9$ and $(\mathrm{Cp}_2\mathrm{TiCl})_2{}^{10}$ were prepared by literature procedures.

Preparation of $[Cp_2Ti(CH_3CN)_2][PF_6]_2$ **.** A solution of Cp_2TiI_2 (1.0 g, 2.3 mmol) in acetonitrile (50 mL) was treated dropwise at room temperature with a solution of $T1[PF_6]$ (1.77 g, 5.1 mmol) in acetonitrile (75 mL). The color of the solution immediately changed from brownish to red and was accompanied by the formation of a yellow precipitate (TlI). The solution was allowed to stir for 1 h, then filtered through Celite, and concentrated. Addition of diethyl ether gave red-brown crystals of $[Cp_2Ti(CH_3CN)_2][PF_6]_2$ which were filtered and dried under vacuum at $90 °C$ for 2 h. The infrared spectrum in the ν (C=N) region showed bands for coordinated acetonitrile (2325, 2288 cm⁻¹; a 31 cm^{-1} blue shift vs. free acetonitrile).¹¹

Measurement of Iodine Loss during Photolysis of Cp₂TiI₂ **or** $(Cp_2TiI)_2$ **in Benzene.** A known amount of sample (typically \approx 5 mg) was introduced into a 500-mL three-necked flask fitted with a Kontes universal adapter and pipet for introduction of argon into the solution, a Kontes gas adapter for removal of gases, and a septum for the introduction of liquids. A dry ice-acetone trap was connected to the gas adapter. Benzene (about 300 mL) was added to the flask, the argon flow turned up to produce turbulent bubbling, and the photolysis begun. Periodically, the photolysis was stopped and the pink solution in the trap was

Kvasov, B. A.; Petrovskii, P. **V.** *Dokl. Akad. Nauk SSSR* **1972,** *205,* **857-860.**

(8) Coutta, **R. S.** P.; Wailes, P. C.; Martin, R. L. J. *Organomet. Chem.* **1973,47, 375-382.**

(9) Heinrich, N.; Hartwimmer, R. *Chem. Ber.* **1960, 93, 2238-2245. (10)** Green, M. L. H.; Lucas, C. R. *J. Chem. Soc., Dalton Trans.* **1972, 1000-1003.**

transferred to a volumetric cylinder. Benzene was occasionally added to the flask to replace that lost through vaporization. The contents of the volumetric cylinder were then analyzed for iodine by electronic absorption spectroscopy ($\lambda = 500$ nm $(\epsilon 1040)$).¹²

Reaction Stoichiometry. To determine the stoichiometry of the reaction $Cp_2TiI_2 \stackrel{h\bar{v}}{\sim} Cp_2TiI_{2-x} + (x/2)I_2$, the loss of Cp_2Ti_2 was monitored by the decrease in the intensity of the 600-nm peak and the growth of I_2 was monitored by taking the difference between the calculated loss of intensity at 512 nm due to Cp_2Ti_2 disappearance and the actual decrease at 512 nm (ϵ_{I_2}) at 512 nm in benzene is 990).

Measurement of the Equilibrium Constant of the Reaction $\mathbf{Cp}_2\mathbf{Ti}_2 + n\mathbf{S} \rightleftharpoons [(\mathbf{Cp}_2\mathbf{Ti}(\mathbf{I}_{2-n})\mathbf{S}_n)^{n+}(n\mathbf{I}^{-})^{n-}]$ (S = Solvent). A solution of Cp_2TiI_2 (0.5-8 mM) in benzene or acetonitrile was prepared and an aliquot (1-2 mL) pipetted into a volumetric flask (10 mL) and capped with a septum. Degassed benzene, methylene chloride, or acetonitrile was then added to the volumetric flask, shaken, and then transferred to a capped quartz cuvette: The electronic absorption spectrum was then obtained. For all solutions, the Cp_2TiI_2 concentration was calculated by using the absorbance maximum between 580 and 610 nm and the molar absorptivity in benzene (ϵ 1800). The $[Cp_2Ti(I_{2-n})^{n+}(nI^{-})^{n+1}]$ concentration was calculated by the difference in formal vs. actual concentrations measured by the absorbance maximum between 580 and 610 nm. For benzene, the equilibrium constant is $K =$ 0; for methylene chloride $n = 1$ and $K = 3 \times 10^{-3}$ ($\pm 2 \times$ and for acetonitrile $n = 2$ and $K = 2.5 \times 10^{-3}$ ($\pm 1.5 \times 10^{-3}$

Measurement of the Equilibrium of the Reaction Cp₂TiI₂ ⁺**Cp2TiC12** + **2 Cp2Ti(I)Cl.** The 'H NMR spectra of separate Cp_2TiI_2 and Cp_2TiCl_2 solutions in C_6D_6 show the cyclopentadienyl proton resonances at 6.11 and 5.91 ppm, respectively. When these solutions are combined, a third central peak (6.01 ppm) grows in over time until finally the relative intensities of three peaks remain unchanged. We assign the new central peak to $Cp_2Ti(I)Cl$. The equilibrium constant K was found, by integration, to be close to **4,** the statistical value for random redistribution. The same equilibrium occurs in 50% benzene/50% carbon tetrachloride except for the positions of the resonance: Cp_2TiI_2 , 6.25 ppm; $\text{Cp}_2\text{Ti}(\text{I})\text{Cl}$, 6.14 ppm; $\text{Cp}_2\text{Ti} \text{Cl}_2$, 6.03 ppm. These results are analogous to those found by Lappert et al.⁶ for Cp₂TiCl₂ + Cp_2TiBr_2 = 2Cp₂Ti(Cl)Br and Cp_2ZrCl_2 + Cp_2ZrBr_2 = $2Cp_2Ti(Cl)Br.$

 $2Cp_2Ti(CI)Br.$
 Measurement of the Kinetics of the Reaction $Cp_2TiI_2 + Cp_2Ti(CI_2 \rightarrow 2 Cp_2Ti(CI)$ **. The second-order rate constant** $(k_{25}c_2)$ **
** $\frac{1}{2}Cp_2Ti(CI_2 \rightarrow 2 Cp_2Ti(CI)$ **was determined by following the change** $\text{Cp}_2 \text{TiCl}_2 \rightarrow 2 \text{Cp}_2 \text{Ti(I)Cl}$. The second-order rate constant $(k_{25^{\circ}C}) = (0.025 \pm 0.005) \text{ M}^{-1} \text{s}^{-1}$ was determined by following the changes in $[Cp_2TiI_2]$ and $[Cp_2TiCl_2]$ by ¹H NMR over time and using the $ext{expression:}$ ¹³

$$
k = \left(\frac{1}{t}\right) \left(\frac{1}{[\text{Cp}_2 \text{TiCl}_2]_0 - [\text{Cp}_2 \text{TiI}_2]_0}\right) \ln\left(\frac{[\text{Cp}_2 \text{TiI}_2]_0 [\text{Cp}_2 \text{TiCl}_2]_t}{[\text{Cp}_2 \text{TiCl}_2]_0 [\text{Cp}_2 \text{TiI}_2]_t}\right)
$$

The concentrations of these species at time *t* were calculated by using an internal standard (benzene). The initial concentrations were calculated by extrapolation to $t =$ zero $[3-8 \text{ mM}]_0$. The back reaction was assumed to be insignificant for the concentrations and time period studied (14-108 min): under these conditions equilibrium takes about 350 min to achieve.

Photolysis of Cp₂TiI₂ in CCl₄/Benzene. A solution of Cp_2Ti_2 (3.0–9.8 mM) in 50% $\text{CCl}_4/50\%$ C_6D_6 was prepared, and aliquots were transferred to two screw cap NMR tubes. One solution was irradiated $(\lambda > 595 \text{ nm})$ at room temperature (25) "C) for 20-60 min. The other solution was kept in the dark at room temperature during this time. Both tubes were shaken periodically (5-10 min). The 'H NMR was then recorded. In some cases the 'H NMR of the thermal blank was recorded both before and after irradiation. The concentrations of titanocene dihalide species were calculated by using an internal standard (benzene). The thermal blank was virtually unchanged while the irradiated sample showed clean quantitative conversion of Cp_2Til_2 to $\text{Cp}_2\text{Ti(I)Cl}$ and Cp_2TiCl_2 . In a typical experiment irradiation

⁽⁴⁾ Terabe, **S.;** Kurmua, K.; Konaka, R. *J. Chem. Soc., Perkin Trans.* **2 1973, 1252-1258.**

⁽⁵⁾ Weger, **E. E.;** Adamson, A. W. J. *Am. Chem. SOC.* **1966, 88,** 394-403.

(6) Druce, P. M.; Kingston, B. M.; Lappert, M. F.; Spalding, T. R.;

⁽⁶⁾ Druce, P. M.; Kingston, B. M.; Lappert, M. F.; Spalding, T. R.; Srivastava, R. C. J. Chem. Soc. A 1969, 2106-2110.

(7) Nesmeyanov, A. N.; Nogina, O. V.; Fedin, E. I.; Dubovitskii, V. A.;

⁽¹¹⁾ These bands immediately disappear upon exposure to the atmosphere. In a Nujol mull, free acetonitrile shows two absorption bands in the $\nu(CN)$ region. A strong band at 2257 cm⁻¹ (symmetric C=N stretch) and a medium band at 2293 cm^{-1} (combination of symmetric CH₃ deformation and C—C stretching vibrations with borrowed intensity from
the symmetric C=N stretch). ¹H NMR of the compound in CD₂Cl₂
shows three peaks in the Cp region: δ 6.54 (s, 16%); δ 6.44 (d, 9%); δ 6.38

⁽¹²⁾ Mellor, **J.** W. "Inorganic and Theoretical Chemistry", Supplement

II, Part 1; Longmans, Green, and Co.: New York, 1956. *(13)* Frost, A. A.; Pearson, R. G. "Kinetics and Mechanism"; Wiley: New York, **1961;** p **16.**

Table I. Electronic Absorption Spectra of Cp,TiI, in Various Solvents

wavelength ^{<i>a</i>} $(\epsilon)^b$			
benzene ^c	$CH_2Cl_2^c$	acetonitrile ^c	$CH2Cl2$ ^{16,17}
665 ^d (1×10^{3})	665 ^d	665 ^d	
600 (1.8×10^3)	590	580	595 (6.0×10^{2})
512 (2.6×10^3) 444 ^d	505	493	500 (1.5×10^{3})
(1.5×10^{3})	445d		
363 (5.0×10^3)	360		361 (3.3×10^{3})

a Wavelength in nm. Extinction coefficient in L **mol-'** em⁻¹, ^c This work. ^d Shoulder.

of **a 5.8 mM solution of CpzTiIz** in **CCl,/benzene irradiated for 30 mid4 gave Cp,TiIz** *(6* **6.25; 78%, 4.5** mM), **Cp,Ti(I)Cl** *(8* **6.14; 19%, 1.1** mM), **and Cp,TiClz** *(6* **6.03; 3%, 0.17** mM).

Results and Discussion

Electronic Spectrum of Cp,TiI,. The synthesis of Cp,TiI, was first reported by Wilkinson and Birmingham in 1954;15 their product was obtained as dark purple crystals. The crystals melted with decomposition at 319 \pm 3 °C, and the chemical properties of Cp₂TiI₂ were reported to be similar to those of Cp_2TiBr_2 . The infrared spectrum of the complex was obtained but was not specifically tabulated or shown. The electronic spectrum **was also** not reported. In 1963, Chien16 reported the electronic spectrum of Cp_2TiI_2 in dichloromethane using Cp_2TiI_2 prepared by Wilkinson's method (Table I). However, he questioned the reliability of this spectrum because the elemental analysis of Cp2Ti12 **was** not correct; he suggested that the Cp_2TiI_2 was contaminated with $Cp_2Ti(OH)I$. In 1971, Dias reproduced Chien's electronic spectrum using the same solvent and method of synthesis, 17 but he made no mention of the purity of the Cp_2TiI_2 .

It was not until 1969 that Lappert et al.⁶ reported an improved synthesis of Cp_2TiI_2 . Their black product was completely characterized by NMR, infrared spectroscopy, melting point, and elemental analysis, **all** of which showed the product to be pure. The electronic spectrum was not published, however. Because there is some doubt **as** to the purity of the C_{p_2} TiI₂ obtained using Wilkinson's method of preparation, we used material prepared by Lappert's method.⁶

The electronic spectrum of Cp_2TiI_2 is strongly solvent dependent. Figure la shows that four features are discernible in the 400-700 nm range in benzene solution (Table I). The spectra in CH_2Cl_2 and CH_3CN are shown in parts b and *c,* respectively, of Figure 1 and both are clearly different from each other and from the spectrum in benzene (Figure 1a). (Note that the spectra in $CH₃CN$ and CH_2Cl_2 are similar but not identical with the spectra reported by Chien¹⁶ and Dias.¹⁷ See Table I.) The spectra in the three solvents are too dissimilar to attribute the differences only to solvent effects, and we propose that the following equilibrium is important for CH_2Cl_2 and CH_3CN but not for benzene.¹⁸

$$
Cp_2TiI_2 + nS \rightleftharpoons [(Cp_2Ti(I_{2-n})S_n^{n+})(nI^{-})^{n-}] \qquad (1)
$$

- **(16) Chien, J. C. W.** *J. Phys. Chem.* **1963, 67, 2477-2481.**
- **(17) Dias, A. R.** *Reu. Port. Quim.* **1971,** *13,* **222-235.**

Figure 1. Electronic absorption spectra of Cp₂TiI₂ in various solvents: A, benzene, 4.26×10^{-4} M Cp_2TiI_2 ; B, dichloromethane, **approximately 4.1** \times **10⁻⁴ M Cp₂TiI₂ and 1.9** \times **10⁻⁵ M [(Cp₂Ti-** $\text{Cp}_2\text{Ti}\bar{\text{I}}_2$ and 2.0 \times 10⁻⁴ M [$(\text{Cp}_2\text{Ti}(\text{CH}_3\text{CN})_2)^{2+}(\text{I}^{-})_2^{2-}$]. (See **Discussion Section for explanation.)** (I)CH₂Cl₂)⁺(I)⁻1: C, acetonitrile, approximately 2.2×10^{-4} M

The existence of the equilibrium in eq 1 is supported by three observations. First, we found that the spectrum in a particular solvent (e.g., benzene) could be fully recovered if the solvent was removed, the residue redissolved in another solvent (e.g., $CH₃CN$), the new solvent removed, and the Cp₂TiI₂ redissolved in the original solvent. This experiment shows that irreversible decomposition of the $Cp₂TiI₂$ is not occurring in solution, a result which implies an equilibrium. Second, the band intensities for " Cp_2TiI_2 " decrease in a going from benzene to dichloromethane to acetonitrile, a progression that coincides with the coordinating ability of these solvents (i.e., the equilibrium is shifted to the right as the coordination ability of the solvent increases). Finally, addition of TIPF_s in $CH₃CN$ to Cp_2 TiI₂ in CH₃CN at room temperature immediately produces the insoluble, solvent-coordinated species $[Cp_2Ti(CH_3CN)_2][PF_6]_2$.^{19,20} We conclude that the true electronic spectrum of Cp_2TiI_2 is that obtained in benzene solution; because of the equilibrium (eq 1), the spectra obtained in dichloromethane and acetonitrile are not that of pure Cp_2TiI_2 . The equilibrium constant for eq 1 was determined to be 3×10^{-3} in CH₂Cl₂ where $n = 1$ and 2.5 \times 10⁻³ in CH₃CN where $n = 2$. The data do not support the separation of the ion pair to any large extent.

The question remains concerning the two additional absorption features at 665 (sh) and 445 nm which we observe but that were not mentioned in the previous studies. The electronic spectrum of solid Cp_2TiI_2 (obtained as a Nujol mull) clearly shows these two shoulders so a solvent effect is ruled out. We note that, in our hands, the electronic spectrum of Cp_2TiI_2 prepared by the method of Wilkinson also did not show these two shoulders. We suggest that the impurity in the Cp_2Til_2 samples prepared by this original method is masking the two additional features.

The assignments for the bands in the electronic spectrum of Cp_2TiI_2 are discussed in the next section.

Photochemistry of Cp₂TiI₂. Irradiation ($\lambda > 400$ **nm,** $\lambda > 500$ nm, or $\lambda > 600$ nm) of Cp_2TiI_2 (5×10^{-4} M) in a

⁽¹⁴⁾ Total **time from start** of **photolysis until end of NMR was** *50* **min. (15) Wilkinson,** *G.;* **Brimingham, J. M.** *J. Am. Chem. SOC.* **1954, 76,** 4281-4284.

⁽¹⁸⁾ See: Katz, J. C.; Vining, W.; Coco, W.; Rosen, R.; Dias, A. R.; Garcia, M. H. Organometallics 1983, 2, 68–79 for analogous results for $\mathbb{C}p_2M_0X_2 + \text{MeCN} \to [\mathbb{C}p_2M_0(\text{NCCMe})X]^+ + X^- (X = \mathbb{C}l, Br, I).$

 $\text{Cp}_2\text{MoX}_2 + \text{MeCN} \rightarrow [\text{Cp}_2\text{Mo}(\text{NCMe})\text{X}]^+ + \text{X}^- (\text{X} = \text{Cl}, \text{Br}, \text{I}).$
(19) For comparison, note that the analogous reaction with Cp_2MoI_2
requires refluxing for 24 h: $\text{Cp}_2\text{MoI}_2 + 2 \text{TlPF}_6 \rightarrow [\text{Cp}_2\text{$

C. *J. Chem.* **SOC.,** *Dalton Trans.* **1979, 1367-1371. (20) Purcell, K. F.; Kotz, J. C. "Inorganic Chcmistry"; W.** B. **Sanders: Philadelphia, 1977; p 235** ff.

benzene solution purged by argon produces I_2 and titanocene (eq 2). (Titanocene is not formed in the absence

$$
Cp_2TiI_2 \xrightarrow[\text{benzene}]{h\nu} {}^{\text{4}}Cp_2Ti^{\text{4}} + I_2
$$
 (2)

of a purge; see below.) I_2 was detected by monitoring the reaction by electronic absorption spectroscopy. The following spectral changes were typically observed: the Cp2Ti12 absorption bands at 665 and *600* **nm** decreased in intensity, the peak at 510 nm decreased more slowly in intensity than the 600- and 665-nm bands, and λ_{max} for the 510-nm band shifted toward **500** nm. Continuing irradiation produced a spectrum that showed no absorption bands at 665 and 600 nm (i.e., all of the Cp₂TiI₂ was gone) but the absorption band at 500 nm was still present. **As** the electronic spectrum of I_2 in benzene shows a single visible absorption band at 500 nm $(\epsilon_{\text{max}} = 1040 \text{ in benz-})$ ene),¹² it was concluded that I_2 is a product of the photoreaction. Note that all of the iodine originally present in $Cp₂TiI₂$ can be swept out of the reaction cell during photolysis and trapped as I_2 . In a typical experiment, irradiation $(\lambda > 600 \text{ nm})$ of 3.9 mg of $\text{Cp}_2 \text{Ti}_2$ (9.0 \times 10⁻⁶ mol) in benzene for 16 h gave 9.2×10^{-6} mol of I_2 . The stoichiometry of reaction 2 is thus confirmed.

When the benzene is removed from the argon-purged and irradiated solution above, an air-sensitive green precipitate is left behind. The infrared spectrum shows it to be very similar to one of the several forms of titanocene.²¹ It most closely resembles the black titanocenes reported by Rausch et al. (obtained by the photolysis of Cp_2Ti - $(C_6H_5)_2$ in benzene or $Cp_2Ti(CH_3)_2$ in pentane²¹ⁱ) in that there are no bands characteristic of bridging hydrides at 1230 *cm-'.* Instead, there are unsplit bands at *800* and 1015 cm^{-1} , characteristic of a simple metallocene, e.g., $(Cp_2Ti)_r^{21}$. **An** additional strong band at 1260 cm-l was **also** observed; a weak band at this frequency was **also** observed by Rausch in the product formed by the photolysis of $\rm Cp_2Ti(C_6H_5)$, in benzene.^{21g} Our characterization of the titanocene product was hindered by the irreproducibility of its synthesis; the color of the photolysis product, the relative infrared band intensities, and its chemical properties all seem to be dependent on undetermined variables. For example, on one occasion the green residue formed a dark purple solution when it was dissolved in toluene and cooled to -80 °C in an atmosphere of N₂. Upon warming to room temperature and pumping off the toluene and the N_2 , the green residue was regenerated. This reactivity with N_2 is characteristic of several forms of titanocene, e.g., *[(q-* C_5H_5 ₂Ti]₁₋₂²¹¹ Several other photolysis experiments

yielded green residues, however, which did not form a purple complex with N_2 in toluene. Van Tamelen et al. reported²¹¹ two forms of titanocene, $[(\pi$ -C₅H₅)(C₅H₄)TiH]_x and $[(\pi\text{-}C_5H_5)(C_5H_4)TH]_2$ that do not react with N_2 in toluene at low temperature. Concerning its other properties, we found that **our** green residue is not pyrophoric in **air.** Rausch's black titanocene, formed by the photolysis of $\text{Cp}_2\text{Ti}(\text{CH}_3)_2^{\text{21i}}$ in pentane, is pyrophoric, yet the nearly identical black titanocene formed by the photolysis of $\text{Cp}_2\text{Ti}(C_6H_5)_2$ in benzene is not pyrophoric.^{21g} Finally, very long irradiation times produced a secondary photolysis product, not **as** yet identified, that shows a strong infrared band at 1735 cm^{-1} and a weak band at 1945 cm^{-1} . The quantum yield $(\lambda = 546 \text{ nm})$ for reaction 2 (in a degassed but unpurged solution) is 1×10^{-4} .

The experiments above show that the photochemistry of the Cp_2TiI_2 complex involves cleavage of the Ti-I bond(s). To check on the possibility of $Cp-Ti$ bond cleavages, we irradiated the Cp_2TiI_2 complex in the presence of the radical spin-trap nitrosodurene. However, irradiation of Cp_2TiI_2 (5×10^{-3} to 5×10^{-4} M) in an ESR tube in chloroform solution containing nitrosodurene **(5** \times 10⁻³ to 5 \times 10⁻⁴ M) did not produce the Cp nitrosodurene adduct. **A** variety of photolysis conditions were employed: the irradiation wavelength was varied $(\lambda > 254$ to $\lambda > 650$ **nm),** the temperature of the solution was varied (23 to -100 "C), and both short and long irradiation times were tried (up to 60 min). In none of these cases was the ESR signal of the spin-trapped species observed. Control experiments showed that Cp radicals could be spin-trapped and detected under these photolysis conditions. For example, the $\mathrm{Cp}_2\mathrm{TiCl}_2$ and $\mathrm{Cp}_2\mathrm{TiBr}_2$ complexes are known to yield Cp radicals on irradiation.^{2f} Irradiation of these complexes under the same conditions **as** those mentioned above produced easily detectable ESR **signals** attributable to the nitrosodurene spin-trapped Cp radical from which we conclude that irradiation of the Cp_2TiI_2 complex does not lead to Cp-Ti bond cleavage.

The photochemical results above suggest that the lowest energy electronic transition in the Cp_2TiI_2 complex is an $I \rightarrow Ti$ charge-transfer transition. The failure to trap Cp radicals even upon high-energy irradiation (i.e., we found no evidence of wavelength dependent photochemistry) demonstrates that if there are low energy $Cp \rightarrow Ti$ CT excited states (as the SCF-X α calculation predicts) then these states are photochemically inactive (i.e., internal excited states (as the SCF-X α calculation predicts) then
these states are photochemically inactive (i.e., internal
conversion to the lowest energy $I \rightarrow Ti$ CT state is very
fact). Our SCE Y, reduciding about that the low fast). Our SCF-X α calculation showed that the lowest conversion to the lowest energy $I \rightarrow Ti$ CT state is very fast). Our SCF-X α calculation showed that the lowest energy $I \rightarrow Ti$ CT transition (specifically $8b_1 \rightarrow 14a_1; {}^1A_1 \rightarrow {}^1B_2$) involved depopulation of an orbita bonding and population of an orbital that is Ti-I antibonding. Considerable loss of Ti-I bonding is thus expected to occur in this excited state, and it is not surprising that the Ti-I bond breaks. In the Cp_2TiI_2 complex the two lowest energy electronic absorption bands overlap extensively ($\lambda = 600$ and $\lambda = 665$ (sh) nm). Therefore, we are limited to proposing that one of these is the I \rightarrow Ti (${}^{1}A_1$ \rightarrow ${}^{1}B_2$) charge-transfer transition responsible for all of the observed photochemistry.

It remains to discuss the mechanism of "titanocene" formation in benzene. Two pathways seem likely, either concerted loss of I_2 (eq 3) or stepwise loss of I_1 (eq 4). discuss the mechanism of I_2 (eq 3) or stepwise los
of I_2 (eq 3) or stepwise los
Cp₂TiI₂ $\stackrel{h\nu}{\longrightarrow}$ "Cp₂Ti" + I₂

$$
Cp_2TiI_2 \xrightarrow{h\nu} \text{``}Cp_2Ti\text{''} + I_2 \tag{3}
$$

$$
Cp_2TiI_2 \xrightarrow{\hbar \nu} Cp_2TiI + I
$$
 (4)

$$
\downarrow \hbar \nu
$$

$$
{}^{10}Cp_2Ti^{\prime\prime} + I
$$

^{(21) (}a) Bottrill, M.; Gauens, P. D.; McMeeking, J. 'Comprehensive Organometallic Chemistry"; Wilkinson, G., Ed.; Pergamon Press: Lon**don, 1982,22.2,281-329. (b) Toogood,** *G.* **E.; Wallbridge, M. G. H.** *Ado. Znorg. Chem. Radiochem.* **1982,25,367-340. (c) Pez,** *G.* **P.; Apgar, P.; Crissey, R. K.** *J. Am. Chem. SOC.* **1982,** *104,* **482-490. (d) Pez, G. P.; Armor, J. N.** *Adv. Organomet. Chem.* **1981,19,1-50. (e) McPherson, A.** M.; G. L.; Stukey, G. D. J. Am. Chem. Soc. 1979, 101, 3432-3430. (f)
Peng, M.; Brubaker, C. H., Jr. *Inorg. Chim. Acta* 1978, 26, 231-235. (g)
Rausch, M. D.; Boon, W. H.; Mintz, E. A. J. Organomet. Chem. 1978, 160,
81-92.

Figure 2. Electronic spectral changes accompanying photolysis ($\lambda > 595$ nm) of Cp_2Ti_2 in C_6D_6/CCl_4 (50:50) to yield $Cp_2Ti(1)Cl$. **Irradiation times:** (a) 0 s, (b) 10 min, (c) 20 min, (d) 30 min, (e) 40 min, (f) 50 min, and (g) 60 min. The concentration of Cp_2Ti_2 at $t = 0$ was 3.3×10^{-4} M.

Perhaps the simplest way to establish the stepwise loss of I. would be to show that $\text{(Cp}_2\text{TiI})_2$ is formed as the product of Cp_2TiI_2 photolysis. Unfortunately, it is not feasible to spectroscopically characterize $\text{({Cp}_2TiI)}_2$ in the presence of Cp_2TiI_2 because the electronic spectra of the two complexes are too **similar as** are their infrared spectra? In addition, $\left(\mathbf{C}_{\mathbf{p}_2} \mathbf{T} \mathbf{i} \mathbf{I} \right)_2$ is paramagnetic so we could not obtain an NMR spectrum. Finally, room-temperature ESR spectra, even of authentic $(Cp_2TiI)_2$ samples, gave no signals. Because spectroscopic detection of $\text{({Cp}_2TiI)}_2$ was not feasible, we had to resort to indirect methods to differentiate between the pathways in eq **3** and **4.** We favor the mechanism involving stepwise loss of I for the following four reasons: (1) Cp₂Ti(I)Cl forms on photolysis of Cp₂TiI₂ in CC4, **(2)** our stoichiometry study indicates that in unpurged cells, **0.5** mol of 1, is formed for each mole of Cp_2TiI_2 consumed, (3) titanocene does not form when the photolysis cell is not purged with argon, and **(4)** irradiation of $({\rm Cp}_2 {\rm TiI})$, (the dimerization product of ${\rm Cp}_2 {\rm TiI}$) in a purged cell produces titanocene. These points are discussed below.

The photolysis at room temperature $(\lambda > 595 \text{ nm})$ of Cp,TiI, in carbon tetrachloride/benzene (50% **/50%**) shows clean conversion of Cp_2TiI_2 to $Cp_2Ti(I)Cl$ (eq 5;

$$
Cp_2TiI_2 \xrightarrow{\hbar\nu} Cp_2Ti(I)Cl \tag{5}
$$

Figure **2)** as monitored by 'H NMR and electronic absorption spectroscopy. The quantum yield $(\lambda = 546 \text{ nm})$ for reaction **5** (in a degassed, unpurged solution) is **1.1** x 10^{-3} . (Note that this quantum yield is some eleven times larger than that for the photolysis of Cp_2TiI_2 in benzene without carbon tetrachloride.) Eventually, Cp_2TiCl_2 is also formed but only as a minor product. However, the presence of any Cp_2TiCl_2 during the photolysis leads to the question: does the photolysis proceed **as** written in eq 5 or does the photolysis produce $\text{Cp}_2 \text{TiCl}_2$ (eq 6) which then reads with Cp,TiIz producing Cp,Ti(I)Cl (eq **7)?** Reaction

$$
Cp_2TiI_2 \xrightarrow[CCl_4/benzene]{hv} Cp_2TiCl_2
$$
 (6)

$$
C_{P_2}TiI_2 + C_{P_2}TiCl_2 \rightleftharpoons 2C_{P_2}Ti(I)Cl \tag{7}
$$

7 is easily demonstrated by mixing Cp_2TiI_2 and Cp_2TiCl_2 together and observing by ¹H NMR that $Cp_2Ti(I)Cl$ is formed. Eventually, equilibrium is established; the equilibrium constant for eq **7** is **4.**

Unfortunately, the equilibrium constant value of **4** precludes differentiating eq **5** from eq **6** and **7** based only on the product distribution. For example if 10% of the Cp₂TiI₂ is converted to Cp₂TiCl₂ (eq 6) and then equilibrium is reached (eq **7)** before the 'H NMR is taken, the relative percentages of species would be Cp_2TiI_2 (81%), $\text{Cp}_2\text{Ti(I)Cl}$ (18%), and Cp_2TiCl_2 (1%). In other words, the major product observed would still be $Cp_2Ti(I)Cl$, not $Cp_2TiCl_2.$

In order to differentiate between the pathways in eq **5** and eq **6** and **7,** we measured the kinetics of the forward reaction of eq 7 by mixing Cp_2TiI_2 and Cp_2TiCl_2 and monitoring the formation of $Cp_2Ti(\overline{I})Cl$ by ¹H NMR. A rate constant of $0.025 \text{ M}^{-1} \text{ s}^{-1}$ was found. This kinetic information allows us to definitively say that the photolysis of Cp2TiIz in carbon tetrachloride/benzene does not occur via *eq* **6** and 7 but rather via eq **5.** In a typical experiment a 5.8 mM Cp₂TiI₂ solution in carbon tetrachloride/benzene was irradiated for **30** min. Total time from the start of photolysis to the end of the lH NMR spectrum was **50** min. The final product distribution shows Cp_2TiI_2 (4.5 mM), $\text{Cp}_2\text{Ti(I)Cl}$ (1.1 mM), and Cp_2TiCl_2 (0.17 mM). To test whether or not eq **6** and 7 are responsible for this product distribution, we can assume that all the $Cp_2Ti(I)Cl$ formed came via eq 7; working backward we can calculate "initial" concentrations for Cp_2TiI_2 (5.1 mM), $Cp_2Ti(I)Cl$ (0 mM), and $\text{Cp}_2 \text{TiCl}_2$ (0.55 mM). The most exacting condition is to assume that all of the $\text{Cp}_2 \text{TiCl}_2$ was produced at $t = 0$. Then with use of the rate constant above, we calculate the following product distribution at $t = 50$ min: Cp_2TiI_2 (4.9) mM), $Cp_2Ti(I)Cl$ (0.34 mM), and Cp_2TiCl_2 (0.38 mM). Experimentally, the concentration of $\text{Cp}_2\text{Ti(I)Cl}$ actually produced is **320%** greater and the concentration of Cp,TiCl, actually produced is **55%** less than that predicted for eq 6 and 7. Clearly, Cp₂Ti(I)Cl is not formed via reactions **6** and **7; a** result consistent with the stepwise loss of I. from Cp_2TiI_2 (eq 4).

The stoichiometry of I_2 formation vs. Cp₂TiI₂ disappearance is **also** consistent with the stepwise photolytic loss of I. from Cp_2TiI_2 . Our measurements clearly indicate the stoichiometry in eq 8. In five separate experiments, a **3.4**

$$
Cp_2TiI_2 \xrightarrow{\hbar\nu}^{1}/_2I_2 + (Cp_2TiI)
$$
 (8)

 \times 10⁻⁴ M solution of Cp₂TiI₂ in benzene was irradiated (λ > **490** nm) for periods up to 5 h and the photolysis monitored by electronic absorption spectroscopy. Analysis of the spectra showed that 0.54 ± 0.16 mol of I_2 are liberated per mole of $\text{Cp}_2 \text{TiI}_2$ photolyzed.²² The stoichiometry experiments were done in degassed but unpurged cells; no titanocene product formed under these conditions. This result suggests that the function of the gas purge is to sweep out I_2 and prevent a backreaction with either titanocene or $(\text{Cp}_2\text{TiD}_2)$.

cene or $(Cp_2TiI)_2$.

To demonstrate the conversion of $(Cp_2TiI)_2$ to titanocene q 9), we irradiated $(Cp_2TiI)_2$ ($\lambda > 490$ nm; 5×10^{-4} M)
 $(Cp_2TiI)_2 \xrightarrow{h\nu}$ titanocene $+1/2I_2$ (9) (eq 9), we irradiated $(Cp_2TiI)_2$ ($\lambda > 490$ nm; 5×10^{-4} M)

$$
(\text{Cp}_2 \text{TiI})_2 \xrightarrow{h\nu} \text{titanocene} + \frac{1}{2} I_2 \tag{9}
$$

in benzene. Under closed system conditions no reaction occurred, but when we photolyzed while a rapid stream of argon was bubbled through the reaction cell, a dramatic and rapid change took place and titanocene was formed. Quantitatively, all **of** the iodine originally present in $(Cp_2TiI)_2$ could be swept out of the reaction cell during

⁽²²⁾ 0.54 represents the mean of **26 data points** from **five experiments. 0.16 is one standard deviation.**

photolysis and trapped as I_2 . (In a typical experiment, irradiation ($\lambda > 600$ nm) of 5.12 mg of $(Cp_2 \text{TiI})_2$ (8.4×10^{-6}) mol) for 13 h produced 8.8×10^{-6} mol of I_2). When the benzene was removed from the irradiated solution, an air-sensitive green precipitate was left behind that was identical with the green precipitate formed when Cp_2TiI_2

is photolyzed in benzene under purging conditions.

In summary, we propose that Cp_2TiI_2 reacts according to the pathway in Scheme I. The key points are **(1)** the reactivity involves Ti-I bond cleavage and (2) the loss of the iodine atoms is stepwise with the intermediate formation of $(Cp_2TiI)_2$ in benzene or the formation of $\text{Cp}_2\text{Ti(I)Cl}$ in CCl₄. Iodide loss from $(\text{Cp}_2\text{TiI})_2$ to give titanocene is possible with a purge of inert gas through the cell to remove I_2 . Otherwise, the I_2 back reacts with the products and no net reaction occurs.

Acknowledgment. This work was generously supported by a University Exploratory Research Grant from the Procter and Gamble Co.

Registry **No.** CpzTi12, 12152-92-0; Cp,Ti(I)Cl, 12116-64-2; $(Cp_2TiI)_2$, 39333-90-9; $[Cp_2Ti(CH_3CN)_2][PF_6]_2$, 94518-22-6; Cp₂TiCl₂, 1271-19-8; Cp₂Ti, 1271-29-0; I₂, 7553-56-2; CH₂Cl₂, 75-09-2; Tl[PF6], 60969-19-9; acetonitrile, 75-05-8.

η^5 -C₅(CH₃)₅ vs. η^5 -C₅H₅. A Comparison of Electronic Influences for Metallocenes with fac-a₃b₂c, fac-a₃b₃, and cis-a₃b₂ Ligand Geometry Based on ⁵⁹Co NQR Spectroscopy

E. J. Miller, S. J. Landon, and T. B. Brill"

Department of Chemistty, University of Delaware, Newark, Delaware 19716

Received June 18, 1984

⁵⁹Co NQR data from a series of complexes having $fac-a_3b_2c$, $fac-a_3b_3$, and $cis-a_3b_2$ geometry where a_3 is cyclopentadienyl (Cp) or **pentamethylcyclopentadienyl** (CpMe,) show that CpMe, inductively donates more electron density than Cp, but the increase felt by the metal is small (<lo%). This **finding** is consonant with conclusions drawn from photoelectron spectroscopy and MO calculations. The electronic effects in CpCoI₂c complexes (c = unidentate donor ligands) having fac-a₃b₂c geometry are linear when CpMe₅ replaces Cp and are readily explained. The NQR spectra of CpCo(bb')C₆H₄ (b,b' = 0, S, N, Se) complexes having cis-a3bz geometry are controlled mostly by the electronegativity of b,b'. Replacing Cp by CpMe, causes a nonlinear variation in the field gradient implying that the electronic structure of complexes with $b = 0$ and S differs somewhat from those with $b = N$. The temperature dependence of the coupling constant and asymmetry parameter of $\text{CPMe}_6\text{Co}(\text{CO})_2$ reveals a phase transition at 177 K but does not indicate a change in the "allyl-ene" distortion of the Cp ring. The field gradient at Co in CpCob₃ complexes (b) = unidentate donor ligand) is more sensitive to b than to replacement of Cp by CpMe₅. This sensitivity is utilized to demonstrate that $P(OCH_3)_3$ is a slightly better electron donor than $P(O)(OCH_3)_2$.

Introduction

Many situations arise in metallocene chemistry where it is advantageous to replace η^5 -C₅H₅ (Cp) with η^5 -C₅(CH₃)₅ $(CpMe₅)$.¹ There is no dispute that the replacement of H by \tilde{CH}_3 alters the steric influence of the Cp ring and the solubility of the resultant complex. **An** increase in electron density along the metal-CpMe, bond **axis** can be expected **as** a result of inductive donation by CH3. The basicity of the $CpMe₅$ ⁻ ring toward $H⁺$ is very much greater than that of Cp^{-2} However, photoelectron spectroscopy studies¹ and MO calculations^{3,4} suggest that the electron-releasing nature of the methyl groups is rather small. Moreover, reactions of the $Cp\overline{Me}_5Co^{2+}$ center suggest that the $Co(III)$

site is still quite hard. 5 Differences in the reactivity of Cp vs. alkylated Cp complexes may relate more to the transition-state than the ground-state electronic effects.6 Another perspective on the redistribution of electron density in metallocenes caused by replacing Cp with CpMe, as well as by other variations in the molecule evolves from 59C0 nuclear quadrupole resonance spectroscopy. Such a study is described here for three ligand geometries and concurs with the previous conclusion that the difference in the inductive electron donation by Cp and CpMe, is not particularly large.

Cp vs. CpMe₅. i. In fac-a₃b₂c Complexes. A surprisingly successful model of the electric field gradient (EFG) at cobalt in $CpCoI_2c$ complexes ($c = a$ unidentate ligand) results from viewing the coordination sphere of Co as an octahedron with a geometry of $fac-a_3b_2c.^{7,8}$. The Cp

⁽¹⁾ Calabro, **D. C.;** Hubbard, J. L.; Blevins, C. H.; Campbell, A. C.; Lichtenberger, D. L. *J. Am. Chem. SOC.* **1981,103,6839** and references therein.

⁽²⁾ Bordwell, F. G.; Bausch, M. J. J. *Am. Chem. SOC.* **1983,105,6188.**

⁽³⁾ Libit, **L.;** Hoffmann, R. *J.* Am. *Chem. SOC.* **1974,96, 1370. (4)** Schmitz, **D.;** Fleischhauer, J.; Meier, U.; Schleker, W.; Schmitt, G. *J. Organomet. Chem.* **1981,205, 381.**

⁽⁵⁾ Fairhurst, **G.;** White, C. *J. Chem. Soc.,* **Dalton** *Trans.* **1979,1524.**

⁽⁶⁾ Adams, H.; Bailey, N. A,; White, C. *Inorg. Chem.* **1983, 22, 1155. (7)** Brill, **T.** B.; Landon, S. J.; Towle, D. K. *Znorg. Chem.* **1982, 21,**

^{1437.}