

photolysis and trapped as I_2 . (In a typical experiment, irradiation ($\lambda > 600$ nm) of 5.12 mg of $(Cp_2 \text{TiI})_2$ (8.4×10^{-6}) mol) for 13 h produced 8.8×10^{-6} mol of I_2). When the benzene was removed from the irradiated solution, an air-sensitive green precipitate was left behind that was identical with the green precipitate formed when Cp_2TiI_2

is photolyzed in benzene under purging conditions.

In summary, we propose that Cp_2TiI_2 reacts according to the pathway in Scheme I. The key points are **(1)** the reactivity involves Ti-I bond cleavage and (2) the loss of the iodine atoms is stepwise with the intermediate formation of $(Cp_2TiI)_2$ in benzene or the formation of $\text{Cp}_2\text{Ti(I)Cl}$ in CCl₄. Iodide loss from $(\text{Cp}_2\text{TiI})_2$ to give titanocene is possible with a purge of inert gas through the cell to remove I_2 . Otherwise, the I_2 back reacts with the products and no net reaction occurs.

Acknowledgment. This work was generously supported by a University Exploratory Research Grant from the Procter and Gamble Co.

Registry **No.** CpzTi12, 12152-92-0; Cp,Ti(I)Cl, 12116-64-2; $(Cp_2TiI)_2$, 39333-90-9; $[Cp_2Ti(CH_3CN)_2][PF_6]_2$, 94518-22-6; Cp_2TiCl_2 , 1271-19-8; Cp_2Ti , 1271-29-0; I_2 , 7553-56-2; CH_2Cl_2 , $75-09-2$; Tl $[PF_6]$, 60969-19-9; acetonitrile, 75-05-8.

η^5 -C₅(CH₃)₅ vs. η^5 -C₅H₅. A Comparison of Electronic Influences for Metallocenes with fac-a₃b₂c, fac-a₃b₃, and cis-a₃b₂ Ligand Geometry Based on ⁵⁹Co NQR Spectroscopy

E. J. Miller, S. J. Landon, and T. B. Brill"

Department of Chemistty, University of Delaware, Newark, Delaware 19716

Received June 18, 1984

⁵⁹Co NQR data from a series of complexes having $fac-a_3b_2c$, $fac-a_3b_3$, and $cis-a_3b_2$ geometry where a_3 is cyclopentadienyl (Cp) or **pentamethylcyclopentadienyl** (CpMe,) show that CpMe, inductively donates more electron density than Cp, but the increase felt by the metal is small $($ <10%). This finding is consonant with conclusions drawn from photoelectron spectroscopy and MO calculations. The electronic effects in CpCoI₂c complexes (c = unidentate donor ligands) having fac-a₃b₂c geometry are linear when CpMe₅ replaces Cp and are readily explained. The NQR spectra of CpCo(bb')C₆H₄ (b,b' = 0, S, N, Se) complexes having cis-a3bz geometry are controlled mostly by the electronegativity of b,b'. Replacing Cp by CpMe, causes a nonlinear variation in the field gradient implying that the electronic structure of complexes with $b = 0$ and S differs somewhat from those with $b = N$. The temperature dependence of the coupling constant and asymmetry parameter of $\text{CPMe}_6\text{Co}(\text{CO})_2$ reveals a phase transition at 177 K but does not indicate a change in the "allyl-ene" distortion of the Cp ring. The field gradient at Co in CpCob₃ complexes (b) = unidentate donor ligand) is more sensitive to b than to replacement of Cp by CpMe₅. This sensitivity is utilized to demonstrate that $P(OCH_3)_3$ is a slightly better electron donor than $P(O)(OCH_3)_2$.

Introduction

Many situations arise in metallocene chemistry where it is advantageous to replace η^5 -C₅H₅ (Cp) with η^5 -C₅(CH₃)₅ $(CpMe₅)$.¹ There is no dispute that the replacement of H by \tilde{CH}_3 alters the steric influence of the Cp ring and the solubility of the resultant complex. **An** increase in electron density along the metal-CpMe, bond **axis** can be expected **as** a result of inductive donation by CH3. The basicity of the $CpMe₅$ ⁻ ring toward $H⁺$ is very much greater than that of Cp^{-2} However, photoelectron spectroscopy studies¹ and MO calculations^{3,4} suggest that the electron-releasing nature of the methyl groups is rather small. Moreover, reactions of the $Cp\overline{Me}_5Co^{2+}$ center suggest that the $Co(III)$

site is still quite hard. 5 Differences in the reactivity of Cp vs. alkylated Cp complexes may relate more to the transition-state than the ground-state electronic effects.6 Another perspective on the redistribution of electron density in metallocenes caused by replacing Cp with CpMe, as well as by other variations in the molecule evolves from 59C0 nuclear quadrupole resonance spectroscopy. Such a study is described here for three ligand geometries and concurs with the previous conclusion that the difference in the inductive electron donation by Cp and CpMe, is not particularly large.

Cp vs. CpMe₅. i. In fac-a₃b₂c Complexes. A surprisingly successful model of the electric field gradient (EFG) at cobalt in $CpCoI_2c$ complexes ($c = a$ unidentate ligand) results from viewing the coordination sphere of Co as an octahedron with a geometry of $fac-a_3b_2c.^{7,8}$. The Cp

⁽¹⁾ Calabro, **D. C.;** Hubbard, J. L.; Blevins, C. H.; Campbell, A. C.; Lichtenberger, D. L. *J. Am. Chem. SOC.* **1981,103,6839** and references therein.

⁽²⁾ Bordwell, F. G.; Bausch, M. J. J. *Am. Chem. SOC.* **1983,105,6188.**

⁽³⁾ Libit, **L.;** Hoffmann, R. *J.* Am. *Chem. SOC.* **1974,96, 1370. (4)** Schmitz, **D.;** Fleischhauer, J.; Meier, U.; Schleker, W.; Schmitt, G. *J. Organomet. Chem.* **1981,205, 381.**

⁽⁵⁾ Fairhurst, **G.;** White, C. *J. Chem. Soc.,* **Dalton** *Trans.* **1979,1524.**

⁽⁶⁾ Adams, H.; Bailey, N. A,; White, C. *Inorg. Chem.* **1983, 22, 1155. (7)** Brill, **T.** B.; Landon, S. J.; Towle, D. K. *Znorg. Chem.* **1982, 21,**

^{1437.}

Table I. 59C0 NQR Data for Cyclopentadienyl and Pentamethylcyclopentadienyl Complexes of Stoichiometry CpC01,c and [**CpCob,I]I at** 298 **K**

	freq, ^b MHz $(CpMe_s)$		e^2Qq/h , MHz		η	
	$v_3(7/2 \leftrightarrow 5/2)$	ν , $(5/2 \leftrightarrow 3/2)$	CpMe.	Cp^a	CpMe,	Cp^a
c						
$_{\rm CO}$	27.850(3)	$18.498(2)^c$	131.07c	123.80	0.289c	0.020
	27.850(3)	$18.029(2)^c$	130.07c		0.090c	
$P(OC6H5)3$	28.608 (17)	19.044 (5)	133.54	129.94c	0.056	0.114c
$CNC_{6}H_{5}$	28,761(3)	18,939 (3)	134.61	129.34	0.171	0.233
$\text{As}(C_{6}H_{5})_{3}$	31,333(16)	20,842 (19)	146.29	138,97	0.070	0.078
NH,CH, C, H	34,158(2)	22.748(2)	159.44	151.52	0.048	0.054
b_{2}						
er ^a	34.086 (2)	22.695(2)	159.11	151.10	0.053	0.047
phen ^e	34.166(7)	22.776 (6)	159.44	152.52	0.011	0.012

a Reference 7. **Parenthetical numbers are signal-to-noise the asymmetric unit of the cell.** α en = **ethylenediamine.** e **ratios. phen** = **o-phenylenediamine. Two crystallographically independent molecules in**

ligand is considered to be tridentate and to occupy the a_3 face of the octahedron. The EFG at Co appears, at first sight, to be complicated owing to the low-site symmetry (C_s) . However, the problem simplifies because of the orthogonal angles in the coordination sphere and fortuitous counterbalancing of terms in the EFG tensor.' The *z* principal **axis** coincides with the Co-c bond provided b and c differ significantly in their contribution to the EFG. If the a_3 and b ligands remain the same in a series of compounds, then the unique ligand c controls the coupling constant, e^2Qq/h , of cobalt. The asymmetry parameter, **7,** of cobalt is predicted to be very small or

To be sure, the above treatment is an oversimplification because the Cp ligand is not a tripod, and the mixing of the delocalized MO 's of Cp with the $Cob₂c$ fragment is complex. However, the success of this model is astonishing in view of NQR data for the $fac-a_3b_2c$ ligand geometry. In particular, small values of *q* at cobalt predicted and found for a series of conventional Lewis bases, c; a predictable correlation exists between e^2Qq/h (⁵⁹Co) and the σ -donor/ π -acceptor character of c; and e^2Qq/h and η remain essentially constant when b and c are interchanged. This agreement between prediction and experiment instills confidence in using the coordination sphere model to compare the EFG in metallocenes containing CpMe, and Cp. The EFG of CpMe₅ complexes of fac -a₃b₂c geometry (Table I) is higher than that in Cp complexes, and, accordingly, implies that the difference in the electronic effect of Cp and $CpMe₅$ felt by the cobalt atom is largely independent of the donor/acceptor properties of c. The EFG at cobalt is related to the d orbital populations, **N,** by eq **1.** Previously, it was shown that the bracketed

$$
e^{2}Qq/h =
$$

$$
(e^{2}Qq/h)_{0}\left[N_{d_{z}^{2}} + \frac{N_{d_{xz}} + N_{d_{yz}}}{2} - N_{d_{xy}} - N_{d_{x}^{2}-y^{2}}\right]
$$
(1)

quantity of eq **1** is overall positive in sign in these complexes,⁷ i.e., that the sum of the population of the d_{z^2} , d_{xz} , and d_{yz} orbitals exceeds $d_{x^2-y^2}$ and d_{xy} . The d_{z^2} orbital coincides with the Co-c bond (the *z* principal **axis)** for this coordination sphere analysis. In this orientation d_{zz} and either d_{xy} or $d_{x^2-y^2}$ bond to the Cp ring. Since the two appropriate orbitals figure into eq 1 with opposite signs, their contributions partially cancel. Nevertheless, it is clear that the redistribution of electron density in the cobalt d orbitals upon replacing Cp with CpMe, results in a net increase in the population of the d_{z^2} , d_{xz} , and d_{yz} orbitals relative to the $d_{x^2-y^2}$ and d_{xy} . Thus the cobalt atom must

have experienced an increase in electron density, but the actual amount is less certain than in the $fac-a₃b₃$ geometry (vide infra) because the orbital participation in bonding is not simple. The net magnitude of the bracketed quantity in eq 1 appears to increase by 3-7%. Charge density differences of this magnitude agree with MO calculations on these types of molecules⁴ and are in accord with indications from photoelectron spectroscopy that the inductive effect of the methyl groups is relatively small.'

ii. In cis **-a₃b₂ Complexes.** The EFG at Co in cis -a₃b₂ or cis -a₃bb' complexes of the type $CpCob₂$ was discussed elsewhere in the context of the effect of the b ligands.⁹ The description is extended here to the analogous $\text{CpMe}_5\text{Cob}_2$ complexes. The properties of the EFG become rather complicated because the *z* principal axis does not necessarily lie on a bond axis. In its most probable orientation, *z* is essentially perpendicular to the Cob₂ plane.⁹ Equation 1 can be applied by placing the d_{z^2} orbital and the *z* axis in coincidence. The \bar{d}_{xy} orbital largely forms the Co-b σ bond and has an important role in the Co-Cp bond. The d_{xz} orbital becomes part of a strongly bonding MO with \tilde{C}_{p} .¹⁰ The NQR spectra indicate that the bracketed quantity in *eq* 1 is overall positive in these molecules? The EFG at Co is controlled simply by the sum of the electronegativity of the b ligands. While this correlation was noted earlier, 9 it is even more convincing with the extension in Figure 2 to include new data for $CpCo[Se_2C_2(C_6H_5)_2]$. The difference in the atoms bound to b,b' has very little influence on the EFG at cobalt in these five-membered metallacycles.⁹ The conclusion that the electron density on the cobalt atom is directly controlled by the polarity of the Co-b σ -bond seems inescapable.

One learns more about the electronic structure of these complexes by replacing Cp with CpMe,. Table I1 contains the ^{59}Co coupling constants and asymmetry parameters for this comparison. Because the EFG according to the coordination sphere model involves a composite of the contribution from the a and b sites,⁹ the effect of a on b becomes a factor. Were the EFG at Co a straightforward function of a and b, e^2Qq/h for Cp and CpMe₅ should correlate as the fac-a₃b₂c data did in Figure 1. The relationship actually found is plotted in Figure 3. When $b =$ chalcogen, the EFG for the CpMe₅ complexes is lower than that for the Cp complexes, while it is about the same when one or **both** of the b donor atoms is nitrogen. Crystal structure determinations of $CpMe₅Co[O₂C₆H₄],¹¹$ $\text{CpMe}_5\text{Co}[(\text{NH})_2\text{C}_6\text{H}_4],^{12}$ and $\text{CpMe}_5\text{Co}[(\text{NH})\text{SC}_6\text{H}_4]^{\text{12}}$

⁽⁹⁾ Miller, **E. J.; Brill, T. B.** *Inorg. Chem.* **1983, 22, 2392.**
(10) Gross, M. E.; Trogler, W. C.; Ibers, J. A. *J. Am. Chem. Soc.* 1981,

^{103,} **192.**

^{1984,} 273, 377. (11) Miller, E. J.; Rheingold, A. L.; Brill, T. B. *J.* **Organomet. Chem.**

⁽⁸⁾ Brill, T. B. *J. Mol. Struct.* **1983,** *111,* **269.**

Table II. ⁵⁹Co NQR Data for Cp and CpMe, Complexes of Stoichiometry CpCo(bb'C_cH_c) at 298 K

			freq, ^{a} MHz (CpMe _s)		e^2Qq/h , MHz				
b		b	$v_2(7/2 \leftrightarrow 5/2)$	$v_2(5/2 \leftrightarrow 3/2)$	CpMe.	Cp^b	CpMe.	Cp^{σ}	
			32.990(5)	21.148(7)	156.00	171.71	0.358	0.409	
	o	NH	34.300(2)	21.803(2)	163.18	164.71	0.431	0.209	
	NH	NH	33.848(2)	21.544(11)	160.83	159.03 ^d	0.418	0.193	
	NH	s	32.161(5)	20.344(3)	154.05	155.04	0.498	0.411	
	s	\mathbf{s}^c	30.788(4)	19.752 (4)	145.52	151.49 ^d	0.532	0.522	
	s	Se	30.520(9)	19,708 (8)	143.79		0.306		
	Se	Se^e				149.04		0.501	

^a Parenthetical numbers are signal-to-noise ratios. ^b Reference 7. ^c 1,2-Dithio-4-methylbenzene. ^d Average of two closely spaced coupling constants. $e_{\text{Se}_2C_2(C_6H_5)_2}$.

Figure 1. The relationship between the ⁵⁹Co NQR coupling constants for CpCoI₂c and CpMe₅CoI₂c complexes as a function of the donor ligand c (Table I).

Figure 2. The correlation of the ${}^{59}Co$ NQR coupling constant with the sum of the electronegativity of the b,b' atoms in CpCobb' complexes (Table II).

reveal the absence of anomalies in the architecture or bond distances that could explain this difference. It is, therefore, probable that the interplay of subtle electronic differences involving several orbitals is affecting the balance of terms in eq 1. Since the d_{xz} and d_{xy} orbitals of Co predominate in the Cp–Co bond and the bracketed quantity in eq 1 is overall positive in sign, one could anticipate that an equal increase in the electron population of d_{xz} and d_{xy} would diminish e^2Qq/h . This follows because an increase in $N_{d_{xy}}$ reduces the overall magnitude of the bracketed quantity (and thus e^2Qq/h), whereas the other orbital, d_{xz} , enters as $N_{d_{xx}}/2$ and can increase e^2Qq/h by only half as much. The coupling constants for $b_2 = 0$ and S are understandable with this approach.

The situation appears to be slightly different when $b =$ N. The EFG at Co is remarkably insensitive to all substituent variations invoked so far including replacing Cp with CpMe₅ and varying the b,b' ligands through

Figure 3. The relationship of the ⁵⁹Co NQR coupling constants in CpCobb' and CpMe₅Cobb' complexes as a function of b,b'.

 $(NR)_2C_6H_4$ (R = H, CH₃, C₆H₅), and $(NC_6H_5)_2N_2$ ⁹ In all cases, e^2Qq/h lies in the narrow range of 156-161 MHz. Metallacycles formed with dimine ligands have been
identified by others¹³⁻¹⁶ as having unusual intramolecular donor-acceptor properties. The NQR data indicate that the electron donor-acceptor behavior of ligands with $b =$ N attached to CpCo is probably quite flexible and is able to equilibrate electron density in the metal d orbitals so as to leave the bracketed quantity of eq 1 essentially unchanged.

The CpMe₅ behaves as an inductive electron donor in the cis -a₃b₂ geometry, but, as in the fac -a₃b₂c system, the effect is not large. The electron donation is dampened or compensated for by the other ligands in the coordination sphere. Maitlis¹⁷ has observed that the CpMe₅ ligand is able to donate electron density in proportion to what is needed.

An additional spectroscopic study of $CpMe₅$ in a cis-a₃b₂ complex was stimulated by the suggestion¹⁸ that the $C-C$ bond lengths of $\text{CpMe}_6\text{Co}(\text{CO})_2$ at room temperature are consistent with partial localization to the "allyl-ene" electron distribution in the CpMe₅ ring. The NQR spectrum of CpMe₅Co(CO)₂ ($e^2Qq/h = 142.55$ MHz and $\eta =$ 0.492 at 295 K) was recorded for comparison with CpCo- $(CO)_2$ (e²Qq/h = 157.29 MHz and η = 0.289 at 77 K).⁹ While these complexes are formally $Co(I)$ and are not necessarily directly comparable to the cis - a_3b_2 complexes

(15) Overbosch, P.; van Koten, G.; Spek, A. L.; Roelofsen, G.; Duisenberg, A. J. M. *Inorg. Chem.* 1982, 21, 3908 and references therein. (16) Overbosch, P.; van Koten, G.; Overbook, O. J. Am. Chem. Soc.

1980, 102, 2091.

(17) Maitlis, P. M. Chem. Soc. Rev. 1981, 10, 1.
(17) Maitlis, P. M. Chem. Soc. Rev. 1981, 10, 1.
(18) Byers, L. R.; Dahl, L. F. Inorg. Chem. 1980, 19, 277.

⁽¹²⁾ Miller, E. J.; Rheingold, A. L.; Brill, T. B. J. Organomet. Chem., in press.

⁽¹³⁾ Gross, M. E.; Ibers, J. A.; Trogler, W. C. Organometallics 1982. 1, 530.

⁽¹⁴⁾ Gross, M. E.; Trogler, W. C.; Ibers, J. A. Organometallics 1982, 732

Table 111. 59C0 NQR Data (298 K) for fac-a,b, Complexes Involving a3 = **Cp or CpMe,**

	$v_3(7/2 \leftrightarrow 5/2)$		ν , $(5/2 \leftrightarrow 3/2)$		$e^2 Qq/h$, MHz		η	
complex	Сp	CpMe.	Сp	CpMe.	Cp	CpMe.	Cp	C p Mes
${a_sCo[P(OEt)_3], } (BF_4) {a_sCo[P(OMe)_3], } (BF_4)_2$ $K[a_3Co(CN)_3]$ $[a, Co(CH, CN),](BF_4),$	23.335(3) 27.901(3)	25.163(8) 25.113(3) $28.901(3)^b$ 33,520 (15)	15.528(6) 18.178(6)	16.763 (13) 16.719(2) $19.248(3)^{o}$ 22.320(10)	108.94 127.90	117.44 117.51 134.90 156.47	0.063 0.090	0.039 0.055 0.072 0.051

a Parenthetical numbers are signal-to-noise ratios. * **Slight differences in the resonance frequencies were observed with** different samples and appear in some way to be related to KI impurities. The differences produced in e^2Qq/h are ± 1.0 **MHz.**

TEMPERATURE I XI

Figure 4. The temperature dependence of the ⁵⁹Co coupling **constant and asymmetry parameter** of **CpMe,Co(CO),.**

in Table II, the direction of the shift in e^2Qq/h upon replacement of Cp by CpMe₅ is the same. η is substantially larger in $CpMe₅Co(CO)₂$. These numbers by themselves are not particularly informative. However, it is possible that the "allyl-ene" structure of the Cp ring could be more pronounced at low temperature **as** the thermal oscillations diminish. A variable-temperature NQR study was undertaken on $\text{CpMe}_5\text{Co}(\text{CO})_2$. Figure 4 plots e^2Qq/h and **7 as** a function of temperature. The negative temperature coefficient of e^2Qq/h is normal and results from reduction in the torsional oscillations of the molecule **as** *T* decreases.¹⁹ A solid-solid phase transition occurs at about 177 K causing slope breaks in e^2Qq/h and η . A more subtle solid-state effect may occur at temperatures around **260 K** where the line intensity was observed to diminish. The signals intensify again above and below this temperature. Most importantly, at no temperature do η or e^2Qq/h exhibit a sharp discontinuity that could be attributed to a pronounced change in the structure **of** the CpMe, ring.

iii. In *fac*-a₃b₃ Complexes. The comparison of Cp and CpMe, was expanded to complexes having higher symmetry, namely, the $fac-a_3b_3$ ligand geometry. In these complexes the *z* principal axis of the EFG tensor coincides with the C_3 axis which is the vector connecting Co and the centroid (CNT) of the Cp ring. The a and b **ligands** make equal additive contributions to the EFG? From the point of view of the d orbitals in eq 1, d_{z^2} coincides with the C_3 axis and d_{xz} and d_{yz} are mostly responsible for $Cp-Co$ and Co-b bonding. The asymmetry parameter must be very small or zero because of the C_3 molecular axis.

The dearth of **NQR data** for fac-a3b, complexes of cobalt containing Cp and $CpMe₅$ (Table III) stems from synthetic

difficulties and the inability to find NQR signals in several complexes. We were surprised to discover that replacement of Cp by $CpMe₅$ produces only a 5-10-MHz increase in e^2Qq/h of Co—about the same magnitude as in the $fac-a₃b₂c$ ligand geometry. The direction of the shift coincides with that produced at 55 Mn by increasing n in $[C_6H_{6-n}(CH_3)_n]Mn(CO)_3$ ⁺ complexes which also possess $fac-a_3b_3$ geometry.²⁰ The Mn(I) and Co(III) centers are formally isoelectronic. It was previously established for the Mn(1) series that the sum of the positive terms in eq 1 exceeds the sum of the negative terms.²⁰ The NQR data in Table III suggest the same is true of these $Co(III)$ complexes.

The electron density on $Co(III)$ with a $fac-a_3b_3$ coordination sphere increases by 5-9% when Cp is replaced by CpMe,. On the other hand, the increase is nearly 20% at 55 Mn when C₆Me₆ replaces C₆H₆. This disparity in magnitudes is attributable to the difference in the metal-b bond. The Mn-CO bond is better able to absorb electron density because of the substantial π -acidity of CO, whereas the weaker π -acidity of b in the Co-b bond (b = CN⁻, $P(OR)_{3}$ makes the metal less of an electron sink. The EFG of Co is very sensitive to b implying that the σ -donor/ π -acceptor differences and charge on b much more strongly influence the orbital population distribution on Co than does replacement of Cp by $CpMe₅$. This observation further supports the notion that the electron donor power of CpMe, is not large in these molecules, and that permethylated aromatics become better electron donor ligands when the other ligands in the coordination sphere are strong π -acceptors.

 $P(OCH₃)₃$ **vs.** $P(O)(OCH₃)₂$. The sizable perturbation to the EFG caused by b in the $fac-a₃b₃$ geometry suggests a sidelight study to test not only the interface between the $fac-a_3b_2c$ and $fac-a_3b_3$ coordination sphere models of the EFG but also the bonding characteristics of $P(\text{OMe})_3$ and $P(0)(0Me)_2$ ⁻ that are of recent interest to us.²¹⁻²⁴ Note that the direction of the *z* principal axis of the EFG is very different in these two coordination sphere geometries so that when a $fac-a_3b_3$ complex is converted to a $fac-a_3b_2c$ complex by ligand substitution, irregular variations in the EFG might be induced. On the other hand, if the EFG contributions from b **and c** are very similar, the *z* axis might remain close to the Co-CNT vector in both geometries.

 $CpCo[P(OMe)₃]_{3-n}[P(O)(OMe)₂]_n$, $n = 0-3$, is a directly comparable series of $fac-a_3b_3$ and $fac-a_3b_2c$ complexes. Abrupt differences in the EFG might be anticipated if the orientation of the *z* principal axis shifts dramatically with *n.* **If** the direction of *z* is invariant, then a smooth trend

⁽¹⁹⁾ Kushida, T.; Benedek, G. B.; Bloembergen, N. *Phys. Reu.* **1956,** *104,* **1364.**

⁽²⁰⁾ Brill, T. B.; Kotlar, A. J. *Inorg. Chem.* **1974,** *13,* **470. (21) Towle, D. K.; Landon,** S. **J.; Brill,** T. **B.; Tulip,** T. **H.** *Organo-*

metallics **1982,** *I,* **295.**

⁽²²⁾ Landon, S. J.; Brill, T. B. J. Am. Chem. Soc. 1982, 104, 6571.
(23) Landon, S. J.; Brill, T. B. Inorg. Chem. 1984, 23, 1266.
(24) Landon, S. J.; Brill, T. B. Inorg. Chem., in press.

Table IV. ⁵⁹Co NQR Data (298 K) Comparing the fac-a₃b₃ and fac-a₃b₂c Ligand Geometries Produced in the CpCo Fragment When $b,c = P(OMe)$, and $P(O)(OMe)$ ₂⁻

	freq. ^{<i>a</i>} MHz				
complex	$\nu_{2}(7/2 \leftrightarrow 5/2)$	$v_{2}(5/2 \leftrightarrow 3/2)$	$e^2 Qq/h$, MHz	η	
$CpCo[P(OMe)_3]_3(BF_4)_2$ CpCo[P(OMe),][P(O)(OMe) ₂] $CpCo[P(O)(OMe),]_3H$	23.335(3) 22.482(11) 21.620(2)	15.528(6) 14.590(5) 14.321(3)	108.94 105.71 101.03	0.063 0.273 0.120	

Parenthetical numbers are signal-to-noise ratios.

in the EFG should be observed. Table IV presents the data now available $(n = 0, 2, 3)$. $CpCo[P(O)(OMe)₂]$ ₃H and $\mathrm{CpCo[P(OMe)_3]_{3}}^{2+}$ possess the fac-a₃b₃ geometry and define the limits of e^2Qq/h for $^{59}\mathrm{Co}$ in this series. The fac a_3b_2c complex $CpCo[P(OMe)_3][P(O)(OMe)_2]_2$ has an intermediate value of the EFG, suggesting that, despite the difference in geometry, the *z* axis of the **EFG** tensor is positioned similarly in **all** three complexes. **This will** *occur* only if the EFG produced by $P(OMe)_3$ resembles that of $P(O)(OMe)₂$. The gradual decrease in the **EFG** as n increases shows that $\widetilde{P(O)}(OMe)_2$ is a slightly poorer σ -donor and/or π -acceptor toward the cobalt atom than P(OMe)₃. The weaker bond is manifested in a longer metal-P bond for $P(O)(OMe)_2$ ⁻ compared to $P(OMe)_3$ when the same metal center is involved. $21,25,26$

Experimental Section

Ligands and Reagents. All solvents were reagent grade **or** better and, except where noted, were used as received. $P(\overline{OC}_6H_5)_3$, $P(OCH₃)₃$, and $P(OC₂H₅)₃$, (RIC/ROC), $NH₂CH₂C₆H₅$, *o*- $(NH_2)_2C_6H_4$, $NH_2CH_2CH_2NH_2$, o -aminothiophenol, 3,4-dithiotoluene, AgBF₄, and As(C_6H_5)₃ (Aldrich) and I_2 and KCN (Fisher) were used without purification. Phenyl isocyanide²⁷ and selenothiocatechol²⁸ were prepared as before. o-Phenylenediamine (Eastman) was purified by standard procedures, 29 while oaminophenol (Aldrich) was sublimed prior to use.

Metal Complexes. $\{\eta^5\text{-}C_5(CH_3)_2\}CO(CO)_2$ was prepared³⁰ from $C_5(CH_3)_5H^{31}$ $Co_2(CO)_8$ (Pressure Chemical),³² and 1,3-cyclohexadiene (Aldrich). $(\eta^5\text{-}C_5\text{H}_5)\text{CoI}_2(\text{CO})$ was prepared as before³³ using $(\eta^5-C_5H_5)Co(CO)_2$ (Pressure Chemical). $\{[\eta^5-C_5(CH_3)_5]Co (\mu$ -I)I}₂,³⁰ $[\eta$ ⁵-C₅(CH₃)₅]CoI₂[P(OC₆H₅)₃],⁵ $\{[\eta$ ⁵-C₅(CH₃)₅]Co[P- $({\rm OCH}_3)_3^1{}_3({\rm BF}_4)_2^6$ $\{[\eta^6\text{-}C_5(CH_3)_5]C_0[P({\rm OC}_2H_5)_3]_3\}({\rm BF}_4)_2^6$ $\{n^6\}$ $\rm C_5H_5)CoI_2(CNC_6H_5), ^{34}K[(\eta ^5-C_5H_5)Co(CN)_3], ^{35}((\eta ^5-C_5H_5)Co[P-1]$ $({\rm OCH}_3)_{3}]_3[({\rm BF}_4)_2,^{36}(\eta^5{\rm C}_5{\rm H}_5){\rm C}_2[{\rm P}({\rm OCH}_3)_3][{\rm P}({\rm O})({\rm OCH}_3)_2]_2,^{21}$ **ights**. $((\eta^5-C_5H_5)Co[$P(O)(OCH_3)_2]_3H$,³⁷ [$\eta^5-C_5(CH_3)_5]CoI_2(CO)$,³⁰ and$ $[\eta^5 \text{-} C_5 (CH_3)_5] \text{Co} (O_2 C_6 H_4)^{11}$ were prepared by known methods.

 $[\eta^5$ -C₅(CH₃)₅]CoI₂(CNC₆H₅). CNC₆H₅ (0.24 g, 2.33 mmol) in 10 mL of $\rm CH_2Cl_2$ was added slowly to $[\eta^5\text{-}C_5(\rm CH_3)_5] \rm{CoI_2(CO)}$ (1.00 g, 2.10 mmol) in 30 mL of CH_2Cl_2 . The resultant brown solution was stirred for 2 h and reduced to dryness under vacuum at room temperature. The residue was chromatographed on silica gel (2 $\text{ft} \times \frac{3}{4}$ in. column) by using CH_2Cl_2 . The first band (pink) was discarded. A second band (brown) upon reducing to dryness under

(37) Klaui, W.; Dehnicke, K. *Chem. Ber.* **1978, 111, 451. 115,1922.**

vacuum at room temperature produced 0.83 g (1.51 mmol, 71.7%) of $[\eta^5$ -C₅(CH₃)₅]CoI₂(CNC₆H₅): mp 195-196 °C dec; ¹H NMR (CDCl₃) δ 7.50 (b s, C₆H₅, 5), 2.15 (s, CH₃, 15); ¹³C{¹H} (CDCl₃) δ 156.37, 129.68, 129.35, 128.27, 125.87 (C₆H₅), 96.28 (C₅(CH₃)₅), 11.45 (C₅(CH₃)₅); IR $\nu_{\text{C}_{\text{m}}N}$ 2160 cm⁻¹. Anal. Calcd for C₁₇H₂₀CoL₂N: C, 37.05; H, 3.65. Found: C, 36.85; H, 3.80.

 $\{[\eta^5-C_5(CH_3)_5]COI(H_2NC_2H_4NH_2)\}$. This complex was prepared in the same manner as the C_5H_5 analogue³⁵ and yielded black crystals (58% yield), mp 204-207[°]C dec. Anal. Calcd for $C_{12}H_{23}CoI_2N_2$: C, 28.37; H, 4.56. Found: C, 29.15; H, 4.99.

 ${[\![} \boldsymbol{\eta}^5\text{-}\boldsymbol{\mathrm{C}}_5(\mathbf{C}\mathbf{H}_3)_5]\mathbf{Col}$ **[o** - (N**H**)₂ $\mathbf{C}_6\mathbf{H}_4$]}**I.** This material was prepared in the same manner as the C_5H_5 analogue³⁸ yielding black microcrystals (98% yield): mp 178-180 °C dec; ¹H NMR (CDCl₃) δ 7.25 (m, C₆H₄, 4), 2.23 (s, C₆(CH₃)₅, 15). The amine hydrogen atom was not observed in the 'H NMR spectrum.

 $[\eta^5-C_5(CH_3)_5]CoI_2[As(C_6H_5)_3]CH_2Cl_2.$ A CH_2Cl_2 (50 mL) solution of $\{[\eta^5-C_5(CH_3)_5]Co(\mu-I)I\}_2$ (0.50 g, 0.56 mmol) and As- $(C_6H_5)_3$ (0.342 g, 1.12 mmol) was stirred for 30 min under N_2 and then evaporated to 25 mL. Hexanes (50 mL) were added, and the resultant solution cooled at 0 "C for 30 min. Upon filtration $[\eta^5$ -C₅(CH₃)₅]CoI₂[As(C₆H₅)₃]-CH₂Cl₂ (0.53 g, 0.57 mmol, 51% yield) was obtained **as** dark green crystals: mp 172-175 "C dec; 11 H NMR (CDCl₃) δ 7.20–7.80 (m, C₆H₅, 15), 5.30 (s, CH₂Cl₂, 2), 1.80 (s, C_5 (CH₃)₅, 15). Anal. Calcd for $C_{28}H_{30}CoI_2As \cdot CH_2Cl_2$: C, 41.50; H, 3.84. Found: C, 41.87; H, 3.87. The presence of one CH_2Cl_2 solvate molecule was confirmed by TGA: calcd weight loss 10.1%, found 10.0% at 68 "C.

 $[\eta^5$ -C₅(CH₃)₅]CoI₂(NH₂CH₂C₆H₅). A CH₂Cl₂ (50 mL) solution (0.169 **g,** 1.576 mmol) was stirred for **5** h under nitrogen. Evaporation to dryness and recrystallization from a minimum of warm CHzClz yielded **0.606** g (1.091 mmol, 69% yield) of green crystals: mp 185-187 °C dec; ¹H NMR (CDCl₃) δ 7.32, 7.26 (s, C₆H₅, 5), 4.17 (b, NH₂, 2), 2.19 *(s, CH₂, 2)*, 1.93 *(s, C₅(CH₃)₅, 15)*. Anal. Calcd for $C_{17}H_{24}CoI_2N$: C, 36.78; H, 4.36. Found: C, 36.91; H, 4.64. of $[\eta^5-C_5(CH_3)_5]COI_2(CO)$ (0.375 g, 0.788 mmol) and $H_2NCH_2C_6H_5$

 ${[\![}\eta^5\text{-}C_5(CH_3)_5]\text{Co}(\text{NCCH}_3)_3(\text{BF}_4)_2.$ This complex was prepared by the same method as the PF_6^- analogue,⁵ as red crystals (96%): mp 140 °C dec; ¹H NMR (CF₃CO₂H, reference external Me₄Si) cm^{-1} δ 2.65 (s, NCCH₃, 9), 1.60 (s, C₅(CH₃)₅, 15); IR $\nu_{\text{C=N}}$ 2332, 2307

 $\mathbf{K}[(\mathbf{n}^5\text{-C}_5(\text{CH}_3)_5]\text{Co}(\text{CN})_3]$. This complex was prepared in the same manner as the $C_5H_5^{33}$ analogue. The material could not be completely **freed** of KI impurity but was suitable for NQR **analysis.** Another synthesis of this complex was reported after this work was completed.³⁹

 $[\eta^5$ -C₅(CH₃)₅]Co[S₂C₆H₃CH₃]. A CH₂Cl₂ (50 mL) solution of $[\eta^5-C_5(\tilde{CH}_3)_5]\tilde{CoI}_2(\tilde{CO})$ (2.00 g, 4.20 mmol) and $(HS)_2C_6H_3CH_3$ $(0.66 g, 4.20 mmol)$ was vigorously stirred with an aqueous solution (50 mL) of $\text{NaC}_2\text{H}_3\text{O}_2$ (10 g) for 1.5 h. The aqueous layer was then separated and washed with CH_2Cl_2 (50 mL, 3 times). The combined organic layers were dried over anhydrous $Na₂SO₄$, filtered, and reduced to dryness under vacuum at room temperature. The crude product was dissolved in a minimum of $CH₂Cl₂$ and chromatographed on silica gel (column 1 ft \times ³/₄ in.) using CH_2Cl_2 . A blue mobile band was collected and reduced to 40 **mL.** Hexanes were added (100 **mL),** and the resultant solution was reduced to 30 mL under vacuum at **35** "C. After the solution was cooled to room temperature, bronze crystals of $[\eta^5-C_{5^-}]$ $(CH_3)_5]Co[S_2C_6H_3CH_3]$ (0.93 g, 2.67 mmol, 64%) formed: mp 222 $^{\circ}$ C; ^IH NMR (CDCl₃) δ 1.90 *(s, C₅*(CH₃)₅, 15), 2.04 *(s, C₆H₃CH₃*,

⁽²⁵⁾ Goh, **L.-Y.;** D'Aniello, M. J., Jr.; Slater, S.; Muetterties, E. **L.;** Tavanaiepour, I.; Chang, M. I.; Fredrich, M. F.; Day, V. W. Znorg. Chem. **1979,** *18,* **192.**

⁽²⁶⁾ Sullivan, R. **S.;** Rheingold, A. **L.;** Landon, S. J.; Brill, T. B., to be submitted for publication.

⁽²⁷⁾ Weber, W. P.; Gokel, G. W. *Tetrahedron Lett.* **1972, 17, 1637. (28)** Pierpont, C. G.; Corden, B.; Eisenberg, R. J. Chem. *Soc.* **D 1969, 401.**

⁽²⁹⁾ Fieser, **L.** F.; Williamson, K. L. "Organic Synthesis"; D. C. Heath Boston, MA; **1975;** p **325.**

⁽³⁰⁾ Frith, S. A.; Spencer, J. L. *Znorg. Synth.,* in press. **(31)** Fagan, P. **J.;** Schutz, L. D.; Marks, T. J. *Znorg. Synth.* **1982,21, 181.**

⁽³²⁾ Purified by dissolving in hexane and filtering under N₂.
(33) Heck, R. F. *Inorg. Chem.* 1965, 4, 855.
(34) Powell, E. W.; Mays, M. J. *J. Organomet. Chem.* 1974, 66, 137.
(35) Dineen, J. A.; Pausen, R. L. *J. Organ* **(36)** Klaui, W.; **Otto,** H.; Eberspach, W.; Buckholz, E. Chem. *Ber.* **1982,**

⁽³⁸⁾ Heck, R. **F.** *Inorg. Chem.* **1968, 7, 1513. (39)** Kolle, **U.;** Fuss, B. Chem. *Ber.* **1984, 117, 753.**

3), 7.33 (m, $C_4H_3CH_3$, 3); ¹³C(¹H) NMR (CDCl₃) δ 10.84 $(C_5(CH_3)_5$, 151.99, 155.14 $(C_6H_3CH_3)$. Anal. Calcd for $C_{17}H_{21}CoS_2$: C, 58.60; H, **6.08.** Found: C, **58.62;** H, **6.13. 91.37** $(C_5 (CH_3)_5)$, **20.85** $(C_6H_3CH_3)$, **123.57**, **129.48**, **129.91**, **131.71**,

 $[\eta^5\text{-}C_5(CH_3)_5]$ Co $[(HN)_2C_6H_4]$. A CH₂Cl₂ (50 mL) solution of g, **1.05** mmol) was vigorously stirred for **5** h with an aqueous solution **(50** mL) of NaOH (0.5 *9).* The aqueous layers was then separated and washed with \widetilde{CH}_2Cl_2 (50 mL). The combined organic layers were washed with aqueous NH4Cl solution (50 **mL,** 2 times), dried over anhydrous \overline{Na}_2SO_4 , and filtered. An equal volume of hexanes was added and the solution reduced to drynesa under vacuum at room temperature to yield $[\eta^5$ -C₅(CH₃)₅]Co- $[(HN)_2C_6H_4]$ $(0.24 \text{ g}, 0.81 \text{ mmol}, 77\%)$. Purification by sublimation at **160** "C **(2** mmHg) yielded green crystals: mp **194** "C dec; 'H NMR (CDC13) 6 **2.05** (s, C5(CH3)5, **E), 6.83** (s, C6H4, **4), 8.30 (b, NH, 2); ¹³C**{¹H} NMR (CDCl₃) δ 10.33 $(C_5(CH_3)_6)$, **85.33** $(C_5(CH_3)_3)$, 114.94, 117.60, 149.89 (C_6H_4) . Anal. Calcd for N, **9.47.** $[\eta^5\text{-C}_5(\text{CH}_3)_5]\text{CoI}_2(\text{CO})$ (0.50 g, 1.05 mmol) and o-(NH₂)₂C₆H₄ (0.11 C16H21CONz: C, **63.99,** H, **7.05;** N, **9.33.** Found C, **64.60;** H, **6.99;**

 $[\eta^5$ -C₅(CH₃)₅]Co[(HN)(S)C₆H₄]. A CH₂Cl₂ (150 mL) solution of $[\eta^5$ -C₅(CH₃)₅]Co[As(C₆H₅)₃]I₂ (1.53 g, 2.03 mmol), o-(H₂N)- $(HS)C_6H_4$ (0.26 g, 2.03 mmol), and $N(C_2H_5)$ ₃ (0.41 g, 4.07 mmol) was stirred for **1** h at room temperature and then reduced to dryness under vacuum at room temperature. The resultant oily solid was dissolved in a minimum of CH_2Cl_2 and chromatographed on silica gel (column 1.5 ft \times $\frac{3}{4}$ in.) using CH₂Cl₂. The blue mobile band was collected and evaporated to **25** mL. Hexanes **(75** mL) were added, and the solution was reduced to dryness under vacuum at room temperature. The solid obtained was dried under vacuum to produce 0.49 g of $[\eta^5\text{-}C_5(\text{CH}_3)_5]\text{Co}[(\text{HN})(\text{S})\text{C}_6\text{H}_4]$ **(1.54** mmol, **75%):** mp **173-175** "C, *H NMR (CDC13) 6 **2.00 (e,** $C_5(CH_3)_5$, 15), 6.50-7.65 (m, C_6H_4 , 4), 9.48 (b, NH, 1); ¹³C^{{1}H} NMR **129.55** (C_6H_4) . Anal. Calcd for $C_{16}H_{20}NS:$ C, 60.56; **H**, 6.35. Found C, **60.34;** H, **6.35.** $(CDCl_3)$ δ 10.48 $(C_5(CH_3)_5)$, 88.22 $(C_5(CH_3)_5)$, 116.83, 117.10, 123.17,

[q5-C5(CH3),]Co[(HN)OC6H4]. Solvents were dried over molecular sieves and purged with N_2 . Manipulations were carried out in Schlenkware. $(H_2N)(HO)C_6H_4$ (3.53 g, 32.69 mmol, in anhydrous C_2H_5OH) was added dropwise to $NaOC_2H_5$ (1.50 g, 65.25 mmol, in anhydrous C_2H_5OH). Na₂[(NH)OC₆H₄] thus formed $(18 \text{ mL}, \text{titer: } 0.1694 \text{ mmol/mL of anhydrous } C_2H_5OH,$ 3.049 mmol) was then slowly added to $[\eta^5$ -C₅(CH₂)₅]CoI₂(CO)^{(1.50} g , 3.15 mmol) in CH_2Cl_2 (350 mL). After being stirred for 24 h, the blue solution was filtered and reduced to dryness under vacuum at room temperature. A stream of N_2 was used to remove residual solvent. Filtration of an anhydrous ether solution of the product followed by recrystallization from hexanes yielded dark purple crystals **(0.568** g, **1.95** mmol, **61.9%).** The material can be further purified by sublimation of $180-200$ °C (\sim 3 mmHg). After completion of this work, another preparation of this complex was reported;39 mp **140** "C dec; 'H NMR (CDC13) 6 **2.04** *(8,* C5- $(CH_3)_5$, 15), 6.5-7.2 (m, C₆H₄, 4). Minor impurities $($ 15%) perhaps resulting from alkylation at N, appear in the NMR spectrum but have not interfered with the NQR study.

 $(\eta^5\text{-}C_5H_5)Co[Se_2C_2(C_6H_5)_2]$.⁴⁰ A decalin (50 mL) solution of mmol) was added dropwise to a refluxing slurry of Se **(10.50** g, **132.98** mmol) in decalin **(100** mL). After **1** h of reflux, the green solution was vacuum distilled and the residue dissolved in minimum of CH_2Cl_2 and chromatographed (2 times) on alumina (column 16 in. \times ³/₄ in.) with hexane-diethyl ether (1/1, v/v). The purple solid from the blue band was precipitated from diethyl ether by adding hexanes **(2.73** g, **5.93** mmol, **20%):** mp **237** "C; $(\eta^5$ -C₅H₅)Co(CO)₂ (5.32 g, 29.55 mmol) and (C₆H₅)₂C₂ (5.27 g, 29.55

¹H NMR (CDCl₃) δ 5.40 (s, C₅H₅, 5), 7.25 (s, C₆H₅, 10); ¹³C(¹H)² 6 NMR (CDC13) 6 **77.97** (C5H5), **126.80, 127.70, 129.21, 143.81** (C_6H_5) , 169.1 (C_2) . Anal. Calcd for $C_{19}H_{15}CoSe_2$: C, 49.59; H, **3.29.** Found: C, **49.65;** H, **3.31.**

 $[\eta^5$ -C₅(CH₃)₅]Co[SeSC₆H₄]. A CH₂Cl₂ solution (100 mL) of $[\eta^6$ -C₅(CH₃)₅]CoI₂(CO) (3.0 g, 6.304 mmol) and (HS)(HSe)C₆H₄ $(1.25 \text{ g}, 6.61 \text{ mmol})$ were vigorously stirred with $\text{NaC}_2\text{H}_3\text{O}_2$ (10) g in *50* **mL** of H20) for **2** h. The aqueous layer was separated and washed with CH₂Cl₂ (50 mL). The combined organic layers were washed with H_2O (50 mL, 2 times), dried over anhydrous Na_2SO_4 , filtered, and reduced to dryness under vacuum at room temperature. The solid dissolved in a minimum of CH_2Cl_2 was chromatographed on silica gel (column 1.5 ft \times ³/₄ in.) using CH₂Cl₂. The blue band was collected and reduced to dryness under vacuum at room temperature, producing purple crystals **(1.44** g, **3.77** mmol, **59.8%):** mp **180** "C dec; 'H NMR (CDC13) δ 1.96 **(s, C₅(CH₃)₅, 15), 7.0-7.5, 7.95-8.40 (b, C₆H₄, 4)**; ¹³C^{[1}H] **NMR** (CDCl₃) δ 11.10 (C₅(CH₃)₅), 90.92 (C₅(CH₃)₅, 122.76, 124.49, 130.36, **132.17, 148.05, 157.65** (C6H5); mol **wt** (mass spectrum) calcd **381.971,** found **381.972.**

Spectra. The 59C0 NQR spectra were recorded on a Wilkes NQR-1A superregenerative oscillator spectrometer at room temperature. The frequencies are accurate to ± 0.005 MHz. Variable-temperature NQR studies were obtained by cooling the sample with blow-off from liquid N_2 using a cell described elsewhere.⁴¹ The temperature $(\pm 1 \text{ K})$ was measured by means of a thermocouple and digital thermometer. The sample was allowed to stabilize at each temperature for **10** min prior to measurement of the spectrum. The 'H NMR spectra were recorded on a Perkin-Elmer **R-12B** or Bruker **WM-250** and are referenced to internal $SiCH_3$ ⁴ (δ 0.00) unless otherwise noted. IR spectra were recorded on a Perkin-Elmer **180.** Thermogravimetric analysis was performed on a Du Pont **950** TGA instrument under an air atmosphere using a **5** "C min-' heating rate from **25** to **200** "C. Melting points were measured in open capillary tubes. Elemental analysis was performed by Microanalysis, Wilmington, DE.

Acknowledgment. We are grateful to Professors J. L. Spencer (University of Bristol), **K.** P. C. Vollhardt (University of California, Berkeley), and C. *G.* Pierpont (University of Colorado) for providing the advice on several syntheses and Professor W. C. Trogler (University of California, San Diego) for helpful discussions.

Registry No. $\text{CpMe}_5\text{Col}_2(\text{Co})$ **, 35886-64-7;** $\text{CpMe}_5\text{Col}_2[\text{P-}$ $(O_6H_5)_3$, 72339-53-8; $CPMe_5CoI_2(CNC_6H_5)$, 94161-59-8; $\text{CpMe}_5\text{CoI}_2\text{[As}(C_6H_5)_3\text{]}$, 94161-60-1; $\text{CpMe}_5\text{CoI}_2(\text{NH}_2\text{CH}_2\text{C}_6\text{H}_5)$, 94161-61-2; [CpMe₅CoIen]I, 94161-62-3; [CpMe₅CoI phen]I, **51-9;** CpCoIz(NH2CHzC6H5), **33198-58-2;** [CpCoIenII, **33291-98-4;** $[CpCoIphen]I$, 33195-41-4; $CpMe₅(O₂C₆H₄)$, 93057-69-3; $\mathrm{CpMe}_{5}(\mathrm{NH})\mathrm{OC}_{6}\mathrm{H}_{4}$], 90540-96-8; $\mathrm{CpMe}_{5}(\mathrm{NH})_{2}\mathrm{C}_{6}\mathrm{H}_{4}$], 94161-64-5; $\text{CpMe}_5(\text{NH})\text{SC}_6\text{H}_4$], 94161-65-6; $\text{CpMe}_5(\text{S}_2\text{C}_6\text{H}_3\text{CH}_3)$, 94161-66-7; (C~CO[P(OM~)~]~)(BF~)~, **80737-24-2;** K[C~CO(CN)~], **38600-67-8;** ${(\rm CpMe_{5}[P(OEt)_{3}]_{3}]}({\rm BF_{4}})_{2},$ 72339-65-2; ${(\rm CpMe_{5}[P(OMe)_{3}]_{3}]}({\rm BF_{4}})_{2},$ **72339-62-9;** K[CpMe5Co(CN),], **90541-20-1;** [CpMe5Co- $(CH_3CN)_3] (BF_4)_2$, 94161-69-0; $CpCo[POMe)_3][P(O)(OMe)_2]_2$, 79018-66-9; $CpCo[P(O)(OMe)₂]₃H$, 64012-52-8; $\{CpMe₅Co(\mu-I)I₂,\}$ **72339-52-7;** cpco(co)~, **12078-25-0;** (C,&,)2C2, **501-65-5;** Se, **94161-63-4;** cpcOI2(cO), **12012-77-0;** CpCOIz[P(OC&&], **80642-** 49-5; **CpCoI₂**(CNC₆H_b), 94202-31-0; **CpCoI₂**[As(C₆H_b)₃], 80642-CpMe₆(SeSC₆H₄), 94161-67-8; CpCo[Se₂C₂(C₆H₅)₂], 94161-68-9; **7782-49-2; (H₂N)**(**HO**)C₆H₄, 95-55-6; **Na**₂[(**NH**)OC₆H₄], **30798-41-5;** $CpCo(O_2C_6H_4)$, **33195-38-9;** $CpCo[(\overline{NH})OC_6H_4]$, **33195-97-0**; $CpCo[(NH)_2C_6H_4]$, 12133-01-6; $CpCo[(NH)SC_6H_4]$, 33154-55-1; $CpCo(S_2C_6H_3CH_3), 33198-57-1.$

⁽⁴⁰⁾ Vollhardt, K. P. C.; Walbomky, E. C. *J. Am. Chem.* **SOC.** *1983,105,*

^{5507.} (41) Miller, E. J. Ph.D. Dissertation, University of **Delaware, 1984.**