Titanacycles Derived from Reductive Coupling of Nitriles, Alkynes, Acetaldehyde, and Carbon Dioxide with Bis(pentamethylcyclopentadienyl) (ethylene)tltanium(I I)'

Steven A. Cohen and John E. Bercaw"

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 9 1125

Received October 3, 1984

The reactions of bis(pentamethylcyclopentadienyl)(ethylene)titanium(II), $(\eta$ -C₅Me₅)₂Ti(η -C₂H₄) (1), with alkynes, nitriles, carbon dioxide, and acetaldehyde have been examined and the products characterized spectroscopically. The most common reaction pathway observed is the addition of 1 equiv of substrate to 1 affording the respective monomeric metallacyclopentene $(\eta$ -C₅Me₅)₂TiC(R)=CMeCH₂CH₂ (R = H and Me), metallacycloimine $(\eta$ -C₅Me₅)₂TiN==C(R)CH₂CH₂ (R = CH₃, C₂H₅, t-C₄H₉, and p-CH₃C₆H₄), metallalactone $(r_C E_b M e_b)$ ^TiOC(O)CH₂CH₂, and oxymetallacyclopentane $(r_C E_b M e_b)$ ₂TiOCH(CH₃)-CH2CH2 products. In each case, the preferred (often exclusive) product from the reaction **has** the sterically least-hindered substituent adjacent to the titanium atom. Depending upon the reaction conditions and the particular substrate chosen, insertion into a C-H bond or substitution of the C_2H_4 ligand in 1 by the substrate may be observed, as evidenced by the formation of $(\eta$ -C₅Me₅)₂Ti(C=CR)(C₂H₅), where R = CH₃ and t -C₄H₉, and $(\eta$ -C₅Me₅)₂Ti(η -RC==CR), where R = CH₃ and C₆H₅. Many of the Ti(IV) products are found to undergo further reactions under relatively mild conditions. For example, carbonylation of the metallacyclopentene $(\eta$ -C₅Me₅)₂TiC(CH₃)=C(CH₃)CH₂CH₂ quantitatively yields (η -C₅Me₅)₂Ti(CO)₂ and the corresponding dimethylcyclopentenone while the metallacycloimine compounds (η - C_5M_{52} TiN=C(R)CH₂CH₂ undergo a 1,3 hydrogen shift to generate metallacycloenamine species (η - C_5Me_5)₂TiNHC(R)=CHCH₂, where R = CH₃ and C₂H₅. The latter rearrangement has been found to occur via an intramolecular pathway and is sensitive to the steric bulk of the R group. metanacyclopen **Division of Chem**
Division of Chem
alkynes, nitriles, carbon diox
spectroscopically. The most
to 1 affording the respective
and Me), metallacycloimine
<u>metal</u>lalactone $(\eta$ -C₅Me₅)₂Ti(
CH₂CH₂ products. In each c $\frac{1}{2}$ and $\frac{1}{2}$ **I** $\frac{1}{2}$ \frac

Introduction

We recently reported the synthesis and structure of **bis(pentamethylcyclopentadienyl)(ethylene)titanium(II),** $(\eta$ -C₅Me₅)₂Ti(η -C₂H₄)⁽¹⁾, together with some preliminary studies of its reactivity.' Displacement of the ethylene from 1 by good π -acceptor ligands such as CO and CH₃NC is observed, whereas treatment of 1 with H_2 or HCl results in the liberation of ethane. Incorporation **of** ethylene in the organotitanium product was observed only in the case of the reversible reductive coupling of a second ethylene molecule, affording the titanacyclopentane $(η$ - C_5Me_5)₂ $TicH_2(CH_2)_2CH_2$ (2) (eq 1). The instability of 2

$$
(\eta \cdot C_5Me_5)_2 T i(\eta \cdot C_2Ha) + C_2Ha
$$
 $(\eta \cdot C_5Me_5)_2 T i$ (1)

has precluded further study of this titanacyclopentane species, however. Since substrates having more reactive carbon-carbon multiple bonds or those with carbon-nitrogen or carbon-oxygen multiple bonds were expected to provide greater stability for the titanacyclic products derived from reductive coupling with the ethylene ligand, we have examined the reactions of 1 with alkynes, nitriles, acetaldehyde, and carbon dioxide. The results of these studies are reported herein.

Results

Reactions of $(\eta$ **-C₅Me₅)₂Ti(** η **-C₂H₄) with Alkynes.** Compound **1** reacts rapidly with **1** equiv of propyne at **-50** "C, affording approximately equal amounts of the metallacyclopentene complex $(\eta\text{-}C_5\text{Me}_5)_2\text{TiCH}=\text{C}(\text{CH}_3)$ - CH_2CH_2 (3) and the propynyl ethyl species (7) -, $\begin{array}{c} \textbf{Reaction} \ \textbf{Compound} \ \texttt{C, affordi} \ \textbf{tallacyclope} \ \textbf{tallacyclope} \ \textbf{CH}_2\textbf{CH}_2 \end{array}$

 C_5Me_5)₂Ti(C=CCH₃)(CH₂CH₃) **(4).** Spectroscopic data

$$
(\eta - C_5Me_5)_2Ti(\eta - C_2H_4) \xrightarrow{CH_3C \equiv CH} (\eta - C_5Me_5)_2Ti \qquad +
$$

3

$$
(\eta - C_5Me_5)_2Ti \qquad (2)
$$

$$
(\eta - C_5Me_5)_2Ti \qquad (2)
$$

(IR 3, ν (C=C) 1587, 4, ν (C=C) 2100 cm⁻¹; NMR, Tables I and 11) are consistent with the structures shown in eq **2.** The 2-methyl isomer of **3** is not observed, presumably due to unfavorable steric interactions between the methyl group and the $[C_5Me_5]$ ligands.² Formation of 3 and 4 proceeds without loss of the ethylene ligand from **1;** addition of propyne to a solution of **1** containing 0.6 equiv of ¹³CH₂¹³CH₂ does not lead to incorporation of labeled ethylene in the products, either upon reaction at -50 °C or on standing several hours at 25 °C. Over a period of several days at 25 °C, the propynyl ethyl tautomer rearranges to **3** (eq **3).** Hence, the reaction of **1** with propyne provides a quantitative, albeit rather slow route to **3.**

^{*}Contribution No. **7103.**

^{(1) (}a) "Abstracts of Papers", 179th Meeting of the American Chemical Society, Houston, March 1980; American Chemical Society: Washington, D.C., 1980; PETR 27. (b) "Abstracts of Papers", 182nd National Meeting of the Ameri Dissertation, California Institute of Technology, 1982. (d) Cohen, S. A.;
Auburn, P. R.; Bercaw, J. E. J. Am. Chem. Soc. 1983, 105, 1136-43.
(2) (a) Application of recent theoretical results²⁶ suggests the 3-
methyltitan isomer of 3. The regiochemistry of the metallacyclopentenes derived from $CH_3C = CR$ remains unsettled; however, the regiospecific formation of the cycloimines, lactone, and oxycyclopentane (vide infra) also are in accord with this analysis. (b) Stockis, A.; Hoffmann, R. J. Am. Chem. Soc. 1980, **102, 2952-62.**

Titanacycles Derived from Reductive Coupling

The titanacyclopentene complex **3** is **also** slowly obtained **as** the predominant product (80% pure by lH NMR) from the reaction of 1 with allene at 25 "C. The course of this reaction is not known; however, decamethyltitanocenecatalyzed isomerization of allene to propyne? analogous to the catalytic isomerization of olefins by $1¹$ may be a preliminary step.

Treatment of a toluene solution of 1 with **1** equiv of $Me₃CC=CH$ at -40 °C quantitatively affords the tertme₃CC=CH at -40 °C quantitatively arrords the tert-
butylacetylide ethyl complex 5 (eq 4). Formation of the
tert-butyl-substituted metallacyclopentene product anal-
ogous to 3 is not observed, either initially at -40 tert-butyl-substituted metallacyclopentene product analogous to **3** is not observed, either initially at -40 "C or **after** weeks at 25 °C.

$$
(\eta \cdot C_5Me_5)_2 \text{Ti} (\eta \cdot C_2H_4) + Me_3C \equiv CH
$$
\n
$$
1
$$
\n
$$
(\eta \cdot C_5Me_5)_2 \text{Ti} \qquad (4)
$$
\n
$$
C \ll CMe_3
$$
\n
$$
5
$$

While the addition of terminal alkynes to 1 occurs rapidly at low temperatures, internal alkynes react more slowly with 1. For example, the reaction with 2-butyne proceeds over a period of **8** h at 25 "C, to afford a quantitative yield ⁽¹H NMR) of $(\eta$ -C₅Me₅)₂TiC(CH₃)=C- $\overline{\text{ (CH}_3\text{)CH}_2\text{CH}_2}$ (6) (eq 5). Red-orange 6 is isolable as a slowly with 1. For example, the reaction with
proceeds over a period of 8 h at 25 °C, to affore that it ative yield (¹H NMR) of $(\eta$ -C₅Me₅)₂TiC
(CH₃)CH₂CH₂ (6) (eq 5). Red-orange 6 is ise
 $(\eta$ -C₅Me₅)₂T the reaction of 1 with allene at 25^oC. The
reaction is not known; however, decameth
reaction is not known; however, decameth
catalyzed isomerization of allene to propyr
preliminary step.
Treatment of a toluene solution լո
-

1

thermally stable, crystalline solid. Traces of free C_2H_4 and the 2-butyne adduct $(\eta$ -C₅Me₅)₂Ti(η -CH₃=CCH₃)(7) are detected ('H NMR) during the reaction of **1** with CH3- C=CCH3. Thermally unstable **7** may be independently prepared⁴ by addition of 2-butyne to $[(\eta - C_5Me_5)_2\text{Ti}]_2(\mu - \text{N}_2)$. Treatment of 1 with diphenylacetylene yields only *(q-* C_5Me_5)₂Ti(η -PhC=CPh)^{4a} (8) and C_2H_4 (eq 6). No di- $(C_5Me_5)_2$ Ti(η -PhC=CPh)^{4a} (8) and C_2H_4
 $(\eta$ -C₅Me₅)₂Ti(η -C₂H₄) + PhC=CPh \rightarrow

$$
(\eta \text{-} C_5 \text{Me}_5)_2 \text{Ti} (\eta \text{-} \text{PhC} \equiv \text{CPh}) + C_2 \text{H}_4 \tag{6}
$$

phenyltitanacyclopentene is formed, even at elevated temperatures under excess ethylene. Both **7** and **8** exhibit rather low C=C stretching frequencies in the IR $(7, \nu$ - $(C=C)$ 1683, 8, $\nu(C=C)$ 1647 cm⁻¹).

The reactions of 1 with the unsymmetrical internal alkynes 2-pentyne, 2-octyne, and 1-phenylpropyne also produces appreciable concentrations of the transient alkyne adducts $(\eta$ -C₅Me₅)₂Ti(η -CH₃C=CR), where R = CH_2CH_3 , $CH_2(CH_2)$ ₃ CH_3 , and Ph, prior to formation of the corresponding titanacyclopentenes. The final products have been characterized only by ${}^{1}H$ and ${}^{13}C$ NMR spectrometry, and in each case the titanacyclopentene appears to be present as a mixture of the 2-methyl and 3-methyl isomers.⁵

Carbonylation (3 atm) of **6** occurs within **18** h at **80** "C to afford $(\eta$ -C₅Me₅)₂Ti(CO)₂⁶ and 2,3-dimethylcyclopent-2-enone' quantitatively by 'H NMR (eq **7).** Unfortu-

nately, $(\eta\text{-}C_5\text{Me}_5)_2\text{Ti(CO)}_2$ is unreactive toward C_2H_4 and/or $\mathrm{CH_3C\text{=}CCH_3}$, even under forcing conditions, so that a catalytic synthesis of **2,3-dimethylcyclopent-2-enone** based on this chemistry has not yet been achieved.⁸

Reactions of $(\eta$ -C₅Me₅)₂Ti(η -C₂H₄) with Nitriles. Addition of **1** equiv of acetonitrile to a toluene solution of 1 at -50 "C results in quantitative formation of the metallacycloimine complex $(\eta$ -C₅Me₅)₂TiN=C(CH₃)- η -C₅Me₅)₂Ti

+ 3CO +

6

6

Hately, $(\eta$ -C₅Me₅)₂Ti(CO)₂ is

and/or CH₃C=CCH₃, even u

that a catalytic synthesis of 2,3

based on this chemistry has
 Reactions of $(\eta$ -C₅Me₅)₂¹

Addition of CH2CH2 **(9)** (eq **8).** Red-orange **9** has been characterized $CH_2CH_2(9)$ (eq 8). Red-orange 9 has been characterized
(π -C₅Me₅)₂Ti(π -C₂H₄) + CH₃CN - (π -C₅Me₅)₂Ti

$$
(\eta - C_5Me_5)_2 Ti(\eta - C_2Ha) + CH_3CN
$$
 — $(\eta - C_5Me_5)_2 Ti$ (8)
1

by 'H and 13C NMR spectrometry (Tables I and 11) and infrared spectroscopy (v(C=N) **1638** cm-'). Above **-10** "C an equilibrium is established between **9** and its metallacycloenamine tautomer **10** (equ 9). The value of *Keq* varies

$$
\begin{array}{c}\n\begin{array}{c}\n\hline\n\end{array} \\
\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad (9)
$$

from \sim 0.4 at 0 °C to \sim 0.8 at 25 °C. The specificity of this **1,3** hydrogen shift is apparent from the fact that $(\eta$ -C₅Me₅)₂TiN= $C(CD_3)CH_2CH_2$, prepared from 1 and

^{(3) (}a) Schwartz, J.; Hart, D. W.; McGiffert, B. *J.* Am. Chem. SOC. 1974, **96,** 5613-4. (b) McGrady, N. D.; McDade, C.; Bercaw, J. E. In 'Organometallic Compounds: Synthesis, Structure, and Theory"; B. L. Shapiro, Ed; Texas A & M Press: College Station, TX, 1983; pp 46–85.
(c) Doherty, N. M. Ph.D. Dissertation, California Institute o' Technology,
1984. (d) McDade, C.; Bercaw, J. E. J. Organomet. Chem. 1985, 279, 1984. (d) McDade, C.; Bercaw, J. E. J. Organomet. Chem. 1985, 279, 281-315.

^{(4) (}a) Threlkel, R. S. Ph.D Dissertation, California Institute of Technology, 1980. (b) Spectroscopic data for 7: NMR, Tables I and II; IR (Nujol muil) 2705 (w), 1683 (w), 1495 (m), 1100 (m), 1025 (s), 800 (m), **595 (E),** 425 **(a),** 360 (m) cm-'.

^{(5) (}a) Ratio of the isomeric 2-methyl- and 3-methyl-substituted me- tallacyclopentenes derived from ¹and 2-pentyne is €020, from 2-octyne, 8515, from 1-phenylpropyne, 5595 (spectroscopic data suggest that the major isomer may be the 2-phenyl-3-methyltitanacycle but this has not been confirmed). (b) Limited spectroscopic data for $(\eta$ -C₅Me₅)₂Ti(η -CH₃C≡CR) and the isomeric metallacyclopentenes are available as sup-
plementary material.

⁽⁶⁾ Bercaw, J. E.; Marvich, R. H.; Bell, L. G.; Brintzinger, H. H. J. Am. Chem. SOC. 1972,94, 1219-38. (7) Berkowitz, W. F.; Ozorio, A. A. *J.* Org. Chem. 1971,36,3787-92 and

references therein.

^{(8) (}a) The carbon monoxide insertion/reductive elimination behavior of 6 differs significantly from that of $2^{1.86}$ or from the reactivity of zirconocene^{8c,d} and decamethylzirconocene^{3b,d,8e} complexes. The reactivity of 6 and CO is typical of other dialkyl- or diaryltitanocene derivatives,
however.^{8b,f.g} (b) McDermott, J. X.; Wilson, M. E.; Whitesides, G. M. *J*. Am. Chem. Soc. 1976, 98, 6529-35 and references therein. (c) Fachinetti, G.; Fochi, G.; Floriani, C. J. Chem. Soc. Dalton Trans. 1977, 1946-50. (d) Erker, G.; Kropp, K. J. Organomet. Chem. 1980, 194, 45-60. (e) Manriquez, J. M.; McAliiter, D. R.; Sanner, R. D.; Bercaw, J. E. *J.* Am. Chem. SOC. 1978,100,2716-24. **(0** Ma&, H.; Sonogashira, K.; Hagihara, N. Bull. Chem. SOC. *Jpn.* 1968,41,750-1. (g) Facinetti, G.; Floriani, C. *J.* Chem. *SOC.* Chem. *Commun.* 1972,654-5.

1008 Organometallics, Vol. 4, No. **6,** *1985 Cohen and Bercaw*

 $\overline{}$

 $\overline{}$

Sample temperature 34 °C unless given. b s = singlet, d = doublet, t = triplet, q = quartet, br = broad. c ¹J(¹⁵N-H).

CD₃CN, yields only $(\eta$ -C₅Me₅)₂TiNHC(CD₃)=CHCH₂. Moreover, no H-D scrambling is observed after 2 days at 25 "C (2H NMR).

Carbon-carbon bond formation in the generation of **9,** substantiated by the ${}^{13}C-{}^{13}C$ coupling constants observed for '%-labeled **9** (Table 11), **is** found to be reversible. Thus, while incorporation of ¹³CH₂¹³CH₂ into 9 is not detected (lH and 13C NMR) when addition of CH3CN to **1** is carried out at -50 °C in the presence of 1 equiv of $^{13}CH_{2}^{13}CH_{2}$, unenriched ethylene and ¹³C₂-labeled 9 and 10 are slowly formed at 25 "C, demonstrating that ethylene exchange occurs subsequent to the formation of **9** and **10** (eq 10).

The lability of the ethylene is likely responsible for the rapid decomposition that occurs when solutions of **9** and **10** are heated above **40** "C or exposed to CO, excess CH₃CN, or vacuum above -20 °C. In each case, C_2H_4 is produced along with a mixture of as yet unidentified organotitanium compounds.

As a solid, **9** can be stored for months at -20 "C and handled for brief periods at **25** "C without decomposition **or** formation of **10.** Thus, it proved possible to address the molecularity of the isomerization of 9 to 10 with a crossover experiment. A toluene solution of doubly labeled (*n*-
 α **M**₂) $\overline{R^{15M} - C(GU \setminus CD)}$ (D₁(0,15M₂) and unlabeled $\mathrm{C}_5\mathrm{M}\mathrm{e}_5$ ₂Ti¹⁵N= $\mathrm{C}(\mathrm{CH}_3)\mathrm{CD}_2\mathrm{CD}_2$ (9-¹⁵N,d₄) and unlabeled **9** ($[9^{-15}N,d_4]/[9] = 1.2 \pm 0.4$) was warmed to 0 °C, and the

 $9 \rightleftharpoons 10$ tautomerization was monitored by ¹H NMR spectrometry. The extent of conversion of **9** to **10** was indicated by their respective C_5Me_5 intensities and the extent of crossover determined from the intensities of the ¹⁴N-H and ¹⁵N-H resonances $(^1J(^{15}N-H) = 72$ Hz for 10-**15N).** Although some decomposition is detected (ca. **3%)** during the latter stages of the experiment, the extent of H-D scrambling observed in the products (column **5,** Table 111) remains small as equilibrium between **9** and **10** is reached. Thus the imine \rightleftharpoons enamine tautomerization appears to proceed predominantly in an intramolecular fashion (eq 11).

Propionitrile, **2,2-dimethylpropionitrile,** and p-tolunitrile also react rapidly with 1 to yield the corresponding titanacycloimines (eq 12). The infrared and NMR spectra

$$
(\eta - C_5 \text{Me}_5)_2 \text{Ti} (\eta - C_2 \text{H}_4) + \text{RC} \equiv \text{N} \rightarrow (\eta - C_5 \text{Me}_5)_2 \text{Ti} \qquad (12)
$$
\n
$$
\text{11. R} = \text{CH}_2 \text{CH}_3
$$
\n
$$
\text{12. R} = \text{CH}_2 \text{CH}_3
$$
\n
$$
\text{13. R} = \rho \cdot C_6 \text{H}_4 \text{CH}_3
$$

of **11, 12,** and **13** closely resemble those of **9** but, unlike **9,** these derivatives proved sufficiently stable in the solid state for full characterization. The ethyl-substituted titanacycloimine complex **l l** tautomerizes slowly **to** a small extent $(K_{eq} = 0.10$ at $25 °C$, yielding $(n C_5Me_5$)₂TiNHC(C_2H_5)=CHCH₂ (14), which has been characterized by **'H** and 13C NMR spectrometry. No isomerization $(K_{eq} < 0.01)$ of 12 or 13 is observed even after several weeks at 25 °C.

Reactions of $(\eta$ **-C₅Me₅)₂Ti(** η **-C₂H₄) with Carbon Dioxide and Acetaldehyde.** Addition of 1 equiv of CO₂ to a toluene solution of 1 at **-78** "C rapidly affords the bright red titanalactone $(\eta \text{-} \text{C}_5\text{Me}_5)_2 \text{TiOC(O)CH}_2\text{CH}_2$ (15) in high yield (eq 13). Monomeric **15** exhibits a v(C0) at **Example 3 (a) (a) (a) (a) (b) (b) (b) (b) (b) (c) (b) (c) (b) (c) (c)** ———————

$$
\eta \cdot C_5 \text{Me}_5 \text{ }_2 \text{Ti}(\eta \cdot C_2 \text{H}_4) + C_2 \longrightarrow (\eta \cdot C_5 \text{Me}_5) \text{ }_2 \text{Ti} \longrightarrow
$$
 (13)

1653 cm-' in its infrared spectrum for the uncoordinated

 α

Table 11. 13C NMR Data

Titanacycles Derived from Reductive Coupling Organometallics, Vol. 4, No. 6, 1985 **1011**

(I **Sample temperature 34** "C **unless given. s** = **singlet, d** = **doublet, t** = **triplet, q** = **quartet, br** = **broad. Long-range** C-H **coupling values. e Long-range** C-C **coupling values.** ^{*a*} Sample temperature 34 °C unless given. ^{*o*} s = singlet, d = doublet, t = triplet, q = quartet, br = broad. ^{*c*} (xy) refers to carbon assignments. ^{*d*} Long-range C-H coupling values.

^a [10]/[9]/ K_{eq} , where $K_{eq} = 0.39 \pm 0.02$ at 0 °C. ^b [10-¹⁵NH]/[10-¹⁴NH]/ S_{eq} where $S_{eq} = 1.2 \pm 0.4$ (statistical scrambling ratio from initial [9-¹⁵N,d₄]/[9], ignoring thermodynamic isotope effects).

carbonyl. The 'H and 13C NMR spectra are readily as**signed,** and the 13C-'3C coupling constant of **52** Hz between the @-methylene carbon and carbonyl carbon of *(v-* $\rm C_5Me_5)_2TiO^{13}C(O)^{13}CH_2CH_2$ clearly establishes the formation of the C-C bond of **15** (Table **11).** Compound **15** is thermally robust as a solid and in solution but decomposes slowly upon exposure to visible light. When carried out above 0 °C , the carboxylation of $1 \text{ (CO}_2:1 = 1)$ does not produce **15;** rather ethylene is liberated, and an unidentified light-colored precipitate is formed. **EURICE CALLON** $O^{13}C(O)^{13}CH_2CH_2$ clearly establishes the for-

y robust as a solid and in solution but decom-

y upon exposure to visible light. When carried and

y upon exposure to visible light. When carried and
 $0 °C$, the carboxy

Acetaldehyde reacts rapidly with 1 below -20 °C to yield the oxytitanacyclopentane complex $(\eta$ -C₅Me₅)₂TiOCH- $\overline{\text{CH}_3\text{)CH}_2\text{CH}_2}$ (16) (eq 14). The 90-MHz ¹H NMR **1**

spectrum for **16** is consistent with the structure shown,

having two resonances assignable to the two inequivalent $[C_5Me_5]$ ligands and a doublet for the methyl substituent. At 500 MHz, the six highly coupled hydrogen resonances

of the TiOCH(CH₃)CCH'CHH' moiety are resolved (Table I). The infrared and ¹³C NMR spectra also support the formulation of **16.** Bright orange-red **16** is quite stable, and there is no indication of formation of the tautomeric acyl ethyl complex $(\eta$ -C₅Me₅)₂Ti(COCH₃)(CH₂CH₃) even after several days at **25** "C.

The reaction of **1** with acetone differs considerably from that of **1** with acetaldehyde and does not afford a 3,3-di**methyloxytitanacyclopentane** species analogous to **16.** No reaction between 1 and 1 equiv of $(CH₃)₂CO$ is observed below 0 "C. At **25** "C, evolution of ethylene accompanies the reaction. Unreacted **1** and a mixture of unidentified organotitanium products remain in solution.

Discussion

Bis(pentamethylcyclopentadienyl)(ethylene)titanium (1) reacts with a variety **of** unsaturated organic compounds.

The reactions of **1** with 2-butyne and several other methyl-substituted internal alkynes proceed analogously to the reaction of **1** with ethylene (eq l), affording 2,3-disubstituted titanacyclopentenes (eq **15).** Displacement of the

ethylene ligand of **1** by methyl-substituted internal alkynes also occurs and competes effectively with the reductive coupling pathway, since acetylene adducts and ethylene are detected by NMR as transient species. 9 With diphenylacetylene, only the simple displacement of ethylene is observed, yielding the very stable adduct **(7-** C_5Me_5)₂Ti(η -PhC \equiv CPh). We believe that the steric bulk and the electron-withdrawing capability of the phenyl substituents of $(\eta$ -C₅Me₅)₂Ti(η -PhC=CPh) prevent formation of the **2,3-diphenyltitanacyclopentene.** Effectively, the titanium is more "oxidized" in $(\eta$ -C₅Me₅)₂Ti(η -PhC== CPH) than are the metal centers in $(\eta - \tilde{C}_5Me_5)_2$ Ti(η - $CH_3C=CR$, where $R = CH_3$, η -C₅H₁₁, and Ph. In this regard, it is interesting that reductive coupling of 2 equiv of alkyne by decamethyltitanocene is not observed,⁴ even at elevated temperatures in the presence of excess alkyne, whereas for both the parent $[(n-C_5H_5)_2Ti]^{10}$ and decamethylzirconocene⁴ systems, very stable metallacyclopentadiene derivatives are typically obtained. Apparently, a delicate balancing of electronic and steric effects for the decamethyltitanocene system makes the 2-methyltitanacyclopentene compounds much preferred over both the titanacyclopentane and titanacyclopentadiene products (Scheme I).

With terminal alkynes, insertion into the C-H bond may be exclusive pathway as observed with $Me₃CC=CH$ (eq **4),** or it may be competitive with reductive coupling as observed with propyne (eq 2). Isomerization of the propynyl ethyl complex to the 3-methyltitanacyclopentene occurs under more forcing conditions, suggesting parallel pathways for the reaction of 1 and CH₃C=CH, with 3 the

thermodynamically favored product (Scheme 11).

Rapid reductive coupling of nitriles, acetaldehyde, and carbon dioxide with $(\eta$ -C₅Me₅)₂Ti(η -C₂H₄) also is observed. Formation of strong Ti-N or Ti-0 bonds in the fivemembered-ring products undoubtedly provides much of the driving force **for** these reactions. Although **1** and CH,CN directly afford **9** by an associative pathway, the slow incorporation of ${}^{13}C_2H_4$ into the titanacycloimine ring suggests that the reductive coupling reaction is reversible and that ethylene may be lost to solution from a nitrileethylene intermediate **17, as** shown in Scheme 111. Such behavior is reminiscent of the reactivity of 1 with alkynes (vide supra) and suggests that the nitrile is η^2 -coordinated **(17b),** at least in the nitrile-ethylene adduct that couples to the titanacycloimine product.² The end-on η^1 isomer **17a** is a reasonable alternative structure by analogy to η^1 -N₂ adducts of decamethyltitanocene¹¹ but appears less likely than **17b** to afford 9.12

Isomerization of the metallacycloimine complexes to equilibrium mixtures of (η -C₅Me₅)₂TiN==C(R)CH₂CH₂ and $(\eta$ -C₅Me₅)₂TiNHC(R)=CHCH₂ occurs for R = CH₃ and C_2H_5 but not for R = CMe₃ or p-CH₃C₆H₄, suggesting that steric rather than electronic effects are the determining factor. The imine \rightleftharpoons enamine tautomerization is a 1,3 hydrogen shift and thus a symmetry-forbidden reaction. Such tautomerizations are, however, commonly catalyzed by even traces of acid or base.13 Significantly, the results of the crossover experiment (Table 111) indicate that the $9 \rightleftharpoons 10$ isomerization occurs *intramolecularly*. Although there is little additional evidence that bears directly on the mechanism of this transformation, we believe the observations are best accomodated by a sequence involving intramolecular, titanium-mediated, reversible hydrogen eliminations from the β -methylene carbon of the Illine complexes

⁽⁹⁾ **Similar behavior has been reported for Ta(olefin) complexes: Smith, G.; Schrock, R. R.; Churchill, M. R.; Youngs, W. I.** *Inorg. Chem.* **1981,20, 387-98.**

^{(10) (}a) Sonogashira, K.; Hagihara, N. Bull. Chem. Soc. Jpn. 1966, 39, 1178–82. (b) Mattia, J.; Sikora, D. J.; Macomber, D. W.; Rausch, M. D; Hickey, J. P.; Friesen, G. D.; Todd, L. J. J. Organomet. Chem. 1981, 213, **441-50 and references therein. (c) Demerseman, B.; Dixneuf, P. H.** *J. Chem.* **SOC.** *Chem. Commun.* **1981,665-6.**

⁽¹¹⁾ Sanner, R. D.; Duggan, D. M.; McKenzie, T. C.; Marsh, R. E. Bercaw, J. **E.** *J. Am. Chem.* **SOC. 1976,98,8358-65.**

^{(12) (}a) *Reversible* oxidative coupling of two nitriles by $(\eta - C_5M_{\epsilon_5})Zr^{\text{II}}$ **has been found to be facile. (b) Wolczanski, P. T. Ph.D. Dissertation, California Institute of Technology, 1981.**

^{(13) (}a) Lowry, T. H., Richardson, K. S. 'Mechanism and Theory in Organic Chemistry"; Harper Row: New York, 1976. (b) March, J.
"Advanced Organic Chemistry"; McGraw-Hill: New York, 1977. (c)
Dykes, S. F. "The Chemistry of Enamines"; University Press: Cambridge, **1973.**

imine and from the α -nitrogen of the enamine (Scheme **1v).14**

Experimental Section

General Considerations. *All* manipulations were performed by using glovebox or high vacuum line techniques. Argon, nitrogen, and hydrogen were purified by passage over MnO on vermiculite and activated Linde 4A molecular sieves. Solvents were purified by vacuum transfer, first from LiA1H4 and then "titanocene".⁶ Benzene- d_6 , cyclohexane- d_{12} , and toluene- d_8 (Aldrich, Stohler) were dried over molecular sieves and vacuum transferred from "titanocene". Propyne, 2-butyne, 2-pentyne, 3,3-dimethyl-l-butyne (all Farchan), ethylene, allene, and acetaldehyde were freeze-pump-thaw degassed at -196 °C. Methyl iodide, CD_3CN (99% D, Kor), ¹³CH₃CN (90% ¹³C, Stohler), and all other nitriles were vacuum transferred from $CaH₂$. Acetonitrile- $1^{-13}C$ and $CH_3C^{15}N$ were prepared by addition of methyl iodide to a toluene solution containing 18-crown-6 and $\mathrm{Na^{13}CN}$ $(91.5\%$ 13 C, Prochem) or KC 15 N (99 $\%$ 15 N, Koch), respectively. 17 Carbon dioxide and carbon monoxide were used directly from the cylinder. Ethylene- ${}^{13}C_2$ (90% ${}^{13}C$, Merck, Sharp, and Dohme) and ethylene- d_4 (98% D, Stohler) were freeze-pump-thaw degassed at -196 °C and distilled at -78 °C. Acetone and 1phenylpropyne were distilled from molecular sieves; diphenylacetylene was recrystallized from diethyl ether. $[(\eta - \mathbf{r})]$ C_5Me_5)₂Ti]₂(μ -N₂), (η -C₅Me₅)₂Ti(η -C₂H₄),¹ (η -C₅Me₅)₂Ti(η - $^{13}C_2H_4$),¹ and $(\eta$ -C₅Me₅)₂Ti(η -C₂D₄)¹ were prepared by previously reported methods.

Proton, ²H, and ¹³C NMR spectra were recorded by using Varian EM-390, JEOL FX9OQ and Bruker WM-500 spectrometers. Spectra were taken in benzene or toluene solutions, and data are referenced to Me₄Si at δ 0. Infrared spectra were obtained by using a Beckman 4240 spectrophotometer. Spectra of solids were recorded as Nujol mulls using KBr plates; spectra of gases were measured by using a 10-cm path-length cell (NaCl windows) fitted with a stopcock and ball joint for attachment to the vacuum line. Molecular weights were determined cryoscopically or by vapor-phase osmometry. Elemental analyses were performed by Alfred Bernhardt Analytical Laboratories, Germany.

Procedure. A majority of the experiments were performed by procedures similar to those detailed for **9.** Isolated yields are generally reduced from those observed spectroscopically due to the high solubility of the compounds. **'H** and 13C NMR data are found in Tables I and II, respectively.¹⁸

 $(\eta$ -C₅Me₅)₂TiCH=C(CH₃)CH₂CH₂ (3) and (η -C₅Me₅)₂Ti- $(C=CCH₃)(C₂H₅)$ (4). Toluene (10 mL) and propyne (2.0 mmol) were condensed into a flask containing **1** (700 mg, 2.02 mmol). The solution was warmed to 25 °C and stirred overnight. Volatiles were removed in vacuo, and the red-orange residue was recrys**tallized** from octane to yield an 8020 mixture of **3** and **4.** Samples

left in solution contained no 4 ('H NMR) after several days while the concentration of **3** increased proportionally vs. an internal standard. Isolated yield of **3:** 450 mg (58%); IR 2725 (w), 1587 (m), 1495 (m), 1312 (w), 1023 (s), 400 (s), cm⁻¹. Anal. Calcd for C25H38Ti: C, 77.70; H, 9.91; Ti, 12.39; mol wt, 386. Found: C, 77.15; H, 9.87; Ti, 12.66; mol wt, 384. **4:** IR 2720 (w), 2100 (s), 1115 (m), 1023 (s), 973 (s) cm^{-1} . Addition of $Me₃CC=CH$ to 1 similarly gives $(\eta$ -C₅Me₅)₂Ti(C=CCMe₃)(C₂H₅) (5) as determined by NMR.

 $(\eta - C_5M_{e_5})_2$ **TiC(CH₃)=C(CH₃)CH₂CH₂ (6).** Toluene (5) mL), 2-butyne (8 mmol), and ethylene (2 mmol) were condensed at -196 "C into a flask containing **1** (250 mg, 0.72 mmol). The mixture was warmed to 25 "C and stirred 12 h. Volatiles were removed under vacuum at 0 "C to yield a crude red-orange solid which was recrystallized from petroleum ether: yield (two crops) 200 mg (70%); IR 2795 (w), 2720 (w), 1580 (m), 1492 (m), 1020 (s), 590 (w) cm⁻¹. Anal. Calcd for $\rm C_{26}H_{40}Ti:$ C, 77.97; H, 10.07; Ti, 11.96; mol wt, 401. Found: C, 77.75; H, 9.94; Ti, 11.85; mol **wt.** 386.

 $(\eta - C_5 M_{e_5})_2$ TiN=C(CH₃)CH₂CH₂ (9). Toluene-d₈ (0.3 mL) and CH_3CN (0.073 mmol) were condensed at -196 °C into an NMR tube containing **1** (0.069 mmol). The mixture was warmed to -78 "C and the reaction monitored by 'H and 13C *NMR* between -70 and 30 °C.

Petroleum ether (7 mL) and acetonitrile (0.88 mmol) were condensed at -196 "C into a 10-mL flask containing **1** (230 mg, 0.66 mmol). The mixture was warmed to -40 °C, stirred 30 min, and then cooled to -78 °C. The slurry of red-orange crystals was filtered and dried below -30 "C, affording 160 mg of **9** (62%): IR (from sample containing **9** and **10)** 3370 (w), 2725 (w), 1638 (s), 1571 (m), 1280 (m), 1148 (m), 1020 (s), 645 (s), 617 (s) 595 (s), 517 *(8)* cm-'. Similar procedures were employed for the isolation and then cooled to -78 °C . The slurry of red-orange crystals was
filtered and dried below -30 °C , affording 160 mg of 9 (62%): IR
(from sample containing 9 and 10) 3370 (w), 2725 (w), 1638 (s),
1571 (m), 1280 (m (CMe3)CHzCH2 **(12)** and **(~-C5Me5)2TiN=C(C6H4CH3)CH2CH2** . **(13).** 11: yield 86%; IR 2722 (w), 1640 (s), 1278 (s), 1100 (s), 1020 (s), 942 (m), 663 (s), 510 (s) cm⁻¹. Anal. Calcd for $C_{25}H_{39}NTi$: C, 74.79; H, 9.79; N, 3.49; Ti, 11.93; mol **wt,** 401. Found: C, 74.64; H, 9.85; N, 3.31; Ti, 12.05; mol **wt,** 390. **12:** yield 56%: IR 1620 (s), 1283 (w), 1055 (m), 1020 (m), 950 (m), 635 (m) cm-'. Anal. Calcd for $C_{27}H_{43}NTi$: C, 75.50; H, 10.09; N, 3.26; Ti, 11.15. Found: C, 74.84; H, 9.97; N, 3.52; Ti, 11.30. **13:** yield 28%; IR 2725 (w), 1680 (s), 1555 (w), 1215 (s), 1022 (s), 830 (s), 455 (m) cm-'. Anal. Calcd for $C_{30}H_{41}NTi$: C, 77.73; H, 8.92; N, 3.02; mol wt, 464. Found: C, 77.64; H, 8.70; N, 3.21; mol wt, 439.

(q-C5Me5)2TiOC(0)CH2CH2 **(15).** Carbon dioxide (1.07 mmol) was added to a stirred solution of **1** (360 mg, 1.04 mmol) in 10 mL of toluene at -78 "C. The reaction was allowed to proceed 15 min at -78 "C, and then the mixture was warmed to 25 °C. The toluene and excess $CO₂$ were removed under vacuum, and the resulting red solid was recrystallized from cold petroleum ether to give 325 mg (80%) pure **15.** IR 1657 (vs), 1277 (s), 1250 (s), 1219 (m), 1020 (m), 895 (s), 860 (m), 421 (s), 380 (s) cm-'. Anal. Calcd for C₂₃H₃₄TiO₂: C, 70.76; H, 8.78; Ti, 12.27; mol wt, 390. Found: C, 70.31; H, 8.81; Ti, 12.15; mol wt, 386.

(q-C5Me5)2TiOCH(CH3)CH2CH2 (16). Following the same procedure **as** that used for 15, the red-orange, very soluble **16** was isolated in 31% yield: IR 2722 (w), 1363 (m), 1320 (m), 1217 (m), 1115 (m), 1080 (s), 1020 (m), 1002 (m), 903 (s), 830 (m), 582 (s) cm⁻¹. Anal. Calcd for $C_{24}H_{38}TiO$: C, 73.83; H, 9.81; Ti, 12.27. Found: C, 73.40; H, 9.93; Ti; 12.79.

Carbonylation of 6. Benzene- d_6 (0.5 mL) was condensed at -196 "C into a thick-walled glass vessel containing **6** (45 mg, 0.13 mmol). Carbon monoxide (10 mmol) was added, and the contents were heated and stirred at 80 "C for 48 h. The excess CO was removed by three freeze-pump-thaw cycles at -196 °C; then the benzene- d_6 and any volatiles were vacuum transferred at 25 °C into an NMR tube and found to contain a trace of 2,3-dimethylcyclopent-2-enone. The contents of the glass vessel were identified as $(\eta$ -C₅Me₅)₂Ti(CO)₂ and 2,3-dimethylcyclopent-2enone by 1 H NMR and IR.^{6,7}

Acknowledgment. This **work** has been supported by the National Science Foundation (Grant No. CHE-

⁽¹⁴⁾ Contributions by the Ti^{II}(η ⁴-azabutadiene) (19b) or the Ti^{IV}- $(\sigma^2, \pi\text{-metallacyclopent-3-enamine})$ (19a) resonance structures may impart to the titanacycloenamine **10** a nonplanar ring geometry similar to those
found for group 4 metallocene dithiolene¹⁵ and butadiene¹⁶ complexes, thereby providing a plausible rational for the influence of the imine \equiv enamine equilibrium by steric interactions between the C₅Me_S rings and the seemingly remote alkyl or aryl substituent R. In this connection it
is noteworthy that a single resonance for the $[\eta$ -C₅Me₅] ligands of **10** is
observed even at 0 °C.^{15,15}

^{(15) (}a) Kutoglu, A. Z. Anorg. Allg. Chem. 1**972**, 390, 195–209. (b)
Kutoglu, A. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
1**973,** B29, 2891–97. (c) Kopf, H. Angew. Chem., Int. Ed. Engl. 1**97**1, 10,
134 **1729-42** and references therein.

⁽¹⁶⁾ (a) Erker, **G.;** Engel, K.; Kruger, C.; Muller, G. Organometallics 1984, 3, 128-33 and references therein. (b) Yasuda, H.; Kajihara, Y.; Maahima, K; Nagasuna, K.; Lee, K.; Nakamura, A. Organometallics **1982,** *1,* **388-96.**

⁽¹⁷⁾ Cook, **F. L.;** Bowers, C. W.; Liotta, C. L. J. Org. Chem. **1974,39, 3416-18.**

⁽¹⁸⁾ (a) Wenkert, **E.;** Cochran, D. W.; Hagaman, E. W.; Schell, F. M.; Neuss, N.; Katner, A. S.; Potier, P.; Kan, D.; Plat, M.; Koch, M.; Mehri, H.; Poisson, J.; Kunesch, N.; Rolland, Y. J. *Am.* Chem. SOC. **1973, 95, 4990-95.** (b) Shamma, M.; Hindenlang, D. M.; Ed. 'Carbon Thirteen NMR Shift Assignments of Amines and Alkaloids", Plenum Press: New
York, 1978, and references therein. (c) Levy, G. C.; Lichter, R. L.; Nelson,
G. L. "Carbon-13 Nuclear Magnetic Resonance Spectroscopy", 2nd ed.; Wiley, New York, **1980,** and references therein.

8303735). We also acknowledge use of the Southern California Regional NMR Facility and the support of NSF Grant CHE-7916324A1.

24-0; 10, 95865-25-1; 10-d₃, 95892-03-8; 10-¹³C₂, 95865-26-2; 10-
¹⁵N.d₄, 95865-27-3; 11, 95865-28-4; 12, 95865-29-5; 13, 95865-30-8; 2-octyne, 2809-67-8; 1-phenylpropyne, 673-32-5; propionitrile, ^{15}N ,d₄, 95865-27-3; 11, 95865-28-4; 12, 95865-29-5; 13, 95865-30-8; 2-octyne, 2809-67-8; 1-phenylpropyne, 673-32-5; propionitrile, 14, 95865-31-9; 15, 95865-32-0; 16, 95892-04-9; $(\eta$ -C₅Me₆)₂Ti(CO)₂, 107-12-11136-40-6; **(q-C5MedzTi(.?-CH3C~CH2CH,),** 95892-05-0; *(7-* 85-8; acetaldehyde, 75-07-0; acetone, 67-64-1; 2,3-dimethylcyclo- C_5Me_5)₂Ti(η -CH₃C=C(CH₂)₄CH₃), 95865-33-1; (η -C₅Me₅)₂Ti(η - pent-2-enone, 1121-05-7. **14,** 95865-31-9; **16, 95865-32-0; 16**, 95882-04-9; (η -C₅Me₅)₂ 11(CO)₂,

11136-40-6; (η -C₆Me₅)₂Ti(η -CH₃C=CCH₂CH₃), 95892-05-0; (η -

25-8; acetaldehyde, 75-07-0; acetone, 67-64-1; 2,3-dimet $\frac{1}{\text{C}_5\text{Me}_5}$ ₂Ti($\frac{\text{CH}_3\text{C=CP}}{\text{CH}_2\text{CH}_2}$,
 $\frac{\text{CH}_2\text{CH}_2}{\text{CH}_2\text{CH}_2}$,
 $\frac{\text{CH}_2\text{CH}_2}{\text{CH}_2\text{CH}_2}$, $\overline{\text{CH}_2\text{CH}_2}$, 95865-35-3; $(\eta \text{-} \text{C}_5\text{Me}_5)_2 \overline{\text{T}(\text{C}(\text{CH}_2\text{CH}_3) = \text{C}(\text{CH}_3)} - (\eta \text{-} \text{C}_5\text{Me}_5)_2 \overline{\text{T}(\eta \text{-} \text{CH}_3\text{C} = \text{CR})}$ and the corresponding isomeric

metallacyclopentenes, where R = C₂H₅, CH $\overline{\text{CH}_2\text{CH}_2}$, 95865-36-4; $(\eta \text{-} \text{C}_5\text{Me}_5)_2 \overline{\text{TiC}(\text{CH}_3)} = \overline{\text{C}[(\text{CH}_2)_4\text{CH}_3)}$. metallacyclopentenes, where $\kappa = \text{C}_2\text{H}_5$, $\text{CH}_2(\text{CH}_2)\text{CH}_3$, and Ph (2 pages). Ordering information is given any cu CH_2CH_2 , 95865-37-5; $(\eta \text{-} C_5Me_5)_2\text{TiC}((CH_2)_4CH_3)$ =C(CH₃)- page. 95865-17-1; 6, 95865-18-2; 7, 95865-19-3; 8, 95865-20-6; 9, 917-92-0; CH₃CN, 75-05-8; CD₃CN, 2206-26-0; ¹³CH₂¹³CH₂,
95865-21-7; 9-d₃, 95865-22-8; 9-¹³C₂, 95865-23-9; 9-¹⁵N,d4, 95865- 51915

California Regional *NMR* Facility and the supPo& of NSF 95865-39-7; **(q-C5Me5)2k(Ph)=C(CH3)CH2CHZ,** 95892-06-1; $(n-C_5Me_5)_2$ TiO(CH₂)₂CCH₂CH₂, 95865-40-0; $[(n-C_5Me_5)_2$ Ti]₂(μ -**Registry No.** 1, 83314-27-6; 3, 95865-15-9; 4, 95865-16-0; 5,
865-17-1; 6, 95865-18-2; 7, 95865-19-3; 8, 95865-20-6; 9, 917-92-0; CH₃CN, 75-05-8; CD₃CN, 2206-26-0; ¹³CH₂¹³CH₂, 107-12-0; 2,2-dimethylpropionitrile, 630-18-2; p-tolunitrile, 104-85-8; acetaldehyde, 75-07-0; acetone, 67-64-1; 2,3-dimethylcyclo- $\overline{CH_2CH_2}$, 95865-38-6; $(\eta$ -C₅Me₅)₂TiC(CH₃)=C(Ph)CH₂CH₂, 51915-19-6; propyne, 74-99-7; a-butyne, 503-17-3; ethylene, 74-851;

Effects of the Conformatlonal Rearrangement of the (np,)M Fragment in the Course of the Reaction between (np₃)MH Hydrides $[M = Co, Rh; np₃ = N(CH₂CH₂PPh₂)₃]$ and **Carbon Disulfide**

Claudio Bianchini,* Dante Masi, Carlo Mealli,* Andrea Meli, and Michal Sabat

Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, C.N.R., 50132 Firenze, Italy

Received June **25,** *1984*

The reactivity of the complex $(np_3)RhH$ toward CS_2 has been investigated. Depending on the presence or absence of NaBPh₄ in the reaction mixture, two different compounds are obtained: $[(np_3)Rh(\eta^2-CS_2)]BPh_4\cdot 0.5C_2H_5OH$ and (np₃)Rh(S₂CH). In contrast to the rhodium hydride, the cobalt analogue is reported to yield $[(np_3)Co(CS)]\widetilde{B}Ph_4$ and $(np_3)Co(\eta^2$ -CS₂). An indirect way of obtaining a stable rhodium analogue of the cobalt thiocarbonyl complex is presented. The structure of the Rh(I)– n^2 -CS_e complex has been determined by X-ray diffraction analysis in order to compare its stereochemical features with those
of the Co(0) analogue: $a = 19.134$ (3) Å, $b = 17.061$ (3) Å, $c = 9.111$ (1) Å, $\alpha = 83.95$ (2)°, $\beta = 79.70$ (1)°, $\gamma = 84.46 \,(1)^{\circ}$, triclinic, $P\bar{1}$, $Z = 2$. In the complex cation the (np₃)M fragment distorts from the common C_{∞} symmetry by accommodating two phosphorus atoms in trans axial positions of an octahedron; the nitrogen and the third phosphorus atoms lie cis to each other in the equatorial plane. This arrangement corresponds to the shape of typical L_4M fragments with C_{2v} symmetry where d^8 metal fragments of this type are supportive of **02-CS2** coordination. Although the four different products obtainable from the reaction of the cobalt and rhodium hydrides with CS_2 indicate multiple-reaction pathways, there is enough evidence that these may be caused by the ease of the rearrangement of the $(np_3)M$ fragment and by the amphoteric nature of the (np₃)MH hydrides. This paper, by referring to a series of experimental and theoretical observations for complexes containing the (np₃)M fragment, offers suggestions as to how one can interpret major, different trends of the reactivity. Qualitative MO arguments, supported in some cases by EHMO calculations, are used to check whether the existence of the proposed key intermediates is allowed or not.

Introduction

In a recent paper we described CS_2 chemistry of a reactive metal hydride, namely, the complex (np₃)CoH, 1 $[np_3 = tris(2-(diphenylphosphino)ethyl)$ amine].¹ Depending on the presence of NaBPh₄ in the reaction mixture, two different products can be obtained: (i) a para-

2 (1) Bianchini, C.; Meli, A.; Scapacci, G. Organometallics **1983,2,1834.**

Scheme I

$$
(np3)CoH
$$

$$
\xrightarrow{CS2}(np3)Co(n2-CS2)
$$

$$
\xrightarrow{N\alpha BPh4}(np3)Co(CS)1BPh4
$$

magnetic cobalt(0) complex, $(np_3)Co(\eta^2-CS_2)$, which was assigned the structure 2; (ii) a cobalt(1) thiocarbonyl complex, $[(np_3)Co(CS)]BPh_4$, 3, as shown in Scheme I.

The unique bonding capabilities of the ligand np_3 must play an important role in determining the different reactivities of $(np_3)CoH$. In effect, the ligand envelopes the metal in different modes that ultimately affect the mobility of hydrogen over the coordination sphere and hence the different modes of rupture of the M-H linkage.^{2,3} This

⁽²⁾ Bianchini, C.; Masi, D.; Mealli, C.; Meli, A.; Sabat, M.; Scapacci, G. *J.* Organomet. *Chem.* **1984,273,** 91.