Transfer of an Oxide Ion from an Anionic Carbon Dioxide Complex to a Cationic Carbonyl Complex

Gary R. Lee and N. John Cooper*

Department of Chemistry, Harvard University Cambridge, Massachusetts 02138

Received February 19, 1985

Summary: Reaction of Li₂[W(CO)₅(CO₂)] with [Fp(CO)]-BF₄ leads principally to [W(CO)₆] and [Fp₂]. It is proposed that Li[Fp(CO)₂] is the initial product, but that this reacts readily with [Fp(CO)]BF4 to give [Fp2], CO, and CO₂. Initial oxide transfer to [Fp(CO)]BF₄ is supported by labeling studies using ¹³CO₂ and C¹⁸O₂ which show that oxygen, but not carbon, is incorporated into the product [Fp₂] from the CO₂ of Li₂[W(CO)₅(CO₂)].

Oxide ion transfer reactions appear to be characteristic of the nucleophilic oxygen atoms in anionic transitionmetal CO₂ complexes. Thus the dianionic complex [W- $(CO)_5(CO_2)$]²⁻ reacts with CO_2 to give CO and CO_3 ^{2-,1} and isotopic scrambling experiments suggest that this complex also transfers oxide between CO₂ and CO ligands.² The unprecedented nature of oxide transfer to CO, together with its potential as a route to novel CO₂ complexes, has led us to explore the scope of the reaction: we now wish to report evidence, including ¹³C and ¹⁸O labeling studies, for the first intermolecular oxide transfer from a coordinated CO₂ to a coordinated CO, together with the unusual decomposition reaction of the transient CO₂ complex formed.

Oxide transfer from CO₂ to CO should be facilitated by the use of an anionic CO₂ complex and a cationic CO complex, and we therefore chose Li₂[W(CO)₅(CO₂)], prepared in tetrahydrofuran (THF) as described previously,2 as the oxide source, and $[Fe(\eta-C_5H_5)(CO)_3]^{+3-6}$ as the carbonyl substrate. Formation of [Fp(CO₂)]^{-4,7} was anticipated (eq 1), but [Fp₂]³ was the principal iron-con-

$$\begin{array}{c} \operatorname{Li_2[W(CO)_5(CO_2)]} + [\operatorname{Fp(CO)}]\operatorname{BF_4} \to \\ [W(CO)_6] + \operatorname{Li[Fp(CO_2)]} + \operatorname{LiBF_4} \end{array} (1) \end{array}$$

taining product observed when an 80 mM solution of $[Fp(CO)]BF_4$ in CH_3CN (0.6 molar equiv) was added to a 40 mM solution of Li₂[W(CO)₅(CO₂)] at -78 °C. The mixture darkened within 5 min from yellow to the characteristic purple of [Fp2], and after 30 min IR spectra indicated that the principal species in solution were [W- $(CO)_6$ and $[Fp_2]$ together with excess $Li_2[W(CO)_5(CO_2)]$ and some Li₂[W₂(CO)₁₀]. Absorption mode IR⁸ established that the quantities of [W(CO)₆] and [Fp₂] present corresponded to yields of 58% (based on CO2) and 68% (based on [Fp(CO)]BF₄), respectively, but separation problems precluded mass balance determination.

Determining whether Li[Fp(CO₂)] was a minor product of the reaction was complicated by the strong carbonyl absorption of [W(CO)₆], which would have masked the relatively weak carbonyl absorptions of a small quantity of Li[Fp(CO₂)] at 2015 and 1950 cm⁻¹. The mixture was therefore treated with 3 equiv of HBF₄ in ether; this should convert Li[Fp(CO₂)] into [Fp(CO)]BF₄,⁴ and a 15% yield of [Fp(CO)]BF₄ was indeed obtained after extraction of the resulting precipitate with CH₃NO₂ and addition of diethyl ether, indicating the presence of a comparable amount of Li[Fp(CO₂)] in solution before protonation.⁹

The sequence by which [Fp2] was formed was at first unclear, particularly since $Li[Fp(CO_2)]$ is indefinitely stable in THF at -78 °C, 11 but is seemed probable that the initial product was Li[Fp(CO₂)] and that this reacted with the dissolving [Fp(CO)]BF₄ more rapidly than did Li₂[W(C-O)₅(CO₂)]. This possibility led us to investigate the reaction between Li[Fp(CO₂)] and [Fp(CO)]BF₄, and we have determined that these complexes react readily to give [Fp2] as shown in eq 2. The purple of [Fp2] appeared

$$\begin{array}{c} \operatorname{Li}[\operatorname{Fp}(\operatorname{CO}_2)] + [\operatorname{Fp}(\operatorname{CO})]\operatorname{BF}_4 \to \\ [\operatorname{Fp}_2] + \operatorname{CO} + \operatorname{CO}_2 + \operatorname{LiBF}_4 \ (2) \end{array}$$

within 5 min of addition of a slurry of [Fp(CO)]BF₄ (1 equiv) in THF to a 40 mM solution of Li[Fp(CO₂)]¹¹ at -78 °C, and the reaction was complete in less than 30 min as judged by dissolution of the [Fp(CO)]BF₄. The mixture was warmed to room temperature, and it was shown (GC) that 1.01 equiv of CO and 1.05 equiv of CO₂ had been evolved. The organometallic product was confirmed by IR and ¹H NMR to be [Fp₂], isolated in 85% yield after recrystallization from pentane.

A reasonable mechanism for the oxidative decomposition involves initial electron transfer from [Fp(CO₂)] to [Fp-(CO)] to generate paramagnetic intermediates which could form [Fp], and hence [Fp₂], by loss of CO₂ and CO (eq 3); this reaction may provide another example of the

$$[Fp(CO_2)]^- + [Fp(CO)]^+ \rightarrow [Fp(CO)_2] \cdot + [Fp(CO)] \cdot \rightarrow [Fp_2] + CO + CO_2 (3)$$

importance of Fe(I) species in the organometallic chemistry of iron. 12-15 Alternatively, the observed products may be formed via a transient metalla-anhydride [Fp(CO)O-(CO)Fp].

Evidence supporting initial oxide transfer in the reaction of $Li_2[W(CO)_5(CO_2)]$ with $[Fp(CO)]BF_4$ was obtained from ¹⁸O and ¹³C labeling studies in which 99% labeled Li₂[W- $(CO)_5(C^{18}O_2)$] and 93% labeled $Li_2[W(CO)_5(^{13}CO_2)]$ were reacted with [Fp(CO)]BF₄ as described above. The [W-(CO)₆] and [Fp₂] formed in each reaction were separated (in low yield) by selective adsorption of the [Fp₂] on to silica gel and were analyzed by mass spectrometry. The [Fp₂] from the ¹⁸O experiment contained significant quantities of ¹⁸O: 16% was monolabeled and 1% contained two ¹⁸O, and since we have recently shown that there is

⁽¹⁾ Maher, J. M.; Cooper, N. J. J. Am. Chem. Soc. 1980, 102, 7604. (2) Maher, J. M.; Lee, G. R.; Cooper, N. J. J. Am. Chem. Soc. 1982,

⁽³⁾ Davison, A.; Green, M. L. H.; Wilkinson, G. J. Chem. Soc. 1961,

⁽⁴⁾ Bodner, T.; Coman, E.; Menard, K.; Cutler, A. Inorg. Chem. 1982, 21, 1275.

 ⁽⁵⁾ Grice, N.; Kao, B. C.; Pettit, R. J. Am. Chem. Soc. 1979, 101, 1627.
(6) The [Fe(η-C₅H₅)(CO)₂] moiety will be abbreviated to [Fp] throughout this paper.
(7) Evans, G. O.; Walter, W. F.; Mills, D. R.; Streit, C. A. J. Organomet. Chem. 1978, 144, C34.

⁽⁸⁾ The following bands and extinction coefficients were used: T_{1u} of $[W(CO)_6]$ at 1975 cm⁻¹ (ϵ 14 400 M⁻¹); band of $[Fp_2]$ at 1780 cm⁻¹ (ϵ 4000 M⁻¹ cm⁻¹).

⁽⁹⁾ Although other $[Fp(L)]^+$ salts (L=a donor ligand) can be formed by treatment of $[Fp_2]$ with HBF_4 in CH_3CN or CH_3NO_2 , 10 we have confirmed that $[Fp(CO)]^+$ is not formed from $[Fp_2]$ under our conditions, even in the presence of $[W(CO)_6]$, and it is reasonable to infer that there

⁽¹⁰⁾ Callan, B.; Manning, A. R. J. Organomet. Chem. 1983, 252. C81. (11) Lee, G. R.; Cooper, N. J. Organometallics 1985, 4, 794. (12) Hamon, J. P.; Astruc, D.; Michaud, P. J. Am. Chem. Soc. 1981,

 ⁽¹³⁾ Michaud, P.; Astruc, D. Angew. Chem. Int. Ed. 1982, 21, 918.
(14) Michaud, P.; Astruc, D.; Ammeter, J. H. J. Am. Chem. Soc. 1982,

⁽¹⁵⁾ Hamon, J.-R.; Saillard, J.-V.; LeBeuze, A.; McGlinchey, M. J.; Astruc, D. J. Am. Chem. Soc. 1982, 104, 7549.

facile scrambling of the CO_2 and CO oxygen atoms in $\text{Li}[Fp(CO_2)]$, ¹¹ the appearance of $C^{18}O$ in $[Fp_2]$ supports the intermediacy of $\text{Li}[Fp(CO^{18}O)]$. This is most reasonably formed by oxide transfer from $\text{Li}_2[W(CO)_5(C^{18}O_2)]$, and alternative interpretations involving CO_2 transfer were ruled out by the results of the ¹³C experiment, which gave $[Fp_2]$ which was 99% unlabeled.

The $[W(CO_6]]$ samples formed in the ¹⁸O and ¹³C labeling experiments were determined to be 61% and 68% monolabeled, respectively, while a further 3% of the material from each experiment contained two labels, ¹⁶ suggesting that ca. 30% of the observed $[W(CO)_6]$ had not been formed from $\text{Li}_2[W(CO)_5(CO_2)]$, but was a byproduct of the sequence used to prepare $\text{Li}_2[W(CO)_5(CO_2)]$. This further implies that the yield of $[W(CO)_6]$ from the reaction with $[Fp(CO)]BF_4$ was ca. 30% less than the spectroscopic yield, bringing the yield into reasonable agreement with the stoichiometry predicted for the formation of $[Fp_2]$ according to eq 1 and 2 after allowing for the persistence of some $\text{Li}[Fp(CO_2)]$.

We conclude that the reaction of Li₂[W(CO)₅(CO₂)] with [Fp(CO)]BF₄ to give [Fp₂] probably involves initial oxide ion transfer, and this suggests that oxide ion transfer to electrophilic substrates may indeed be a characteristic reaction of carbon dioxide when activated by coordination to an anionic transition-metal complex.

Acknowledgment. We thank the Office of Naval Research (Contract N00014-83-K-0292) for financial support. N.J.C. is a Fellow of the Alfred P. Sloan Foundation, 1982-1985.

Registry No. $\text{Li}_2[W(\text{CO})_5(\text{CO}_2)]$, 96807-09-9; $[\text{Fp}(\text{CO})]\text{BF}_4$, 12244-69-8; $[W(\text{CO})_6]$, 14040-11-0; $[\text{Fp}_2]$, 38117-54-3; $\text{Li}_2[W_2(\text{CO})_{10}]$, 96807-10-2; $\text{Li}[\text{Fp}(\text{CO}_2)]$, 96807-11-3; oxide, 16833-27-5.

(16) The presence of a small quantity of bis-labeled complex is indicative of some scrambling within the labeled Li₂[W(CO)₅(CO₂)].²

Synthesis and Reactions of the First Heterodinuclear Methoxycarbyne Complex $(\eta^5-C_5H_5)(CO)Fe-(\mu-COCH_3)(\mu-CO)Mn(CO)(\eta^5-CH_3C_5H_4)$

Raymond H. Fong and William H. Hersh*

Department of Chemistry and Biochemistry University of California Los Angeles, California 90024

Received May 20, 1985

Summary: Alkylation of the new anion Cp(CO)Fe(μ -CO)₂Mn(CO)MeCp⁻ (1) with methyl triflate gives the novel heterodinuclear methoxycarbyne complex Cp(CO)Fe(μ -COMe)(μ -CO)Mn(CO)MeCp (2). Thermal decomposition

of 2 in the presence of triphenylphosphine gives MeCpMn(CO)₃ and CpFe(CO)(PPh₃)CH₃. Kinetic and isotopic labeling studies of this methyl migration are described.

Recent work on the Fischer–Tropsch reaction¹ has led to wide acceptance² of a carbon–carbon bond-forming mechanism involving surface-bound methylene polymerization. The key proposed intermediate might most simply be modelled by a dinuclear η^1 -alkyl, μ -methylene complex. While many dinuclear μ -methylene compounds are known,³ only a single type of system is known that also contains an additional η^1 -alkyl group.^{4,5} A stepwise approach to the synthesis of such compounds might reasonably involve alkylation of a dinuclear anion. We report here the synthesis of a new heterodinuclear anion, its alkylation to give not an alkyl complex but rather a novel heterodinuclear methoxycarbyne complex, and its decomposition to give a mononuclear alkyl complex. This final

^{(1) (}a) Brady, R. C., III; Pettit, R. J. Am. Chem. Soc. 1980, 102, 6181-6182. (b) Brady, R. C., III; Pettit, R. Ibid. 1981, 103, 1287-1289. (2) (a) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1982, 21, 117-130. (b) Parshall, G. W.; Thorn, D. L.; Tulip, T. H. CHEMTECH 1982, 571-576. (c) Other mechanisms have also been proposed, but these have less organometallic precedent: see ref 2a.

⁽³⁾ For a recent review, see: Herrmann, W. A. Adv. Organomet. Chem. 1982, 20, 159-263.

^{(4) (}a) Isobe, K.; Andrews, D. G.; Mann, B. E.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1981, 809–810. (b) Isobe, K.; Bailey, P. M.; Schofield, P.; Gauntlett, J. T.; Nutton, A.; Maitlis, P. M. Ibid. 1982, 425–426. (c) Vazquez de Miguel, A.; Isobe, K.; Taylor, B. F.; Nutton, A.; Maitlis, P. M. Ibid. 1982, 758–759. (d) Nutton, A.; Vazquez de Miguel, A.; Isobe, K.; Maitlis, P. M. Ibid. 1983, 166–167. (e) Isobe, K.; Vazquez de Miguel, A.; Bailey, P. M.; Okeya, S.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1983, 1441–1447.

⁽⁵⁾ For examples of compounds containing a bridging alkylidene and additional (non-alkyl) σ-bound group, specifically η¹-acetylide (a), μ₃·Ph₂C₂ (b), μ-alkylidene (c-g), and μ-H (h), see: (a) Afzal, D.; Lenhert, P. G.; Lukehart, C. M. J. Am. Chem. Soc. 1984, 106, 3050-3052. (b) Clauss, A. P.; Shapley, J. R.; Wilson, S. R. J. Am. Chem. Soc. 1981, 103, 7387-7388. (c) Yamamoto, T.; Garber, A. R.; Wilkinson, J. R.; Boss, C. B.; Streib, W. E.; Todd, L. J. J. Chem. Soc., Chem. Commun. 1974, 354-356. (d) Fischer, E. O.; Lindner, T. L.; Fischer, H.; Huttner, G.; Friedrich, P.; Kreissl, F. R. Z. Naturforsch, B. Anorg. Chem., Org. Chem. 1977, 32B, 648-652. (e) Hursthouse, M. B.; Jones, R. A.; Malik, K. M. A.; Wilkinson, G. J. Am. Chem. Soc. 1970, 101, 4128-4139. (f) Schmidt, G. F.; Muetterties, E. L.; Beno, M. A.; Williams, J. M. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 1318-1320. (g) Cooke, M.; Davies, D. L.; Guerchais, J. E.; Knox, S. A. R.; Mead, K. A.; Roue, J.; Woodward, P. J. Chem. Soc., Chem. Commun. 1981, 862-864. (h) Calvert, R. B.; Shapley, J. R. J. Am. Chem. Soc. 1978, 100, 7726-7727.