97375-01-4; 9, 97375-03-6; 11, 97375-05-8; 12, 97375-07-0; 13, 97375-08-1; A, 12107-38-9; B, 12244-83-6; [FeCp(CO)₂CH₂OEt], **12244-98-3; [FeCp(C0)2CH20C(0)CH3], 12244-91-6; [FeCp- (CO)(PMe2Ph)z]+, 83287-98-3; TlBF4, 28625-02-7; PMezPh, 672-66-2; NEt3, 121-44-8; NC5H5, 110-86-1; P(OMe)3, 121-45-9; 5296-64-0; TlOEt, 20398-06-5; TlOAc, 563-68-8; bicyclo[6.1.0] nonane, 286-60-2; cyclooctene, 931-88-4.** $SCH₃$, 75-18-3; $SCH₃$)Ph, 100-68-5; $SPh₂$, 139-66-2; $S(C₃H₅)Ph$,

Electron-Promoted C-C Bond Formation. Novel Route to Tetrathiooxalate Derivatives

Danlel Touchard, Jean-Luc Flllaut, and Pierre Dlxneuf

Laboratoire de Chimie de Coordination Organique (UA CNRS 4 15) Universiti de Rennes, Campus de Beauiieu 35042 Rennes Cedex, France

Carlo Meaiil and Michal Sabat

Zstituto per la Studio deiia Stereochimica ed Energetica dei Composti di del C. N. R., 50 132 Firenze, Italy

Lolc Toupet

Laboratoire de Physique Cristaiiine (UA CNRS 804) Universith **de** *Rennes, Campus de Beauiieu 35042 Rennes Cedex, France*

Received April 8, 1985

Summary: The addition of NaBH₄ in THF to $[Fe(\eta^2 CS_2Me$ $(CO_2L_2]^+PF_6^-$ (1b, $L = PPh_3$) gave the purple complex $Fe_2(\mu-\eta^2-S_2C_2(SMe)_2)(CO)_4(PPh_3)$ ₂ (3, 68%), whereas **1a** ($L = PMe_3$) under the same conditions af $forded Fe(η^2 -HCS₂Me)(CO)₂(PMe₃)₂ (2a). Complex 3 was$ **transformed by exposure to air into a blue derivative,** $Fe(\eta^2-S_2C_2(SMe)_2)(CO)_2$ PPh₃ (4, 30-48%), the latter re**action being accelerated by the presence of acids, Na+-** PF₆⁻, or H₂O₂. By treatment with sodium amalgam com**plex lb also gave 3 which was transformed in situ into 4. These reactions are consistent with electron transfer** from hydride (or Na/Hg) to 1b, C-C bond formation of the **resulting radical giving 3 and oxidative cleavage of the Fe-Fe bond of 3 to produce 4. X-ray structure characterizations of 3 and 4 are reported.**

Heteroallenes constitute an important class of stable molecules whose activation by metal centers has been investigated extensively.^{1,2} This activation is relevant to the synthesis of sulfur-containing organic compounds³ and the modeling of reduction processes of $CO₂$ ^{1,4} especially with respect to C-C bond formation and/or its incorporation into organic substrates.⁵ Examples of metal-promoted dimerization of heteroallenes have been reported to date, most of which involve the formation of carbon-heteroatom bonds in the so-called "head-to-tail" mode of coupling. 6

Figure 1. ORTEP view of $\text{Fe}(S_2C_2(SMe)_2)(CO)_2(PPh_3)$ (4). Selected bond lengths (\hat{A}) and angles (deg) : $\text{Fe}-\text{S}(1) = 2.163$ (3), **S(2)-C(4)** = **1.708 (12), C(3)-C(4)** = **1.390 (15); S(l)-Fe-S(2)** = $Fe-S(2) = 2.196(3)$, $Fe-P = 2.244(3)$, $S(1)-C(3) = 1.701(10)$, 87.8 (1), S(1)-C(3)-C(4) = 118.0 (8), S(2)-C(4)-C(3) = 119.2(8).

Only recently have C-C bond formation processes involving heteroallenes been discovered.7 We now report an interesting example of C-C bond formation with CS_2 as heteroallene which proceeds via electron transfer and leads to the formation of tetrathiooxalate derivatives. The reaction pathway is based on the X-ray structure determination of two key products.

The reaction of borohydride with a $[LnM(\eta^2-CS_2R)]^+$ cation has been shown to proceed in several ways: Os- $(\eta^2$ -CS₂Me)(CO)₂(PPh₃)₂⁺ reacts with NaBH₄ to give Os- $(H)(\eta^1\text{-CS}_2\text{Me})$ (CO)₂(PPh₃)₂⁸ while [N(CH₂CH₂PPh₂)₃Co- $(\eta^2$ -CS₂Me)]⁺ under similar conditions leads to SMe group elimination to form the thiocarbonyl ligand in [N- $(CH_2CH_2PPh_2)_3Co(CS)$]BPh₄.⁹ Recently we observed that

⁽¹⁾ Dixneuf, P. H.; Adams, R. D., Report of the International Seminar on the Activation of Carbon Dioxide and Related Heteroallenes on Metal Centers, Rennes, France, 1981.

^{(2) (}a) Ibers, **J. A.** *Chem.* **SOC.** *Rev.* **1982,II, 57. (b) Werner, H.** *Coord. Chem. Rev.* **1982,43, 165 and references therein.**

^{(3) (}a) Ngounda, M.; Le Bozec, H.; Dixneuf, P. H. J. *Org. Chem.* **1982, 47,4000. (b) Le Bozec, H.; Dixneuf, P. H.** *J. Chem. Soc., Chem. Commun.* **1983, 1462.**

^{(4) (}a) Darensbourg, D. J.; **Kudaroski, R. A.** *Adv. Organomet. Chem.* **1983,22,129. (b) Eisenberg, R.; Hendriksen, D. E.** *Adv.* **Catal. 1979,28,**

^{79.&}lt;br>6) (8) (a) Herzkovitz, T.; Guggenberger, L. J. *J. Am. Chem. Soc*. 1**976,**
98, 1615–1616. (b) Denise, B.; Sneeden, R. P. A. *Chemtech* 1**982**, *12*, 108.
(c) Inoue, S.; Yamazaki, N. "Organic and Bioorganic Chemistry of **Dioxide"; Halsted Press: Kodansha, 1982.**

^{(6) (}a) Werner, H.; Kolb, *0.;* **Feser, R.; Schubert, U. J.** *Organomet. Chem.* **1980,191,283. (b) Cowie, M.; Dwight,** S. **K.** *J. Organomet. Chem.* **1981,214, 233. (c) Thewissen, D. H.** M. **W.** *J. Organomet. Chem.* **1980, 188, 211.**

^{(7) (}a) Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M. *Inorg. Chem.*, in
press. *J. Chem. Soc., Chem. Commun.* 1984, 1647. (b) Maj, J. J.; Rae,
A. D.; Dahl, L. F. *J. Am. Chem. Soc.* 1982, *104*, 4278. (c) Broadhurst, P. V.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R. *J. Chem. Soc., Chem. Commun.* **1982**, *140.* (d) Pasqualini, M.; Floriani, C.; Chiesi-Villa, A.; **Guastini, C.** *Znorg.* **Chem. 1981, 20, 349. (e) Coucouvanis, D.** *J. Am. Chem. Soc.* 1971, 93(7), 1786.

⁽⁸⁾ Collins, T. J.; Roper, W. R.; Town, K. G. *J. Organomet. Chem.* **1976, 121, C41.**

Figure 2. ORTEP view of $Fe_2(S_2C_2(SMe)_2)((CO)_4(PPh_3)_2$ (3). Selected bond lengths (A) and angles (deg) : $\text{Fe}(1)-\text{Fe}(2) = 2.525$ (2), Fe(1)-S(1) = 2.258 (2), Fe(1)-S(2) = 2.280 (2), Fe(2)-S(1) = 2.276 (2), Fe(2)-S(1) = 2.276 (2), Fe(2)-S(2) = 2.303 (2), Fe(1)-P(2) = 2.249 (2), Fe(2)-P(1) $= 2.256 (2), \, \dot{C}(6) - \dot{C}(7) = 1.303 (8); \, \dot{S}(1) - \dot{F}e(1) - \dot{S}(2) = 79.31 (6),$ $S(1)-Fe(2)-S(2) = 78.46(6) S(1)-C(6)-C(7) = 116.5(4), S(2)-C (7)-C(6) = 115.8(5)$.

 $NaBH₄$ reacts with **la** $(L = PMe₃)$ to give the addition of the hydride to the carbon atom in $2a^{10}$ (Scheme I); in contrast, the similar reaction with $1b$ $(L = PPh₃)$, readily accessible from carbon disulfide,¹¹ took an unexpected pathway.

The addition of **2** equiv of NaBH4 to a THF solution of **lb (5** mmol) at room temperature led after **3** h to the formation of a purple product which was transformed in air into a blue complex. The latter was isolated by crystallization from ether-pentane (1:3) in **30%** yield; it contained two SMe groups for one PPh₃ ligand¹² and was identified by X-ray analysis¹³ as complex 4 (Scheme I). An ORTEP view (Figure 1) indicates that complex **4** contains a coordinated tetrathiooxalate group resulting from the dimerization of the η^2 -CS₂R ligand of 1b.

When the same reaction was interrupted after **2** h, by solvent evaporation, silica gel chromatography under nitrogen of the resulting mixture with THF **as** eluent **af**forded small quantities of complex **4** and then, in **64%** yield, the previous purple intermediate. This air-sensitive complex, which contained one SMe group per PPh_3 ligand,15 was identified by an X-ray diffraction studyls **as** the

(13) Crystal data of 4: $C_{24}H_{21}O_2PS_4Fe$, $M_r = 556.51$, space group P_{21}/a , $a = 24.143$ (6) Å, $b = 10.017$ (2) Å, $c = 10.745$ (2) Å, $\beta = 97.38$ (2)°, $V = 2577.1$ Å³, $Z = 4$, $d_{calod} = 1.43$ g cm⁻³, μ (Mo K α) intensities of **5171** reflections were collected up to **28** = **50'** from a crystal of dimensions **0.425 X 0.20 X 0.15** mm using a Philips PW **1100** diffractometer and Mo K α radiation. The structure was solved by Patterson and Fourier techniques (SHELX76).¹⁴ Least-squares refinement gave the final residues $R(F) = 0.084$ and $R_w(F) = 0.095$ for 2440 reflections with $I > 3\sigma(I)$ corrected for decay (28%) and absorption (transmission factors 0.89-0.94). The phenyl rings of the PPh₃ ligand were treated as rigid

groups of the *DBh* symmetry. **(14)** Sheldrick, **G.** M. **SHELX76,** Program for Crystal Structure Deter-

bimetallic complex **3** having a bridging tetrathiooxalate group (Scheme I). An ORTEP view of 3 is shown in Figure **2.**

Pure complex **3** in solution gave **4** (48 *70)* on exposure to air in the presence of acid. Complex **4** was further reacted with an excess of $P(\text{OMe}_3)$ to give a violet derivative **5** (Scheme I) identified by spectroscopy" and corresponding to the displacement of one $PPh₃$ and one carbonyl ligand by $P(\bar{OMe})_3$.

The nature of **3** suggests that the reaction proceeds via an electron transfer from the hydride to complex **lb** which is expected to be more easily reduced than **la,** due to the weak basicity of PPh₃.

Complex 1b (0.5 mmol) in THF was then added to 5 mL of **1%** sodium amalgam. The reaction solution very quickly, **as** compared to the previous one with NaBH4, turned purple and then blue. After **1.5** h at room temperature only complex **4** was present, as indicated by chromatography, and it was isolated by crystallization from pentane in 40% yield. The same reaction after **20** min gave a mixture of both complexes, **3** and **4,** which were separated by column chromatography (eluent pentane-ether for **4** and CH₂Cl₂ or THF for 3) and identified by infrared spectroscopy.^{12,15} The easy formation of 3, following the reduction **of lb,** may be rationalized as occurring through the following steps (Scheme **11):** (i) transfer of one electron to a metal-ligand σ^* level, (ii) release of the electronic accumulation at the metal (19-electron configuration) by elimination of one $L = PPh_3$ group, and (iii) homolytic cleavage of the Fe-C bond. Consequently, the intermediate B, with an unpaired electron localized on the carbon atom, represents a good candidate for the dimerization reaction involving a C-C bond formation and leading, via intermediate C, to complex **3.**

The formation of **4** corresponds actually to the loss of one Fe(C0)2PPh3 group by complex **3.** The reaction takes

⁽⁹⁾ Bianchini, C.; Meli, A.; Scapacci, G. Orgammetallics **1983,2,1834.** Bianchini, C.; Masi, D.; Mealli, C.; Meli, A.; Sabat, M.; Scapacci, G. *J.* Organomet. Chem. **1984,273,91.**

⁽¹⁰⁾ Touchard. D.: Dixneuf, P. H.: Adams, R. D.; Semuller, B. E. .- Organometallics **1984, 3, 640.**

⁽¹¹⁾ Touchard, D.; Le Bozec, H.; Dixneuf, P. H.; Carty, A.; Taylor, N.

J. Znorg. Chem. **1981,20, 1811. (12) 4:** mp **130-131 OC;** *JR* (Nujol) **2010 (w), 1950 (w), 1100 (w)** cm-'; *80 MHz*) δ 7.66 (m, C₆H₅), 1.55 (s, SMe). Anal. Calcd for C₂₄H₂₁PO₂S₄Fe: C, 51.8; H, 3.80; P. 5.56; S, 23.04. Found: C, 52.11; H, 3.83; P, 5.97; S, **22.29.** ³¹P NMR (CDCl₃, 309 K, 32.38 MHz) *δ* 43.35; ¹H NMR (CDCl₃, 305 K,

minations, University of Cambridge, Cambridge, England, 1976.

(15) 3: mp 176-178 °C; IR (Nujol) 1990 (vs), 1950 (s), 1930 (vs), 1910

(m) cm⁻¹; ³¹P NMR (CD₂Cl₂, 209 K, 32.38 MHz) δ 58.4 (s, PPh₂); ¹H NMR
 C, **56.50;** H, **3.75;** P, **6.36; S, 13.40.**

⁽¹⁶⁾ Crystal data of 3: $C_{44}H_{36}O_4P_2S_4Fe_2$, $M_r = 930.7$, triclinic space group P_1 , $a = 9.669$ (2) Å, $b = 13.477$ (3) Å, $c = 17.323$ (3) Å, $\alpha = 101.1$ (2)°, $\beta = 91.5$ (2)°, $\gamma = 110.3$ (2)°, $Z = 2$, $\mu = 10.13$ data were **collected** on an Enraf-Nonius **CAD-4** diffractometer (h(Mo *Ka)* $= 0.71069 \text{ Å}, 2\theta_{\text{max}} = 50^{\circ}, \text{ scan } \omega/2\theta = 1, t_{\text{max}} = 60 \text{ s}, \text{ no absorption}$ corrections); 7220 reflections whose 3802 with $\overline{I} > \sigma(I)$. The structure was solved with a Patterson map and several Fourier differences. After solved with a Patterson map and several Fourier differences. After isotropic and anisotropic refinements of Fe, S, P, C, O atoms, many hydrogen atoms were found with a Fourier difference. The remaining ones were located manually. The better full-matrix least-squares refinement $(x, y, z, \text{ and } \beta$ for non-hydrogen atoms; x, y, z for hydrogen atoms) gives $R_w = [\sum w |F_0 - F_1|^2 / \sum w F_0^2]^{1/2} = 0.058$, and $R = \sum |F_0 - F_1|^2 / \sum |F_0|^2 / 1 + (0.04)^2 |T|$. The scattering factors and f' and f' values wer

X-ray Crystallography"; Kynoch Press: Birmingham, England, 1974.

(17) 5: 30% yield; IR (Nujol) 1940 (vs) cm⁻¹; mass spectrum calcd for
 m/e (M = C₁,H₂,P₂O₂,Fe)⁺ 513.923, found m/e 513.925, ³¹P NMR

(CD₃C

place by exposure of a solution of **3** to air but is accelerated by addition of acids, or even Na^+PF_6^- and occurred within seconds when H_2O_2 was added to 3. During the reduction of **lb** with sodium amalgam, the formation of Na+ cations may assist the elimination of the $\rm Fe(CO)_2\rm PPh_3$ fragment of 1**b** with sodium amalgam, the formation
may assist the elimination of the $Fe(CO)_2$
and accelerate the transformtion $3 \rightarrow 4$.
The present study suggests that previous

The present study suggests that previous examples of C-C bond formation between two metal-heteroallene moieties **7a,b,** which gave rise to the formation of another type of binuclear complex, could also be promoted by a radical process.

Acknowledgment. Thanks are expressed to Dr. H. Le Bozec for helpful discussions and to Mr. D. Masi for technical assistance in the X-ray work.

Registry No. lb, 71004-19-8; 3,97390-97-1; 4,97390-96-0; **5,** 97403-35-5; NaBH,, 16940-66-2; C, 7440-44-0.

Supplementary Material Available: Tables **of** atomic potential and thermal parameters, interatomic distances and angles, and observed and calculated structure factors (29 pages). Ordering information is given on any current masthead page.

Mechanism of CO Insertion into Metal-Oxygen Bonds. Reaction of (DPPE)Pt(OCH₃)R (R = CH₃ or OCH₃) with CO⁺

Henry E. Bryndza

Central Research & *Development Department Experimental Station, E. I. du Pont de Nemours* & *Company Wilmington, Delaware 19898*

Received April 2, 1985

Summary: The carbonylation of (DPPE)PtCH₃(OCH₃), 1 (DPPE = **1,2-bis(diphenyiphosphino)ethane,** first order in 1 and first order in CO. Low-temperature 13 C NMR experiments suggest formation of a five-coordinate CO complex intermediate, and crossover experiments rule **out** the involvement of dissociated species during this reaction. Similar complex 3, (DPPE)Pt(OCH₃)₂, carbonylates stepwise through (DPPE)Pt(OCH₃)(CO₂CH₃) to ultimately form (DPPE)Pt($CO₂CH₃$)₂. Similar kinetics and alcoho1 exchange reactions suggest the carbonylation mechanism is the same one outlined for the methyl methoxide. Low-temperature ¹³C NMR measurements permit observation and quantification of a five-coordinate CO adduct. (C₆H₅)₂PCH₂CH₂P(C₆H₅)₂), to yield (DPPE)PtCH₃(CO₂CH₃) is

During our investigation of reactions relevant to the palladium-catalyzed carbonylation of alcohols to dialkyl oxalates, we found platinum alkoxide **1** carbonylates to carbomethoxide complex **2.** Similarly, we observed related bis alkoxide 3 reacts with CO to give bis(carbomethoxide) **4** through the intermediacy of complex $5.^{1,2}$ While carboalkoxide formation from carbonylation of platinum alkoxides has been known for some time,³ the mechanism

has not been explored. We now show the mechanism of carboalkoxide formation for 1 involves inner-sphere insertion of CO into the metal-oxygen bond and most probably proceeds through the formation of a five-coordinate CO complex.

Carbonylation of **1** was followed by 'H and **31P** NMR4 at -20 °C. The reaction is first order in 1 to better than **3** half-lives. With use of CO pressures ranging from 0 to **150** psi, the observed rate was found to be first order in the concentration of CO.⁵ This first-order CO dependence suggests this reaction does not proceed by initial dissociation of methoxide; this expectation was confirmed by putting an upper limit on the rate of methanol dissociation from 1 that is **3** orders of magnitude slower than the observed carbonylation rates.⁶

[CO]_{1 atm} =
$$
2.75 \times 10^{-6}(T) + 6.45 \times 10^{-3}
$$

where [CO] is in molarity and T is in $^{\circ}$ C over the range of +30 to -80 $^{\circ}$ C.

^{&#}x27;Contribution No. 3562.

⁽¹⁾ Bryndza, H. E.; Kretchmar, S. A.; Tulip, T. H. J. *Chem. SOC., Chem. Commun.,* in press.

⁽²⁾ Complex **5** waa observed during the reaction of 3 and CO which ultimately yields complex **4.** The concentration of **5** is effectively steady state, suggesting it is an intermediate in the production of **4.**

^{(3) (}a) Bennett, M. A.; Yoshida, T. J. Am. Chem. Soc. 1978, 100, 1750–9. (b) Michelin, R. H.; Napoli, M.; Ros, R. J. Organomet. Chem. 1979, 175, 239–55. (c) Yoshida, T.; Ueda, Y.; Otsuka, S. J. Am. Chem. Soc. 1978, 100, 39 *Chem.* 1973,55, C89.

⁽⁴⁾ In a typical experiment, a pressure NMR tube was loaded in a drybox with a THF- d_8 or CD_2Cl_2 solution of 1 and charged to gauge pressures with CO.

⁽⁵⁾ The rate of reaction is described by the following relationship: $-d[1]/dt = d[2]/dt = k[1][CO]$ where, in CD₂Cl₂, $k = 4.1 \times 10^{-2} \text{ s}^{-1} \text{ mol}^{-1}$ at -20 °C. The concentration of CO in solution was determined by preparing known concentration solutions of ¹³C-enriched benzaldehyde (90% enrichment in the carbonyl poeition) and sealing the **system** with a **known** pressure of laCO **(also** 90% enrichment). The concentration of CO at 1 atm of CO pressure in CD_2Cl_2 is expressed by