

Figure 1. 31P NMR spectra (162.0 MHz; proton decoupled). (a) trans-FeH(DEPE)₂Me (3) 228 K in toluene- d_8 . (b) Mixture of cis - and $trans$ - Fe H($DEPE$)₂Me obtained by warming the sample in Figure 1a to 240 K (toluene- d_8). Resonances of 3 labeled T, and resonances of **4** labeled C. (c) Spectrum of **5** (298 **K.** THF-d, solution). (d) Equilibrium mixture of **5,6,** and **7 (330 K;** benzene). (e) Equilibrium mixture of **5, 6,** and **7** (300 K; benzene). Resonances of **6** labeled C, and resonances of **7** labeled T.

termolecularly with a suitably "electron-rich" arene. The equilibrium, $1 \rightleftharpoons 5$ is analogous to that proposed¹⁶ to rationalise the reactions and infrared spectrum of Ru- $(DMPE)₂$ $(DMPE = 1,2-bis$ (diethylphosphino)ethane]. In the series of iron complexes described above, the close stability of **5,6,** and **7** balances the equilibrium so that all three complexes exist at comparable concentrations in the equilibrium mixture.

5 reacts intermolecularly with C-H bonds in naphthalene, toluene, and other organic compounds to yield alkyl and aryl iron hydrides in a manner similar to that reported¹⁵ for the coordinatively unsaturated species Fe- $(DMPE)_2$ generated from FeH(DMPE)₂Np [Np = 2naphthyl].

(16) Chatt, **J.;** Davidson, J. M. *J.* Chem. SOC. **1965,** 843-55.

Acknowledgment. We gratefully acknowledge financial support from the Australian Research Grants Scheme and the Australian Government for a Commonwealth Postgraduate Award (M.V.B.).

A Catalytic Procedure for the Preparation of Carbonyi-Labeled Acyl Chlorides: More Mechanistic Insights into Decarbonyiation Reactions Promoted by Rhodium(I) Complexes

J. A. Kampmeier,' S. Mahalingam, and Tong-Zhou Liu

Department of Chemistry, University of Rochester Rochester, New York 14627

Received October 22, 1985

Summary: The reaction of RhCI(CO)(PPh₃)₂ with aliphatic acid chlorides in the presence of free 13 CO in CDCI₃ or C_6D_6 at 110 °C leads to catalytic incorporation of ¹³CO. In this manner, carbonyl-labeled acetyl, phenylacetyl, butanoyl, octanoyl, 2-methylpropanoyl, 2-phenylpropanoyl, cyclopentanecarboxylic acid, and cyclohexanecarboxylic acid chlorides were prepared. Decarbonylation products, alkyl chloride or olefin, are not formed in significant yields and are not intermediates in the labeling process. Reductive elimination of alkyl chloride and β -hydrogen elimination of olefin from the intermediate organometallic complexes are slower, therefore, than the equilibration processes and reductive elimination of acid chloride that lead to CO exchange.

In previous publications we provided evidence for an interlocking set of organometallic intermediates in the reaction of $RhCl(CO)(PPh₃)₂$ (1) with aromatic acid chlorides at temperatures of the order of 100 $^{\circ}$ C (Scheme I).¹ The net equilibration, ArCOCl + RhCl(CO)(PPh₃)₂ \Rightarrow 2CO + RhCl₂(Ar)(PPh₃)₂, provides a catalytic route to carbonyl-labeled aromatic acid chlorides by exchange with added ¹³CO or with other carbonyl-labeled acid chlorides.² The reactions of the organometallic intermediates that lead to exchange must be faster than the formation of aryl chlorides from these intermediates, since aryl chlorides are not formed under the conditions of the equilibration.² It seemed clear from literature reports that the rate of formation of alkyl chlorides or olefins (by β -hydrogen elimination) is greater than the rate of formation of aryl chlorides in these systems.³ Therefore, it was not obvious

⁽¹⁾ Kampmeier, **J.** A.; Rodehorst, R. M.; Philip, J. B., Jr. *J. Am.* Chem. SOC. **1981,** 103, 1847-1849.

⁽²⁾ Kampmeier, **J.** A.; Mahalingam, S. Organometallics **1984, 3,** 489-491. It is important to emphasize that the equilibration proceeds in both the presence and the absence of added ¹³CO. Aryl chloride is not formed in either case.¹ Added ¹³CO, therefore, simply serves to reveal the equilibration reactions.

R= aryl, vinyl. alkyl (primaryandsecondary), benzyl

that the equilibration reactions could compete with product formation in the aliphatic series. We now report4 that the equilibration reactions of a variety of aliphatic acid chlorides are also faster than the formation of decarbonylation products. **As** a result, these acid chlorides can be conveniently labeled by reaction with 1 in the presence of ¹³CO.

In a typical experiment, cyclohexanecarboxylic acid chloride (0.44 mmol) was charged to a reaction tube with **¹**(0.032 mmol) in 1 mL of CDC13. The tube was degassed and ^{13}CO (99%) admitted to the void space (ca. 10 mL).⁵ The tube was sealed, heated at 110 $\rm{^{\circ}C}$ for 24 h, and opened, and the reaction mixture was analyzed by both ${}^{1}H$ and ¹³C NMR. The ¹H spectrum corresponded to that of cyclohexanecarboxylic acid chloride contaminated by about 2% cyclohexene product and traces of unknown peaks; no absorption due to cyclohexyl chloride could be discerned. The methine region was more complicated than that of starting material; the pattern was analyzed as the original triplet of triplets $(^3J_{HH} = 12, 3.5 \text{ Hz})$ superimposed on the more complex pattern of CH¹³COCl molecules $(|^2J| = 7.0$ Hz)⁶. The ¹³C spectrum showed the methine carbon as a singlet at δ 55.1 (¹³CH¹²COCl) with a satellite doublet for the labeled compound $(^{13}CH^{13}COCl, {}^{1}J = 52.8 \text{ Hz}$.^{7,8} Simple integration of the singlet to the doublet areas showed there to be 51% label (6.9 turnovers) in the carbonyl position. Finally, the carbonyl peak *(6* 176.7) was many times more intense than any other peak in the spectrum, providing qualitative evidence of labeling.⁹

These standard procedures were used to study and demonstrate the labeling of acetyl and phenylacetyl chlorides (compounds without β -hydrogens) and butanoyl, 2-methylpropanoyl, and 2-phenylpropanoyl chlorides

Marshall, J. L.; Seiwell, R. *Org. Magn. Reson.* 1976, 8, 419-425.

(7) $^{1}J = 55.7$ Hz (carbonyl to α -carbon) for cyclohexanecarboxylic acid. Marshall, J. L.; Miller, D. **E.** *J. Am. Chem. SOC.* 1973, 95, 8305-8308. (8) In addition, the γ methylene carbon at δ 25.1 also showed satellite doublet absorptions (¹³CH₂CH¹³COCl), ³ $J = 3.8$ Hz. For cyclohexanecarboxylic acid, ² $J = 0$ (carbonyl to β -carbon) and ³ $J = 4$ Hz

(carbonyl to γ -carbon), see ref 7.
(9) In some other experiments, the incorporation of the label was

Table **I.** Reactions **of** RCOCl with 1 in the Presence of ¹³CO^o

		R^{13} COCl chem shift ^c	
	$%$ R ¹³ COCl ^b	$(^1J_{C-COCl}$	
R	(turnovers)	$ ^{2}J_{H-C-COCl} $	other products
CH ₃	55 (7.8)	169.9 (55.6; 7.2)	6% CH ₃ Cl
cyclohexyl	51(6.9)	176.8 (52.8: 7.0)	2% cyclohexene
$\rm PhCH_{2}$	52	171.7(52.1; 8.1)	81% PhCH ₂ Cl
PhCH ₃)CH	53.	175.1 $(48.8;)^d$	65% Ph(CH ₃)CHCl
			9% styrene
$Ph(CH2)$ -	47		13% Ph(CH ₃)CHCl
CH^e			
$n\text{-}\mathrm{C}_3\mathrm{H}$ -/	40 (12)	178.3(51.3;)	1% i -C ₃ H ₇ COCl
$i\text{-}\mathrm{C}_3\mathrm{H}_7$	31(4.2)	173.5(55.8;)	$3\%~n$ -C ₃ H ₇ COCl
			2% propene
$n\text{-}C_3H_{7}^{\ s}$	18(2.9)		1% i-C ₃ H ₇ COCl
$i\text{-}\mathrm{C}_3\mathrm{H} \tau^h$	17(0.9)		$3\%~n$ -C ₃ H ₇ COCl
			8% propene

'Standard reaction conditions: 0.5 mmol of RCOC1, 0.03 mmol of 1, 1 mL of CDCl₃, 0.2-0.5 mmol of ¹³CO, sealed tube, 110 °C, 24 h; see the text. $\frac{1}{6}$ R¹³COC1 = [R¹³COC1]/([R¹²COC1] + $[R^{13}COCl]$) turnovers = mmol of $R^{13}COCl/mm$ of 1. ϵ High-field ¹H (300.15 MHz) and ¹³C (75.48 MHz) NMR spectra were recorded on a Nicolet QE-300 FT NMR NMR spectrometer; chemical shifts are reported in units of δ (ppm downfield from tetramethylsilane) and were measured relative to residual 'H resonances in the deuterated solvents, CDCl₃ (δ 7.27) or C₆D₆ (δ 7.37); coupling constants *J* in Hz. $^{d3}J_{H-C-C-COCl}$ = 6.7 Hz. e Doped with 1.2 equiv of PhCH₂Cl; experiment run in C₆D₆. '62-h reaction time. ^g Doped with 2.2 equiv of $\text{(CH}_3)_2\text{CHCl}$. *h*Doped with 0.6 equiv of CH₃C $d^{3}J_{H-C-C-C0Cl}$ = 6.7 Hz. $H_2CH_2Cl.$

(compounds with β -hydrogens). The results are presented in Table I. With the exception of the two benzylic substrates (vide infra), the other acid chlorides were successfully labeled under our standard conditions with less than 8% formation of decarbonylation products.¹⁰ The procedure failed with 2,2-dimethylpropanoyl chloride; there was no evidence of any reaction.¹¹ In a different set of experiments at a different $^{13}CO/RCOCl$ ratio, 2,4 cyclopentanecarboxylic acid chloride was labeled. The organic phase was isolated by bulb-to-bulb distillation at reduced pressure and hydrolyzed to give labeled cyclopentanecarboxylic acid in 43% isolated yield, ef = 20% .¹² In similar manner, acetyl, phenylacetyl, octanoyl, and cyclohexanecarboxylic acid chlorides were also converted to isolated labeled acids. $2,4$

One has the general impression that β -hydrogen elimination is an easy process. For example, when the acid chloride has β -hydrogens the major decarbonylation product is olefin rather than alkyl chloride. 3 There is also evidence that the stereochemistry and regiochemistry of alkylrhodium complexes can be scrambled by elimination and readdition of rhodium hydride.¹³ Even though olefins are not formed in significant amounts under our reaction conditions, we considered the possibility of a fast pre-

⁽³⁾ For a recent review of this decarbonylation chemistry, see: Doughty, D. H.; Pignolet, L. H. In "Homogeneous Catalysis with Metal Phosphine Complexes"; Pignolet, L. H. Ed.; Plenum Press: New York, 1983; pp 343-375. See also: Baird, M. C. In "The Chemistry of Acid Derivatives"; Patai, S. Ed.; Wiley: New York, 1979; Supplement B, part 2, pp 825-857.

⁽⁴⁾ Part of this work was reported earlier: Kampmeier, J. **A.;** Mahalingam, S. 187th National Meeting of the American Chemical Society, St. Louis, MO, April 1984; American Chemical Society: Washington, D.

C., 1984; Abstract ORGN-41.

(5) The amount of ¹³CO in the reaction tube was 0.2-0.5 mmol, depending on the pressure of ¹³CO in the reservoir.

(6) ²J = -6.7 Hz (carbonyl to α -proton) for cyclohexanecarboxylic ac

⁽⁹⁾ In some other experiments, the incorporation of the label was measured by quantitative integration of carbonyl absorption with respect to the natural abundance carbons in the **13C NMR** spectra in the presence of added $Cr(\text{acae})_3$ (ca. 0.05 M), 10-s delay between observing pulses, decoupler on during acquisition; see: Schoolery, J. N. *Prog. NMR Spectrosc.* 1977, *11,* 79-93.

⁽¹⁰⁾ It is important to recognize that the yields of decarbonylation products in these experiments depend on the structure of the acid chlo-ride but not on I3CO pressure. For example, the first four experiments in Table I are all done at essentially the same ¹³CO pressure; the ex-
periments give comparable incorporation of ¹³CO but different product distributions. The clear variable is the structure of RCOCl, not ¹³CO pressure. In addition, the reaction of 2-methylpropanoyl chloride with
1 under our standard conditions, but without added ¹³CO for 72 h, showed no evidence for product formation or rearrangement. Formation of propene (2%) or rearrangement to n-butanoyl chloride **(3%)** would have been detected by NMR.

⁽¹¹⁾ Labeling **(4%)** or decarbonylation (1%) would have been easily detected by NMR.

⁽¹²⁾ The enrichment factor, ef, was obtained from mass spectrum of

the isolated acid:² ef = 10^2 (m⁺ + 1)/[(m⁺ + 1) m⁺].

(13) (a) Stille, J. K.; Lau, K. S. Y.; Becker, Y.; Huang, F.; Baenziger, N. *J. Am. Chem. Soc.* 1977, 99, 5664-5672. (b) Dunham, N. A.; Baird, M. C. *J. Che*

equilibrium between (alkyl)Rh and (olefin)Rh complexes, followed by slow labeling. If so, butanoyl and 2-methylpropanoyl chlorides should equilibrate because they would both decarbonylate to the same intermediate (propene)Rh complex. In fact, both acid chlorides were labeled with >97% retention of initial structure. In another experiment, 2,2-dideuteriopropanoyl chloride $(90\% d_2)$ was prepared¹⁴ and reacted at 110 °C in toluene for 24 h. Sodium propionate was isolated after bulb-to-bulb separation and hydrolysis of the organic phase. Sodium propionate was also prepared from the starting acid chloride before carbonyl labeling. A comparison of the carbonyl to methyl intensities in the 13C NMR spectra before and after labeling clearly demonstrated the incorporation of $13CO$ at the carbonyl position. The ²H NMR spectra showed peaks at δ 2.9 (–CD₂–) in both samples, but no peak at δ 1.3 (-CHD₂) in either. Finally, the CH₃/CH₂ ratio in the 'H NMR spectra before (14) and after (13) labeling showed little change. Thus, from both experiments, it is clear that the observed labeling is not preceded by fast, reversible β -hydrogen elimination.

The incorporation of ${}^{13}CO$ is not preceded by reversible reductive elimination of alkyl chlorides either. 2- Phenylpropanoyl chloride was doped with 1.2 equiv of benzyl chloride and subjected to the labeling conditions. At the end of the reaction, 2-phenylpropanoyl chloride was labeled but phenylacetyl chloride could not be detected.15 In a pair of experiments, butanoyl and 2-methylpropanoyl chlorides were doped with the opposite alkyl chlorides and then subjected to the labeling conditions. Although the starting acid chlorides were labeled in each case, <3% of the opposite acid chlorides were formed; i.e., no more than were formed in the absence of added alkyl chlorides.

The reactions of benzylic substrates are particularly interesting because only they give significant yields of decarbonylation products under our labeling conditions. 2-Phenylpropanoyl chloride reacted to give labeled acid chloride (26%), styrene (9%), and l-phenylethyl chloride (65%, 8.1 turnovers). The reaction with phenylacetyl chloride proceeded similarly to give labeled acid chloride (19%) and benzyl chloride (81%, 12 turnovers). Reactions of phenylacetyl chloride in CDCl₃ and in C_6D_6 were followed at 0.5-h intervals by 'H NMR. In both solvents, the incorporation of 13C0 (corresponding to the satellite doublet to the $-CH_2$ - singlet, $\vert^2 J_{HCC} \vert = 8.1$ Hz) is substantially faster than the formation of benzyl chloride. There is an interesting solvent effect on the rate of product formation: after 3 h, labeling was >90% complete in both solvents while conversion to benzyl chloride was 26% in $CDCl₃$ and only 6% in $C₆D₆$.

In summary, 1 catalyzes the incorporation of 13C0 into a wide variety of acid chlorides. The reaction is useful and convenient for the preparation of carbonyl-labeled aro $matic_i² vinylic_i² benzylic, and primary or secondary ali$ phatic acid chlorides. Although free CO is clearly involved in the labeling, the CO exchange does not proceed by **decarbonylation-recarbonylation** sequences involving aryl and alkyl chlorides or olefin (whether free or complexed). The incorporation of ${}^{13}CO$, therefore, proceeds by equilibration of organometallic intermediates as described in Scheme I. The important mechanistic conclusion from this work is that the kinetically preferred paths for the organometallic intermediates in these reactions of aliphatic and benzylic acid chlorides are the equilibration processes

and the reductive elimination to give acid chlorides and and the reductive emmination to give the thought of as
RhCl(CO)(PPh₃)₂ (1).¹⁶ The system is best thought of as a set of organorhodium(II1) intermediates in fairly ready equilibrium. The system can be entered by reactions of acid chlorides with either **1** or RhCl(PPh,), and departed by reductive elimination to give acid chloride and 1 or by decarbonylation reactions to give alkyl chloride or olefin. *The barriers to the formation of decarbonylation products vary with the structure of the acid chlorides but are clearly greater than the barriers to reductive elimination of acid chlorides in all cases we have studied.* We are continuing to study the detailed nature of the decarbonylation product forming steps in these systems.¹⁷

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this work and to Grant #IN-18 from the American Cancer Society. We are grateful to Johnson Matthey, Inc., for a generous loan of RhCl_3 .xH₂O. T.Z.L. is grateful to the University of Rochester for Sherman Clarke and E. H. Hooker Fellowships.

Registry No. 1, 13938-94-8; CH₃COCl, 75-36-5; c-C₆H₁₁COCl, $100-44-7$; Ph(CH₃)CHCl, 672-65-1; ¹³CO, 1641-69-6; Ph(CH₃)-CHCOC1, 22414-26-2; c-C₅H₉COC1, 4524-93-0; n-C₃H₇COC1, PhCH₂¹³COCI, 63583-47-1; Ph(CH₃)CH¹³COCl, 100899-35-2; c-13COCl, 71010-19-0. 2719-27-9; PhCH₂COCl, 103-80-0; *i*-C₃H₇COCl, 79-30-1; PhCH₂Cl, 141-75-3; CH₃¹³COCl, 1520-57-6; c-C₆H₁₁₁¹³CoCl, 100899-34-1; $C_5H_9^{13}Co_2H$, 50530-15-9; n-C₃H₇¹³COCl, 100899-36-3; i-C₃H₇-

False Impressions from ²⁷AI NMR Spectroscopy

R. Benn,* A. Rufińska, E. Janssen, and H. Lehmkuhl

Max-Planck-Institut fur Kohlenforschung 0-4330 Miilheim a.d. Ruhr, West Germany

Received November IS, 1985

Summary: The δ (27 AI) values of dissolved organometallic

compounds of the type $[Et_2AIOCH_2CR_2X]_2$ (R = H, X = OMe, **1;** R = H, X = NEt₂, **2**; CR₂X = 2-H₄C₅N, **3**) with five-coordinate **AI** atoms show no significant temperature dependence in the ranges from 310 down to 223, 253, and 243 K, respectively. Different observations for **3'** were caused by background signals, and thus conclusions from 27AI NMR spectra invoking an equilibrium between complexes with four- and five-coordinate AI atoms in this temperature range are incorrect. E. R. A. J. Am. Che

H.; Rodehorst, R. M. J. Am. Che
 INMR Spectroscopy
 INMR Spectroscopy

We have recently shown that there is a correlation between the coordination number of the aluminum atom and the 27Al NMR chemical shift in organoaluminum compounds of the type $(R_2A\,Y)_n$ $(Y = R, OR, NR_2, H, and$ halogen).² At 310 K the ²⁷Al NMR shifts of the com-

⁽¹⁴⁾ Atkinson, J. G.; Crakvary, J. J.; Herbert, G. T.; Stuart, R. S. *J.* (15) Formation of 1 % of phenylacetyl chloride would have been de-*Am. Chem. SOC.* **1968, 90,** 498-499.

tected by 'H NMR.

⁽¹⁶⁾ These equilibrations proceed in both the presence and absence of added ^{13}CO . For example, PhCOCl and CH₃¹⁴COCl exchange CO in the presence of 1, without formation of CH₃Cl.² Stille observed chlorine isotope scrambling in reactions of $RhCl(PPh₃)₃$ with several acid chlorides;¹³ this chlorine exchange is a direct consequence of the equilibrations summarized in Scheme I and provides further evidence of the equili-
bration reactions in the absence of added CO. The added ¹³CO, therefore, simply serves to mark the equilibrations of the intermediates.

⁽¹⁷⁾ Kampmeier, J. A.; Harris, S. H.; Rodehorst, R. M. *J. Am. Chem. SOC.* **1981,** *103,* 1478-1485.

⁽¹⁾ van Vliet, M. R. P.; Buysingh, P.; van Koten, G.; Vrieze, **K.;** Kojic-Prodic, B.; Spek, A. L. *Organometallics* **1985,** *4,* 1701.