	position for numbering								
	1A	1B	2	3	4	5	6	7	8
				1	Hª				
δ multiplicity J, Hz	0.57 dq 13.6 8.0	0.46 dq 13.6 8.0	1.52 q 8.0	4.85 s		5.97 d 7.9	6.64 dd 7.9 7.4	6.33 dd 7.4 5.4	8.17 d 5.4
				1	${}^{3}C^{b}$				
δ multiplicity ${}^{1}J(C,H)$, Hz	2.: t 11	21 15	11.16 q 124.0	63.00 t 142.5	159.11 s	119.76 d 166.0	137.60 d 164.0	122.38 d 167.0	144.91 d 181.5
				2	⁷ Al				
			3°.f			background signal ^d			
T	310		300		273	243	273		243
δ W1/2 Hz	106 1/2 Hz 5400		$\begin{array}{c} 108 \\ 6200 \end{array}$	1	109 10000	~110 e	58 5800)	62 6000

Table I. 'H, 'C, and "AI NMR Signal Assignments of 3 at Various Temperatur	Table I.	²⁷ Al NMR Signal Assignments of 3 at Var	rious Temperatures
--	----------	---	--------------------

^aC₇D₈; T = 213 K; 5 mm sample, ~1%. ^bC₇D₈; T = 273 K; 10 mm sample, ~8%. ^cC₇D₈; T, cf. Table I; 10 mm sample, ~8%. ^dPresent also in spectra of samples containing no ²⁷Al nuclei. ^eW_{1/2} not determined exactly. ^fAtom numbering:

pendent of the temperature between 310 and 243 K. Due to the reduced solubility of 3 and to the increasing line width $(W_{1/2}$ of 3 at 273 K is already about 10000 Hz) with decreasing temperature, its ²⁷Al NMR signal below 243 K is difficult to detect. The temperature dependence of $W_{1/2}$ of 3 is normal (cf. Table I) $(W_{1/2}$ increases with decreasing temperature. Note that according to ref 1 $W_{1/2}$ at 223 K should be smaller than that at 295 K!). In line with a fivefold coordinated Al atom in 3 the α -protons of the terminal ethyl groups are diastereotopic between 213 and 273 K. Revised assignments of the observed ²⁷Al and ¹H NMR spectra of 3 are also presented in Table I together with the ¹³C NMR signal assignments as obtained from a two-dimensional ¹³C, ¹H shift correlated spectrum.⁴ From our findings we conclude that there is no significant temperature dependence of the ²⁷Al NMR shifts of 1 between 310 and 223 K nor of 2 and 3 between 310 and 253 K and between 310 and 243 K, respectively, and these spectra provide no evidence for the existence of an equilibrium between four- and five-coordinated aluminum atoms. The ¹H NMR spectra of 3, however, indicate that dissociation occurs to some minor extend at temperatures above 310 K (cf. also ref 1). Moreover, caution is necessary when NMR spectra of dilute samples of broad quadrupolar metal nuclei are recorded, since there are many causes for background signals.⁵ Nevertheless, in spite of these difficulties, NMR spectroscopy of metal nuclei^{5,6} is extremely useful for investigating many problems in organometallic chemistry.

Additions and Corrections

John H. Freudenberger and Richard R. Schrock*: Preparation of Di-*tert*-butoxytungsten(VI) Alkylidene Complexes by Protonation of Tri-*tert*-butoxytungsten(VI) Alkylidyne Complexes. **1985**, *4*, 1937.

The correct title is published above. The title was incorrectly published as "Preparation of Di-*tert*-butoxytungsten(VI) Alkylidene Complexes by Protonation of Tri-*tert*-butoxytungsten(VI) Alkylidene Complexes".

⁽⁴⁾ The assignments of ${}^{2}J(H_{A},H_{B})$ and $\delta(H_{6})$ and $\delta(H_{7})$ in Table I differ from those given in ref 1. A comprehensive paper on the preparation and the NMR spectra of organoaluminium compounds is in preparation: Benn, R.; Janssen, E.; Lehmkuhl, H.; Rufińska, A., to be submitted for publication.

⁽⁵⁾ Benn, R.; Rufińska, A. Angew. Chem. 1986, 98, 000.

^{(6) (}a) Kidd, R. G. Annu. Rep. NMR Spectrosc. 1980, 10A, 1. (b) Dechter, J. J. Prog. Inorg. Chem. 1982, 29, 285. (c) Rehder, D. Magn. Reson. Rev. 1984, 9, 125.