

Subscriber access provided by NAT PINGTUNG UNIV EDUCATION

# Preparation of a mixed-metal ketenylidene complex from Mn(CO)5(CX3) (X = CI, Br)

Ann M. Crespi, and Duward F. Shriver

*Organometallics*, **1986**, 5 (8), 1750-1752• DOI: 10.1021/om00139a041 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on April **27**, **2009** 

## **More About This Article**

The permalink http://dx.doi.org/10.1021/om00139a041 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article



Table I. Spectroscopic Data of 4 and 5

|       | <sup>1</sup> H NMR <sup>a</sup> |        |                 | <sup>13</sup> C NMR <sup>b</sup> |               |                 | ······································ |     |
|-------|---------------------------------|--------|-----------------|----------------------------------|---------------|-----------------|----------------------------------------|-----|
| compd | Cp                              | $CH_2$ | CH <sub>3</sub> | Ср                               | $CH_2$        | CH <sub>3</sub> | <sup>29</sup> Si NMR <sup>c</sup>      | UV  |
| 4     | 5.71                            | 2.55   |                 | 109.9 (d, 173)                   | 70.9 (t, 131) |                 | -145.3 (n, 5.6)                        | 528 |
| 5     | 5.57                            | 2.51   | 0.13            | 110.1 (d, 173)                   | 70.6 (t, 130) | 0.97 (q, 119)   | -76 <sup>e</sup>                       | 478 |

<sup>a</sup>  $\delta$  in ppm; 90 MHz; C<sub>6</sub>D<sub>6</sub> (C<sub>6</sub>HD<sub>5</sub> at 7.17 ppm as internal standard); integrals in agreement with number of protons. <sup>b</sup>  $\delta$  in ppm (multiplicity, <sup>1</sup>J(CH) in Hz); 62.89 MHz; C<sub>6</sub>D<sub>6</sub> (at 128.0 ppm as internal standard). <sup>c</sup> $\delta$  in ppm (multiplicity (n = nonet), <sup>2</sup>J(SiH) in Hz); 79.48 MHz; C<sub>6</sub>D<sub>6</sub> (Me<sub>4</sub>Si as external standard). <sup>d</sup> $\lambda_{max}$  in nm. <sup>e2</sup>J(Si-CH<sub>2</sub>) = 4.9 Hz and <sup>2</sup>J(Si-CH<sub>3</sub>) = 6.7 Hz determined from <sup>29</sup>Si satellites in the <sup>1</sup>H NMR spectrum.



chloride (0.35 mmol) was added. The reaction mixture was then warmed to room temperature whereupon the red precipitate dissolved. After 4 h, the solvent was evaporated to dryness and the residue extracted with benzene followed by filtration. The filtrate was evaporated to dryness and gave purple-red crystals of 4 (48% yield), which are only slightly sensitive to oxygen and moisture and can be sublimed (150 °C; 10<sup>-6</sup> mbar). Compound 4 was identified by elemental analysis<sup>3</sup> and by its spectral properties (Table I).

To our surprise and initial discomfort, the <sup>1</sup>H and <sup>13</sup>C NMR data were very close to those of the monocyclic model 5;<sup>2a,4</sup> the structure of 5 had been confirmed by X-ray crystallography.<sup>4</sup> Reassuring differences, however, were found in the <sup>29</sup>Si NMR and UV spectra. The latter reveal a bathochromic shift for 4 relative to 5, indicating a smaller HOMO-LUMO gap in 4. On the one hand, it is tempting to ascribe this to ground-state destabilization due to rehybridization at silicon;<sup>5</sup> the well-known strain effect of spiro-annelation could be invoked.<sup>6</sup> On the other hand, ring strain is usually associated with downfield shifts of <sup>29</sup>Si.<sup>7,8</sup> This is well-illustrated by the "carbon analogues" of 4 and 5, i.e., 6 ( $\delta$ (<sup>29</sup>Si) 37.2) and 7 ( $\delta$ (<sup>29</sup>Si) 18.4),<sup>7</sup> respectively; relative to tetramethylsilane, 6 and 7 show a downfield shift which is nearly additive per four-membered ring.



An analogous additivity is observed for 4 and 5, but its direction is opposite and the increments are much larger

(7) Krapivin, A. M.; Mägi, M.; Svergun, V. I.; Zaharjan, R. Z.; Babich,
 E. D.; Ushakov, N. V. J. Organomet. Chem. 1980, 190, 9.

(8) Cragg, R. H.; Lane, R. D. J. Organomet. Chem. 1985, 291, 153.

(Table I). The cause for this dramatic upfield shift is not yet clear. Transannular bonding has been suggested to explain the downfield shift in 6 and 7. In view of the short Ti-Si distance in 5 (d = 2.786 Å;<sup>9</sup> cf. the sum of radii r(Ti)+  $r(Si) = 2.5 \text{ Å}^{10}$ ) a direct interaction in 4 and 5 seems not impossible; anisotropic shielding by the  $Cp_2Ti$  unit<sup>11</sup> is another possibility. In this context and in view of the thermal stability of 4 and 5, it is also relevant to point out that the endocyclic angle strain at silicon in 5 ( $CH_2SiCH_2$ = 101.3°)<sup>4</sup> is much smaller than in 7 ( $CH_2SiCH_2$  = 80.6°).<sup>12</sup>

Compound 4 has been characterized chemically by reaction with iodine to give tetrakis(iodomethyl)silane (32% yield) and with trimethyltin chloride to give tetrakis-[(trimethylstannyl)methyl]silane; both are new compounds and were characterized by their spectral properties.<sup>13</sup>

$$\operatorname{Si}(\operatorname{CH}_2\mathrm{I})_4 \xleftarrow{\mathrm{I}_2} 4 \xrightarrow{\mathrm{Me}_3\operatorname{SnCl}} \operatorname{Si}(\operatorname{CH}_2\operatorname{SnMe}_3)_4$$

Acknowledgment. We thank Dr. F. J. J. de Kanter for measuring the <sup>29</sup>Si NMR spectra and Mr. A. F. Hamminga, University of Groningen, for the elemental analysis.

Registry No. 1, 1271-19-8; 2, 27329-47-1; 3, 96242-28-3; 4, 103259-05-8; SiCl<sub>4</sub>, 10026-04-7; Si(CH<sub>2</sub>I)<sub>4</sub>, 103259-03-6; Me<sub>3</sub>SnCl, 1066-45-1; Si(CH<sub>2</sub>SnMe<sub>3</sub>)<sub>4</sub>, 103259-04-7.

(12) Mastryukov, V. S.; Dorofeeva, O. V.; Vilkov, L. V.; Tarasenko, N.
 A. J. Mol. Struct. 1975, 27, 216.

(13) Si(CH<sub>2</sub>)<sub>1</sub>; <sup>1</sup>H NMR (CDCl<sub>3</sub>; 90 MHz)  $\delta$  2.44 (s, 8 H); MS, m/e (relative intensity) 465 (100, [M – I]<sup>+</sup>), 451 (5.9), 437 (3.6), 423 (15.2), 409 (18, SiI<sub>2</sub><sup>+</sup>), 339 (3.3). Si(CH<sub>2</sub>SnMe<sub>3</sub>)<sub>4</sub>: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>; 90 MHz)  $\delta$  0.30 (s, 36 H), 0.10 (s, 8 H).

Preparation of a Mixed-Metal Ketenylidene Complex from  $Mn(CO)_5(CX_3)$  (X = CI, Br)

#### Ann M. Crespi and Duward F. Shriver\*

Department of Chemistry, Northwestern University Evanston, Illinois 60201

Received March 6, 1986

Summary: The reaction of Mn(CO)<sub>5</sub>(CBr<sub>3</sub>) and [PPN]-[Co(CO)<sub>4</sub>] yields the mixed-metal ketenylidene complex [PPN] [MnCO<sub>2</sub>(CO)<sub>9</sub>( $\mu_3$ -CCO)]. The structure of the ketenylidene complex was determined by X-ray crystallography.

Numerous transition-metal cluster carbide complexes have been prepared by reactions between CCl<sub>4</sub> or CHCl<sub>3</sub>

<sup>(3)</sup> Anal. Calcd for C<sub>24</sub>H<sub>28</sub>SiTi<sub>2</sub>: C, 65.46; H, 6.41. Found: C, 64.77; H, 6.15.

<sup>(4)</sup> Tikkanen, W. R.; Liu, J. Z.; Egan, J. W., Jr.; Petersen, J. L. Organometallics 1984, 3, 825.

<sup>(5) (</sup>a) Pitt, C. G.; Habercom, M. S.; Bursey, M. M.; Rogerson, P. F. J. Organomet. Chem. 1968, 15, 359. (b) Pitt, C. G. J. Organomet. Chem.

<sup>1973, 61, 49.
(6) (</sup>a) Wiberg, K. B.; Ellison, G. B.; Wendoloski, J. J. J. Am. Chem. Soc. 1976, 98, 1212. (b) Kao, J.; Radom, L. Tetrahedron 1978, 34, 2515.
(c) Eckert-Maksic, M.; Kovačevič, K.; Maksič, Z. B. J. Organomet. Chem. 1979, 168, 295.

<sup>(9)</sup> Calculated from the crystal data of ref 4.

<sup>(10)</sup> Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell

University Press: Ithaca, NY, 1960; p.256. (11) (a) Howard, T. R.; Lee, J. B.; Grubbs, R. H. J. Am. Chem. Soc. 1980, 102, 6876. (b) Lee, J. B.; Gajda, G. J.; Schaefer, W. P.; Howard, T. R.; Ikariya, T.; Straus, D. A.; Grubbs, R. H. J. Am. Chem. Soc. 1981, 103, 7358. (c) Sectz, J. W. F. L.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F. Angou, Chem. 1982, 05, 242



**Figure 1.** An ORTEP drawing of  $MnCo_2(CO)_9(\mu_3 - CCO)^-$ . Some selected bond distances (Å) and angles (deg): Co1-Co2 = 2.480(1); Co1-Mn = 2.643 (1); Co2-Mn = 2.568 (1); Co1-C1 = 1.968(3); Co2-C1 = 1.914 (3); Mn-C1 = 2.002 (3); C1-C2 = 1.281 (4);  $C_{2}-O_{2} = 1.173$  (3);  $C_{1}-C_{2}-O_{2} = 177.7$  (3).

and anionic metal carbonyl species of Co, Rh, and Ni.<sup>1-4</sup> The polyhalomethane is the source of the carbide atoms in these reactions. The present research is based on the idea that metal-substituted trihalomethanes might be useful reagents for building mixed-metal carbide clusters. Trihalomethyl transition-metal complexes are readily available from the halogen-exchange reaction between trifluoromethyl compounds and boron trihalides (eq 1).<sup>5</sup>

$$M-CF_3 + BX_3 \rightarrow M-CX_3 + BF_3 \tag{1}$$

$$M = Mn(CO)_5$$
,  $CpFe(CO)_2$ ,  $CpMo(CO)_3$ ;  $X = Cl$ , Br

Our objective has been met by the formation of a trimetallic ketenylidene complex containing a carbide-like carbon atom from the reaction of  $Mn(CO)_5(CX_3)$  and  $[PPN][Co(CO)_4]$  (PPN = bis(triphenylphosphine)nitrogen(1+)).

The ketenylidene complex 1 is prepared by combining a 1:1.7 ratio of  $Mn(CO)_5(CBr_3)$  and  $[PPN][Co(CO)_4]$  in  $CH_2Cl_2$  at -78 °C (eq 2). The solution turns dark brown

$$\begin{array}{l} \mathrm{Mn}(\mathrm{CO})_5(\mathrm{CBr}_3) + [\mathrm{PPN}][\mathrm{Co}(\mathrm{CO})_4] \rightarrow \\ [\mathrm{PPN}][\mathrm{Mn}\mathrm{Co}_2(\mathrm{CO})_9(\mu_3 - \mathrm{CCO})] + \cdots (2) \end{array}$$

as it is slowly warmed to room temperature. After extraction with hexane to remove the  $Mn(CO)_5X$  that forms, the product 1 is extracted into diethyl ether. Several recrystallizations by slow diffusion of pentane into diethyl ether yield a dark brown crystalline product in 20% yield based on Co. The product was characterized by IR, <sup>13</sup>C NMR, and X-ray crystallography.<sup>6,7</sup>



The Mn-Co and Co-Co bond distances compare favorably with those found in the literature.<sup>8-11</sup> The carbonyl ligands are unsymmetrically disposed around the metal framework, with one bridging carbonyl ligand between Mn and Co2. The capping CCO moiety is nearly linear  $(C1-C2-O2 = 177.7 (3)^{\circ})$  and tilts 14° toward Co1, away from the perpendicular to the MnCo<sub>2</sub> plane, as determined by CHEMGRAF.

The reaction between  $Mn(CO)_5(CX_3)$  and [PPN][Co- $(CO)_4$ ] possesses several interesting features. One mole of the Mn complex consumes only 1.7 mole of the Co anion, not 2 moles as the stoichiometry of the product indicates. The reaction products other products, Mn(CO)<sub>5</sub>X and CoX<sub>2</sub>, which may explain the observed stoichiometry as well as the low yield. The product Mn(CO)<sub>5</sub>X was identified by IR and mass spectra and has been detected previously in homolytic reactions of  $Mn(CO)_5(CX_3)$ .<sup>12</sup>

Ketenylidene complexes appear to form under conditions which generate an exposed three-coordinate carbide atom. This proposed carbide appears to be unstable with respect to migration of a CO onto the carbide to form the ketenylidene ligand CCO.<sup>13–15</sup> The source of the capping carbon atom in the reaction of Mn(CO)<sub>5</sub>(CX<sub>3</sub>) with Co- $(CO)_4^-$  is the trihalomethyl ligand on Mn, so all the halides must be removed from carbon in the course of the reaction. By analogy with the reaction of  $RCX_3$  with  $Co(CO)_4$  which is known to yield  $Co_3(CO)_9(\mu_3-CR)$  complexes,<sup>16</sup>  $Co_3$ - $(CO)_9(\mu_3$ -C-Mn $(CO)_5)$  is a likely intermediate in the formation of 1 (see Scheme I). The formation of this intermediate explains the absence of halides on the capping carbon atoms. Metal-exchange reactions between Co<sub>3</sub>- $(CO)_9(\mu_3$ -CR) and metal fragment to form  $Co_2M$  complexes are well-known.<sup>17-19</sup> Thus, a metal exchange reaction

- (12) Richmond, T. G.; Crespi, A. M.; Shriver, D. F. Organometallics 1984, 3, 314.
- (13) Sievert, A. C.; Strickland, D. S.; Shapley, J. R.; Steinmetz, G. R.; Geoffroy, G. L. Organometallics 1982, 1, 214.
- (14) Seyferth, D.; Williams, G. H.; Nivert, C. L. Inorg. Chem. 1977, 16, 758
- (15) Kolis, J. W.; Holt, E. M.; Shriver, D. F. J. Am. Chem. Soc. 1983, 105.7307.
- (16) Seyferth, D. Adv. Organomet. Chem. 1976, 14, 97.
- (17) Beurich, H.; Vahrenkamp, H. Angew. Chem., Int. Ed. Engl. 1978, 17,863
- (18) Beurich, H.; Vahrenkamp, H. Chem. Ber. 1982, 115, 2385.

<sup>(1)</sup> Albano, V. G.; Sansoni, M.; Chini, P.; Martinengo, S. J. Chem. Soc., Dalton Trans. 1973, 651.

<sup>(2)</sup> Albano, V. G.: Chini, P.; Martinengo, S.; McCaffrey, D. J. A.; Strumolo, D. J. Am. Chem. Soc. 1974, 96, 8106.

<sup>(3)</sup> Albano, V. G.; Chini, P.; Martinengo, S.; Sansoni, M.; Strumolo, D. J. Chem. Soc., Chem. Commun. 1974, 299.

<sup>(4)</sup> Ceriotti, A.; Longoni, G.; Manassero, M.; Perego, M.; Sansoni, M. Inorg. Chem. 1985, 24, 117

<sup>(5)</sup> Richmond, T. G.; Shriver, D. F. Organometallics 1983, 1, 305.

<sup>(6)</sup> Anal. Calcd for C<sub>47</sub>H<sub>30</sub>O<sub>10</sub>P<sub>2</sub>NMnCo<sub>2</sub>: C, 56.25; H, 3.01; N, 1.40; Mn, 5.84; Co, 11.75. Found: C, 55.90; H, 3.29; N, 1.37; Mn, 5.52; Co, 11.55. IR  $((C_2H_5)_2O)$ : 2060 (w), 1999 (s), 1987 (sh), 1928 (m) cm<sup>-1</sup>. 1 was enriched with <sup>13</sup>CO by using PPNCo(<sup>13</sup>CO)<sub>4</sub> in its preparation. The capping carbon was not enriched. <sup>13</sup>C NMR:  $\delta$  215.5 (metal framework CO's), 170.5 (ketenylidene CO).

<sup>(7)</sup> Crystal data for [PPN][MnCo<sub>2</sub>(CO)<sub>9</sub>(CCO)]: a = 14.859 (4) Å, b = 9.209 (1) Å, c = 16.701 (3) Å,  $\alpha = 90.08$  (2)°,  $\beta = 102.79$  (2)°,  $\gamma = 89.99$  (2)°; V = 2228.64 Å<sup>3</sup>; space group PI; Z = 2,  $d_{calc} = 1.495$  g/cm<sup>3</sup>;  $\mu = 11.296$  cm<sup>-1</sup>; Mo K $\alpha$  radiation,  $\lambda = 0.710$  73 Å; 10736 unique reflections, 7960 with  $I > 3\sigma(I)$ ;  $\omega - 2\theta$  scan mode; 2.5–55° = 2 $\theta$ ; T = -90°C; Enraf-Nonius CAD-4 diffractometer. The structure was solved with MULTAN, and subsequent non-hydrogen atoms were located by difference Fourier techniques. The full-matrix least-squares refinement included anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms on the phenyl rings were added in calculated positions and were included in the structure factor calculation but were not refined:  $R_F = 0.047$ ;  $R_{wF} = 0.056$ . All calculations were performed on a Digital Equipment Corp. VAX 11/730 computer using the Enraf-Nonius SDP library and the Molecular

Structure Corp. TEXLS full-matrix least-squares program. (8) Jacobsen, E. N.; Bergman, R. G. J. Am. Chem. Soc. 1985, 107, 2023. (9) Cirjak, L. M.; Huang, J.-S.; Zhu, Z.-H.; Dahl, L. F. J. Am. Chem. Soc. 1980, 102, 6626

<sup>(10)</sup> Staal, L. H.; Keijsper, J.; Van Koten, G.; Vrieze, K.; Cras, J. A.; Bosman, W. P. Inorg. Chem. 1981, 20, 555. (11) Muller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2322.

between Co and Mn is likely. A two-electron reduction concomitant or subsequent to the metal exchange is necessary to balance the charge. The reducing agent is assumed to be  $Co(CO)_4^-$ .

The cluster-building reaction to form 1 is highly dependent on the cation associated with  $Co(CO)_4^-$ . The reaction of  $Mn(CO)_5(CBr_3)$  with  $NaCo(CO)_4$  yields  $Mn-(CO)_5Br$  and  $Co_4(CO)_{12}$ , with no formation of 1. When the cation is  $PPh_4^+$  or  $Et_4N^+$ , 1 forms, but in very low yield. When  $Mn(CO)_5(CCl_3)$  is used in place of  $Mn(CO)_5(CBr_3)$ , the reaction proceeds much more slowly, in about 3 h at room temperature. The reaction is also highly solvent dependent. When tetrahydrofuran is used in place of dichloromethane, no reaction takes place.

The ketenylidene complex 1 reacts rapidly with 1 equiv of  $HSO_3CF_3$  at room temperature (eq 3). Proton attack [PPN][MnCo<sub>2</sub>(CO)<sub>9</sub>( $\mu_3$ -CCO)] + HSO<sub>3</sub>CF<sub>3</sub>  $\rightarrow$ 

$$MnCO_2(CO)_{10}(\mu_3-CH) + PPNSO_3CF_3$$
 (3)

occurs at the capping carbon atom, to produce a methylidyne complex,  $MnCo_2(CO)_{10}(\mu_3\text{-}CH)$  (2).<sup>20</sup> This mode of reactivity is typical for negatively charged ketenylidene complexes of the first-row transition metals.<sup>15,21</sup>

In summary, the trihalomethyl transition-metal complexes  $Mn(CO)_5(CX_3)$  (X = Cl, Br) have been used successfully to form a mixed-metal cluster containing at a ketenylidene ligand in which the  $\alpha$ -carbon atom is derived from the CX<sub>3</sub> moiety. Further cluster building reactions are under investigation.

Acknowledgment. Support for this research was provided by the NSF. A.M.C. thanks Steven Sunshine for crystallographic advice.

**Supplementary Material Available:** Listings of observed and calculated structure factors, positional and anisotropic thermal parameters, and bond distances and angles (106 pages). Ordering information is given on any current masthead page.

### Ruthenium-Catalyzed Acrylate Dimerization<sup>1</sup>

#### Ronald J. McKinney

Central Research & Development Department Experimental Station E. I. du Pont de Nemours & Company Wilmington, Delaware 19898

Received May 12, 1986

Summary: Treatment of  $(\eta$ -C<sub>6</sub>H<sub>6</sub>)(MA)<sub>2</sub>Ru<sup>0</sup> (MA = CH<sub>2</sub>==CHCO<sub>2</sub>CH<sub>3</sub>) with 2 equiv of sodium naphthalenide in tetrahydrofuran generates a homogeneous species which selectively catalyzes the dimerization of methyl acrylate (MA) to dimethyl hexenedioate.

The selective tail-to-tail dimerization of acrylates (eq 1) is attractive both as an alternative to the currently prac-

 Table I. Catalyst Activity and Selectivity in Methyl

 Acrylate Dimerization

|                         | methyl                | selectivity, % |                                  |  |
|-------------------------|-----------------------|----------------|----------------------------------|--|
| cat.                    | acrylate<br>convn,ª % | dimer          | linear:<br>branched <sup>b</sup> |  |
| RuCla-3H2Oc             | <0.1                  |                |                                  |  |
| $(C_6H_6)(MA)_2Ru^0(1)$ | 12                    | 50             | 9:1                              |  |
| $1 + 2 NaC_{10} H_8^d$  | 47                    | 77             | 49:1                             |  |

<sup>a</sup>At 140 °C for 1 h; [Ru] = 0.010 M; [MA] = 5.4 M in Nmethylpyrrolidone with decane as internal standard. <sup>b</sup>Linear = dimethyl hexenedioate; branched = head-to-tail dimer, dimethyl  $\alpha$ -methylpentenedioate. <sup>c</sup>Methanol ~5% v/v. <sup>d</sup> (C<sub>6</sub>H<sub>6</sub>)(MA)<sub>2</sub>Ru<sup>0</sup> treated with 2 equiv of sodium naphthalenide (THF).

ticed cyclohexane oxidation in the synthesis of adipic acid (an important nylon intermediate) and as an intermediate in fine chemicals synthesis.<sup>1</sup>

$$2CH_2 = CHCO_2CH_3 \rightarrow MA CH_3O_2CCH = CHCH_2CH_2CO_2CH_3 (1) DHD$$

Previously Alderson, Jenner, and Lindsey<sup>2</sup> reported that RuCl<sub>3</sub>·3H<sub>2</sub>O catalyzes the dimerization of acrylates in the presence of methanol. Our continuing studies of this system<sup>3</sup> have shown that zerovalent ruthenium complexes such as  $(\eta$ -C<sub>6</sub>H<sub>6</sub>)(CH<sub>2</sub>=CHCO<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>Ru<sup>0</sup> (1) or  $(\eta^{6}$ -C<sub>6</sub>H<sub>6</sub>)  $(\eta^{4}$ -C<sub>6</sub>H<sub>8</sub>)Ru<sup>0</sup> catalyze the same reaction in the absence of additives under milder conditions (140 °C vs. 210 °C) (see Table 1).<sup>4</sup>

Kinetic studies using 1 as catalyst precursor reveal that the rate of DHD formation obeys the rate law

$$d[DHD]/dt = k[Ru]^{0.5}[MA]$$

A simple model consistent with this rate law is given by eq 2-4. Equation 2 shows an equilibrium consisting of

$$Ru_{x} \rightleftharpoons Ru + Ru_{x-1} \tag{2}$$

$$Ru + MA \rightarrow Ru' + DHD$$
 (3)

$$Ru' + MA \rightarrow Ru$$
 (4)

fragmentation of a cluster containing at least two ruthenium nuclei. Equation 3, showing a second-order reaction between one of the ruthenium fragments and MA, is rate limiting. Equation 4 balances the system by adding the second acrylate in a fast step. The half-order dependence on the catalyst results when the equilibrium of eq 2 lies far to the left side.<sup>5</sup> Solvent polarity has a dramatic effect on the catalytic activity with higher activity being favored by very polar, weakly coordinating solvents such as *N*methylpyrrolidone (NMP). This led us to postulate that the fragmentation is ionic in nature and, since we start with zerovalent ruthenium, suggests one of the fragments may be anionic.

<sup>(19)</sup> Beurich, H.; Blumhofer, R.; Vahrenkamp, H. Chem. Ber. 1982, 115, 2409.

<sup>(20)</sup> Anal. Calcd for  $C_{11}HO_{10}MnCo_2$ : C, 28.35; H, 0.21; Mn, 11.79; Co, 25.30. Found: C, 28.13; H, 0.49; Mn, 11.82; Co, 25.16. IR (hexane): 2061 (s), 2050 (vs), 2002 (w), 1978 (m), 1920 (w) cm<sup>-1</sup>. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  9.37. Mass spectrum: m/e 466 (parent peak), successive loss of 10 CO's. (21) Kolis, J. W.; Holt, E. M.; Hriljac, J. A.; Shriver, D. F. Organometallics 1984, 3, 496.

<sup>&</sup>lt;sup>†</sup>Contribution No. 3733.

<sup>(1)</sup> For example see: Nugent, W. A.; Hobbs, F. W., Jr. J. Org. Chem. 1983, 48, 5364.

 <sup>(2)</sup> Alderson, T.; Jenner, E. L.; Lindsey, R. V. J. Am. Chem. Soc. 1965, 87, 5638. Alderson, T.U.S. Patent 3 013 066, 1961.

<sup>(3)</sup> McKinney, R. J.; Colton, M. C. Organometallics 1986, 5, 1080.
(4) McKinney, R. J. U.S. Patent 4 485 256, 1984.

<sup>(5) &</sup>lt;sup>1</sup>H NMR studies reveal that coordinated benzene of 1 is irreversibly lost at 90 °C, apparently allowing a dimer or higher cluster to rapidly form.