Cluster Synthesis. 16. Synthesis and Structural Characterizations of a Series of Sulfido Ruthenium Carbonyl Cluster Compounds Containing a Bridging PhC=CH Ligand

Richard D. Adams,* James E. Babin, Miklos Tasi, and Thomas A. Wolfe

Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208

Received March 30, 1987

The reaction of $\text{Ru}_3(\text{CO})_9(\mu_3-\text{CO})(\mu_3-\text{S})$ (1) with HC_2Ph yields the new cluster $\text{Ru}_3(\text{CO})_9(\mu_3-\eta^2-\text{HC}_2\text{Ph})(\mu_3-\text{S})$ (2) in 52% yield. Compound 2 was characterized structurally: space group PI, a = 14.429 (2) Å, b = 16.053(4) Å, c = 10.222 (2) Å, $\alpha = 107.00$ (2)°, $\beta = 101.13$ (2)°, $\gamma = 97.16$ (2)°, Z = 4, $\rho_{calcd} = 2.02$ g/cm³. The structure was solved by the heavy-atom method and was refined (2641 reflections) to the final values of the residuals R = 0.0327 and $R_w = 0.0310$. The molecule consists of an open triangular cluster of three The Holecule consists of an open triangular cluster of three metal atoms with triply bridging alkyne and sulfido ligands on opposite sides of the cluster. Compound 2 reacts with $\operatorname{Ru}(\operatorname{CO})_5$ at 80 °C to yield $\operatorname{Ru}_4(\operatorname{CO})_9(\mu-\operatorname{CO})_2(\mu_4-\eta^2-\operatorname{HC}_2\operatorname{Ph})(\mu_4-\operatorname{S})$ (3; 50%) and $\operatorname{Ru}_5(\operatorname{CO})_{13}(\mu-\operatorname{CO})(\mu_4-\eta^2-\operatorname{HC}_2\operatorname{Ph})(\mu_4-\operatorname{S})$ (4; 8%). Both compounds were characterized structurally. For 3: space group $P\overline{I}$, a = 9.384 (2) Å, b = 14.542 (4) Å, c = 8.972 (3) Å, $\alpha = 92.61$ (2)°, $\beta = 98.80$ (2)°, $\gamma = 98.00$ (2)°, Z = 2, $\rho_{\text{calcd}} = 2.35$ g/cm³. The structure was solved by the heavy-atom method and was refined (3060 reflections) to the final value of the product R = 0.0024 or R = 0.0240. to the final values of the residuals R = 0.0224 and $R_w = 0.0240$. The structure of 3 consists of planar cluster of four metal atoms with quadruply bridging alkyne and sulfido ligands on opposite sides of the cluster. For 4: space group $P2_1/n,a = 8.842$ (2) Å, b = 20.214 (5) Å, c = 15.943 (3) Å, $\beta = 92.37$ (2)°, Z = 4, $\rho_{calcd} = 2.41$ g/cm³. The structure was solved by direct methods and was refined (3772 reflections) to the final values of the residuals R = 0.0206 and $R_w = 0.0225$. The structure of 4 consists of a planar cluster analogous to that of 3 with quadruply bridging alkyne and sulfido ligands but differs from 3 due to the presence of an Ru(CO)₄ group on one edge of the tetraruthenium cluster. Compound 4 was also obtained by the reaction of 3 with $Ru(CO)_5$ (26% yield).

Introduction

Recent developments¹ in the understanding of the structure and bonding of transition-metal cluster compounds may provide a basis for the development of rational syntheses.²⁻⁵ We have recently prepared a range of new osmium carbonyl cluster compounds that contain sulfido ligands.⁴ It is believed that the sulfido ligands play an important role both in stabilizing the clusters⁶ and in facilitating their assembly.⁴

We have recently extended these studies to include the element ruthenium and have discovered a variety of new structural types.⁷⁻¹⁰ These studies were made possible by use of the precursor $\operatorname{Ru}_3(\operatorname{CO})_9(\mu_3-\operatorname{CO})(\mu_3-\operatorname{S})$ (1) which we have recently prepared in good yield. In the continuation of our studies of cluster synthesis we have now prepared the alkyne complex $\operatorname{Ru}_3(\operatorname{CO})_9(\mu_3 - \eta^2 - \operatorname{HC}_2\operatorname{Ph})(\mu_3 - \operatorname{S})$ (2) by the reaction of 1 with HC=CPh and have found that this cluster can be readily enlarged by the sequential addition of mononuclear ruthenium carbonyl fragments. The results of these studies are reported here.

(3) Geoffroy, G. L. In Metal Clusters in Catalysis; Gates, B. C., Guczi, L., Knözinger, H., Eds.; Elsevier: New York, 1986.
(4) Adams, R. D. Polyhedron 1985, 4, 2003.
(5) Vahrenkamp, V. Philos. Trans. R. Soc. London, Ser. A 1982, 308,

9) Adams, R. D.; Babin, J. E.; Tasi, M. Inorg. Chem. 1986, 25, 4460. (10) Adams, R. D.; Babin, J. E.; Tasi, M. Inorg. Chem., in press.

Experimental Section

General Data. All reactions were performed under an atmosphere of carbon monoxide. Reagent grade solvents were stored over 4-Å molecular sieves. n-Heptane was purified by distillation from sodium diphenyl ketyl and was stored over sodium under an atmosphere of nitrogen. $Ru_3(CO)_{12}$ was purchased from Strem Chemical Co. and was used as received. Phenylacetylene was purchased from Aldrich Chemical Co. and was vacuum distilled before use. CP grade carbon monoxide was purchased from Linde Co. and was used without further purification. Ru(CO)₅ was prepared by the published procedures.¹¹ $\operatorname{Ru}_3(\operatorname{CO})_9(\mu_3-\operatorname{CO})(\mu_3-\operatorname{S})$ (1) was prepared as previously reported.⁷

All chromatographic separations were performed in air. TLC separations were performed on plates (0.25 mm Kieselgel 60 F_{254} , E. Merck, West Germany) purchased from Bodman Chemicals, USA. IR spectra were recorded on a Nicolet 5 DXB FT-IR spectrophotometer. ¹H NMR spectra were recorded on a Bruker AM-300 spectrometer operating at 300 MHz. Elemental analyses were performed by Desert Analytics, Tucson, AZ.

Reaction of $Ru_3(CO)_9(\mu-CO)(\mu_3-S)$ (1) with Phenylacetylene. Compound 1 (20 mg, 0.032 mmol) dissolved in 20 mL of *n*-heptane was combined with 18 μ L (0.164 mmol) of phenylacetylene. This solution was refluxed for 30 min under a continuous purge with carbon monoxide. The n-heptane was removed in vacuo; the residue was dissolved in a minimal amount of CH₂Cl₂ and was chromatographed by TLC on silica gel. Elution HC_2Ph)(μ_3 -S) (2, 52%): IR (ν (CO), cm⁻¹, in hexane) 2100 (vw), 2078 (vs), 2056 (s), 2030 (s), 2014 (m), 2007 (w, sh), ¹H NMR (δ in CDCl₃) 8.83 (s, 1 H), 7.24-7.00 (m, 5 H).

Reaction of $\operatorname{Ru}_3(\operatorname{CO})_9(\mu_3-\eta^2-\operatorname{HC}_2\operatorname{Ph})(\mu_3-\operatorname{S})$ (2) with $\operatorname{Ru}(\operatorname{CO})_5$. Compound 2 (20 mg, 0.029 mmol) was dissolved in 40 mL of cyclohexane and was heated to reflux under a continuous carbon monoxide purge. An 80-mL cyclohexane solution of Ru(CO)₅ (0.235 mmol) was added from a dropping funnel over a period of approximately 30 min. The reaction solution was then refluxed

^{(1) (}a) Mingos, D. M. P. Acc. Chem. Res. 1984, 17, 311. (b) Teo, B. K. Inorg. Chem. 1984, 23, 1251; Inorg. Chem. 1984, 23, 1257. (c) Wade, K. In Transition Metal Clusters; Johnson, B. F. G., Ed.; Wiley: New York, 1980. (d) Johnson, B. F. G.; Benfield, R. E. In Topics in Stereo-chemistry; Geoffroy, G. L., Ed.; Wiley: 1981; Vol. 12. (2) Geoffroy, G. L. Comprehensive Organometallic Chemistry; Wil-kinson, G., Stone, F. G. A., Abel, E., Eds.; Pergamon: Oxford, 1982; Chemistry

Chapter 40.

^{17.}

⁽⁶⁾ Vahrenkamp, V. Angew. Chem., Int. Ed. Engl. 1975, 14, 322.
(7) Adams, R. D.; Babin, J. E.; Tasi, M. Inorg. Chem. 1986, 25, 4514.
(8) Adams, R. D.; Babin, J. E.; Tasi, M. Organometallics, submitted

for publication.

⁽¹¹⁾ Huq, R.; Poë, A. J.; Charola, S. Inorg. Chim. Acta 1980, 38, 121.

Table I. Crystallographic Data for the Structural Analyses for **Compounds 2-4**

Table II. Positional Parameters and B(eq) for $Ru_3(CO)_9(\mu_3-\eta^2-HC_2Ph)(\mu_3-S)$ (2)

	2	3	4
	(1) 0		
formula	(A) Crys RusOccueHe	RuSOnCoHe	Ru-SOLC-He
temp, ± 3 °C	23	23	23
space group	No. 2, P_1^1	No. 2, $P1$	No. 14, $P2_1/n$
а, А Ь Å	14.429 (2) 16.053 (4)	9.384(2) 14 549(4)	8.842 (2) 20.214 (5)
c. Å	10.222(2)	8.972 (3)	15.943(3)
α , deg	107.00 (2)	92.61 (2)	90.0
β , deg	101.13 (2)	98.80 (2)	92.37 (2)
γ , deg V λ^3	97.16 (2)	98.00(2) 1195 4 (5)	90.0
м, а М.	663.5	846.5	1031.7
Z	4	2	4
$ ho_{ m calcd},{ m g/cm^3}$	2.02	2.35	2.41
	(B) Measurement	of Intensity Data	
radiatn	Μο Κα	Μο Κα	Μο Κα
	(0.710 69 A)	(0.71069A)	(0.71069 A)
detector	graphite	graphile	graphite
aperture,			
mm			
horizontal	2.0	2.0	2.0
vertical	2.0	2.0	2.0
ciybt lacto	010, 110, 110	210, 011, 011	011, 201, 201
cryst size, mm	$0.036 \times 0.260 \times$	$0.028 \times 0.322 \times$	$0.165 \times 0.138 \times$
anust orientate	0.201	0.233	0.348
directn. deg	[211]: 0.61	[210]: 0.79	[011]: 1.24
from ϕ axis			,
reflctns measd	$h,\pm k,\pm l$	$+h,\pm k,\pm l$	$+h,+k,\pm l$
max 20, deg	40 moving	48 moving	48 moving
scan type	crvstal-	crvstal-	crvstal-
	stationary	stationary	stationary
	counter	counter	counter
ω -scan width: (A + 0.347	1.10	1.10	1.10
$\tan \theta$, $A =$			
background:	$^{1}/_{4}$ scan time	$^{1}/_{4}$ scan time	$^{1}/_{4}$ scan time
time at each			
end of scan	4.0	40	40
deg/min		10	
no. of reflctns	4406	4016	4992
measd (F^2)	9641	2060	9779
$\geq 3.0\sigma(F^2)$	2041	5000	0112
	(C) Treatm	ent of Data	
abs correctn	none	numerical	analytical
coeff, cm^{-1}	21.31	25.59	26.66
grid		$16 \times 4 \times 14$	
coeff			
max		0.931	0.728
min		0.514	0.637
P factor	0.02	0.02	0.02
	0.0327	0.0224	0.0206
R_{wF}	0.0310	0.0240	0.0225
esd of unit	1.228	1.277	1.244
observn			
largest	0.006	0.043	0.097
shift/error			
value of final			
largest peak	0.43	0.49	0.43
in final diff			
Fourier, e/Å ³	541	340	403
no. or variables	0.11	0.10	100

^a Rigaku software uses a multiple scan technique. If the $I/\sigma(I)$ ratio is less than 10.0, a second scan is made and the results are added to first scan etc. A maximum of three scans was permitted per reflection.

for an additional 30 min. while the CO purge was continued. During this time, the solution turned to dark green. The reaction solution was concentrated and chromatographed over a Florisil

atom	x	У	z	$B(eq), Å^2$
Ru1A	-0.257991 (94)	0.264207 (84)	-0.19885 (12)	4.94 (5)
Ru1B	0.232083 (82)	0.230927 (78)	0.70963 (12)	4.22 (5)
Ru2A	-0.119595 (77)	0.240258 (70)	0.01155 (11)	3.48 (4)
Ru2B	0.165325 (78)	0.336193 (72)	0.55556 (12)	3.64 (5)
Ru3A	-0.183080 (77)	0.056862 (70)	-0.11841 (11)	3.49 (4)
Ru3B	0.329121 (76)	0.332872 (68)	0.44734(11)	3.31 (4)
S1A	-0.15789(27)	0.15932 (24)	-0.23722(37)	4.5(2)
S1B	0.24098 (24)	0.21073(22)	0.47729(36)	3.9(1)
011A	-0.4462(10)	0.1494(10)	-0.3814 (15)	10.0 (8)
011B	0.40987 (82)	0.17392(81)	0.8303(12)	7.9 (6)
012A	-0.3370(10)	0.43088(84)	-0.0772(14)	94(7)
012B	0 17206 (94)	0.30119(89)	0.9834(13)	92(7)
013A	-0.1836(12)	0.34656 (96)	-0.4061(16)	11.9 (9)
013B	0.10174(96)	0.04222 (87)	0.6008(14)	10.7(7)
0214	-0.11691(75)	0.34107 (66)	0.3137(11)	61 (5)
021R	0.11001(76) 0.11177(76)	0.39667 (81)	0.3004(12)	7.6 (6)
022A	-0.00687(90)	0.39919 (75)	-0.0331(13)	87(6)
022R	-0.02551(77)	0.20723(75)	0.4848(12)	74(5)
0224	0.06156 (78)	0.17346 (66)	0.1040(12) 0.1042(12)	68 (5)
023R	0.00100 (10)	0.48311(84)	0.7488(15)	92(7)
0200	-0.03301(72)	-0.03646(67)	-0.2577(11)	63 (5)
031A	-0.03331(72) 0.30744(75)	-0.03040 (07)	-0.2077(11) 0.1409(10)	66 (5)
0310	-0.17844(78)	-0.05366 (65)	0.1402(10) 0.0769(11)	62 (5)
032A	-0.17644 (78)	-0.00000 (00)	0.0702(11) 0.2704(12)	74(5)
0320	-0.36342(84)	-0.05580 (77)	-0.3704(12)	7.4 (5)
033R	-0.50307(80)	-0.000000 (11)	-0.5207(12)	7.3 (5)
C1 A	-0.92913(00)	0.30725 (73)	-0.0300(13)	1.3 (3)
CIA CID	-0.20201 (91)	0.21313 (32) 0.96079 (76)	-0.0403(13) 0.7455(19)	4.2(0)
COA	0.25150 (07)	0.30072 (70)	0.7400(10) 0.0071(19)	3.0 (3)
COD	-0.20712(00)	0.14000 (00)	-0.0071(13)	3.0 (3)
	0.32019(03) 0.9757(14)	0.39970 (03)	0.0014(10) 0.0006(10)	3.2(0)
CIIR	-0.3737(14)	0.1928 (13)	-0.3220(18)	((1) 5 6 (7)
CIQA	0.3420(12)	0.19420(94) 0.2670(12)	-0.1917(17)	5.0(1)
C12A	-0.3009(13) 0.1055(11)	0.3070(12) 0.9709(11)	-0.1217(17)	50(8)
C12D	0.1555 (11)	0.2702(11) 0.2154(12)	-0.2200 (18)	5.5(0)
C10A	-0.2112(10) 0.1479(10)	0.3134(12) 0.1100(11)	-0.3309(10)	(1)
COL	0.1472(12) 0.11959(07)	0.1100(11)	0.0417(10) 0.1001(17)	0.9(7)
C21A	-0.11000(37)	0.30400(93)	0.1331(17) 0.2044(17)	4.1(0) 5 4 (7)
C21D	0.1372(11) 0.0521(11)	0.3741(10) 0.9414(11)	0.3544(17) 0.0190(15)	5.4(7)
COND	-0.0001(11)	0.3414(11) 0.9569(11)	-0.0169(15)	5.0(7)
	0.0400(12) 0.0007(11)	0.2000 (11)	0.5104(17)	0.1(0)
Coop	-0.0097(11)	0.19470 (00)	0.0049(10) 0.6709(10)	4.7 (0)
C23D	0.1197(11)	0.4293(11) 0.00972(94)	0.0720(10) 0.0020(14)	3.3(7)
ColA	-0.0690(10) 0.21177(00)	-0.00273(04)	-0.2039(14)	4.0 (0) 5.0 (6)
CODA	0.31177(99) 0.1909(11)	0.2099(10) 0.01220(06)	0.2497(10) 0.0022(14)	3.0(0)
Coop	-0.1602(11) 0.2671(10)	-0.01339 (90)	0.0033(14) 0.4047(15)	4.0 (1)
CODA	0.3071(10)	0.43790(90)	0.4047(10) 0.9500(16)	4.0 (0)
Coop	-0.2952(11)	-0.01017(90)	-0.2320(10)	5.2(7)
C41 A	0.4030(12)	0.31092(92) 0.19251(90)	0.4974(17) 0.1075(15)	5.1(7)
C41A	-0.2954(10)	0.12331 (80)	0.1075(10)	3.6 (0)
	0.30900 (96)	0.49009 (80)	0.7100(14) 0.0000(16)	3.4(0)
C42A	-0.2407(11)	0.12421(62)	0.2330(10) 0.6740(10)	4.0 (0)
	0.33209 (88)	0.00220 (92)	0.0740(12)	3.0 (0) 9 (1)
C43A	~0.2760 (17)	0.1031(12)	0.3342(17)	
0438	0.3701 (12)	0.0007 (10)	0.7349 (10)	4.0 (1)
C44A	-0.3780 (23)	0.0828 (14)	0.3062 (26)	
C44B	0.4624 (11)	0.07280 (94)	0.8367 (17)	4.8 (7)
045A	-0.4348 (15)	0.0831(13)	0.1881 (25)	9(1)
C40B	0.49940 (96)	0.6084 (12)	0.8763 (15)	D.1 (6)
C46A	-0.3938 (11)	0.10338 (92)	0.0891 (15)	D.1 (7)
C46B	0.4546 (11)	0.52187 (92)	0.9190 (10)	4.3 (b)

column by using hexane solvent. The first yellow band was $Ru_3(CO)_{12}$ (11.3 mg). A second dark green band was eluted with CH_2Cl_2 and was subsequently purified further by TLC. Elution with hexane/CH₂Cl₂ (v/v, 95/5) solvent mixture yielded 13.8 mg of Ru₄(CO)₉(μ -CO)₂(μ_4 - η^2 -HC₂Ph)(μ_4 -S) (3, 50%) as an orange band and 2.7 mg of $\operatorname{Ru}_5(\operatorname{CO})_{13}(\mu-\operatorname{CO})(\mu_4-\eta^2-\operatorname{HC}_2\operatorname{Ph})(\mu_4-S)$ (4, 8%) as a green band. For 3: IR ($\nu(\operatorname{CO})$, cm⁻¹; in hexane) 2095 (w), 2062 (s), 2042 (vs), 2008 (m), 1993 (w), 1858 (w); ¹H NMR (δ in CDCl₃) 7.04-7.02 (m, 3 H), 6.41-6.38 (m, 2 H), 4.33 (s, 1 H). Anal. Calcd for $Ru_4SO_{11}C_{19}H_6$: C, 26.96; H, 0.71; Found: C, 27.17; H, 0.71%. For 4: IR (ν (CO), cm⁻¹, in hexane) 2110 (w), 2080 (vs), 2048 (s, sh), 2042 (vs), 2031 (s), 2020 (m), 2008 (w), 1992 (m), 1980 (vw), 1962 (w), 1901 (vw); ¹H NMR (δ in CDCl₃) 7.19-7.14 (m,

Figure 1. An ORTEP diagram of $Ru_3(CO)_9(\mu_3-\eta^2-HC_2Ph)(\mu_3-S)$ (2) showing 50% probability thermal ellipsoids. The hydrogen atom H(1) is shown with an artificially reduced thermal parameter, $B = 1.0 \text{ Å}^2$.

An ORTEP diagram of $Ru_4(CO)_9(\mu-CO)_2(\mu_4-\eta^2-\eta^2-\eta^2)$ Figure 2. $HC_2Ph)(\mu_4-S)$ (3) showing 50% probability thermal ellipsoids. The hydrogen atom H(1) is shown with an artificially reduced thermal parameter, B = 1.0 Å².

3 H), 6.83–6.80 (m, 2 H), 5.10 (s, 1 H). Anal. Calcd for $Ru_5SO_{14}C_{22}H_6:$ C, 25.61; H, 0.59; Found: C, 25.45; H, 0.64.

Reaction of $Ru_4(CO)_9(\mu-CO)_2(\mu_4-\eta^2-HC_2Ph)(\mu_4-S)$ (3) with $Ru(CO)_5$. The reaction of 12.3 mg (0.014 mmol) of compound 3 with an 80-mL solution of $Ru(CO)_5$ (0.188 mmol) was performed as described in the previous section. The solution turned dark green. Workup as described above yielded 1.1 mg of compound 3, 3.6 mg of compound 4 (26%), and 2.0 mg of $\text{Ru}_6(\text{CO})_{17}(\mu_4$ - η^2 -HC₂Ph)(μ_4 -S) (5,^{12,13} 12%). IR for 5: (ν (CO) in hexane) 2115 (vw), 2091 (s), 2074 (vs), 2050 (m), 2043 (s), 2030 (vs), 2023 (s), 2009 (m), 1999 (vw), 1987, (vw), 1962 (w), 1956 (w); ¹H NMR (δ in $CDCl_3$ 7.20–7.00 (m). The yields of compounds 4 and 5 were calculated from amount of 3 consumed.

Crystallographic Analyses. Crystals of 2 were grown from hexane solutions at -20 °C under a CO atmosphere. Crystals of 3 and 4 were grown by slow evaporation of solvent from CH₂Cl₂/hexane solutions at 5 °C. The data crystals were mounted in thin-walled glass capillaries. Diffraction measurements were made on a Rigaku AFC6 automatic diffractometer by using Mo $K\alpha$ radiation. Unit cells were determined and refined from 25 randomly selected reflections obtained by using the AFC6 automatic search center, index, and least-squares routines. Crystal data, data collection parameters, and results of the analyses are listed in Table I. All data processing was performed on a Digital Equipment Corp. MICROVAX II computer by using the Molecular Structure Corp. TEXSAN structure solving program library. Neutral atom scattering factors were obtained from the

Table III. Intramolecular Distances (Å) for $Ru_{\bullet}(CO)_{\bullet}(\mu_{\bullet}, \eta^2 - HC_{\bullet}Ph)(\mu_{\bullet}, S)$ (2)

				-, (-,	
atom	atom	dist	atom	atom	dist
 Ru1A	C11A	1.91 (2)	Ru3A	C2A	2.07 (1)
Ru1A	C12A	1.91 (2)	Ru3A	S1A	2.345(4)
Ru1A	C13A	1.95 (2)	Ru3B	C33B	1.83 (2)
Ru1A	C1A	2.02 (1)	Ru3B	C32B	1.90 (2)
Ru1A	S1A	2.348 (4)	Ru3B	C31B	1.97 (2)
Ru1A	Ru2A	2.789 (2)	Ru3B	C2B	2.06 (1)
Ru1B	C11B	1.87(2)	Ru3B	S1B	2.331(3)
Ru1B	C12B	1.87 (2)	011A	C11A	1.11 (2)
Ru1B	C13B	2.01(2)	011B	C11B	1.12 (2)
Ru1B	C1B	2.05 (1)	012A	C12A	1.15(2)
Ru1B	S1B	2.332 (4)	012B	C12B	1.16 (2)
Ru1B	Ru2B	2.764(2)	013A	C13A	1.14 (2)
Ru2A	C23A	1.88 (2)	013B	C13B	1.11 (2)
Ru2A	C21A	1.89 (2)	O21A	C21A	1.14 (1)
Ru2A	C22A	1.92 (2)	O21B	C21B	1.14 (2)
Ru2A	C1A	2.27(1)	O22A	C22A	1.13 (1)
Ru2A	C2A	2.30 (1)	O22B	C22B	1.15 (2)
Ru2A	S1A	2.410 (4)	O23A	C23A	1.16 (1)
Ru2A	Ru3A	2.800(2)	O23B	C23B	1.13 (2)
Ru2B	C23B	1.90 (2)	O31A	C31A	1.15 (1)
Ru2B	C22B	1.91 (2)	O31B	C31B	1.13 (1)
Ru2B	C21B	1.91 (2)	O32A	C32A	1.12 (1)
Ru2B	C1B	2.30 (1)	O32B	C32B	1.15 (1)
Ru2B	C2B	2.31(1)	O33A	C33A	1.11 (1)
Ru2B	S1B	2.415(4)	O33B	C33B	1.13 (2)
Ru2B	Ru3B	2.796 (2)	C1A	C2A	1.43 (2)
Ru3A	C33A	1.89 (2)	C1B	C2B	1.42 (2)
Ru3A	C32A	1.91(2)	C2A	C41A	1.49 (2)
Ru3A	C31A	1.95 (2)	C2B	C41B	1.49 (2)

standard sources.^{14a} Anomalous dispersion corrections were applied to all non-hydrogen atoms.^{14b} Full-matrix least-squares refinements minimized the function $\sum_{hkl} w(|F_o| - |F_c|)^2$, where $w = 1/\sigma(F)^2$, $\sigma(F) = \sigma(F_o)^2/2F_o$, and $\sigma(F_o^2) = [\sigma(I_{raw})^2 + (PF_o)^2]^{1/2}/Lp$.

Compounds 2 and 3 crystallized in the triclinic crystal system. The space group *P*I was assumed and confirmed for each by the successful solution and refinement of the structures. Compound 4 crystallizes in the monoclinic crystal system. The space group $P2_1/n$ was determined from systematic absences observed in the data. The structures of 2 and 3 were solved by a combination of Patterson and difference Fourier techniques. Compound 2 crystallizes with two independent molecules in the asymmetric unit. The structure of 4 was solved by a combination of direct methods (MULTAN) and difference Fourier techniques. Absorption corrections of a Gaussian integration type were performed for compounds 3 and 4. All non-hydrogen atoms were refined with anisotropic thermal parameters in all structures. For 2, the alkyne hydrogen atom position was located from a difference Fourier synthesis. Phenyl hydrogen atom positions were calculated by assuming idealized planar geometry. The contribution of hydrogen atoms were added to the structure factor calculations, but their positions were not refined. For 3 and 4, all hydrogen atom positions were located by difference Fourier syntheses and refined with isotropic thermal parameters. Error analyses were calculated from the inverse matrix obtained on the final cycle of refinement for each structure. See supplementary material for the tables of structure factor amplitudes and the values of the anisotropic thermal parameters.

Results

The reaction of 1 with HC₂Ph at 97 °C led to the formation of $Ru_3(CO)_9(\mu_3-\eta^2-HC_2Ph)(\mu_3-S)$ (2) in 52% yield by the decarbonylation of 1 and the addition of 1 equiv of HC_2Ph . Compound 2 was characterized by IR and ¹H

⁽¹²⁾ Compound 5 has recently been characterized by X-ray crystalloaphic methods. It has a structure analogous to 3 in which both bridging

CO ligands were replaced with Ru(CO)₄ groups. (13) Adams, R. D.; Babin, J. E.; Tasi, M.; Wolfe, T. A., report in preparation.

⁽¹⁴⁾ International Tables for X-ray Crystallography; Kynoch: Birmingham, England, 1975; Vol. IV: (a) Table 2.2B, pp 99-101; (b) Table 2.3.1, pp 149-150.

Table IV. Intramolecular Bond Angles (deg) for $Ru_3(CO)_9(\mu_8-\eta^2-HC_2Ph)(\mu_3-S)$) (2)
---	-------

			· · · · · · · · · · · ·				51 1043(00)g(µ3 ,				
atom	atom	atom	angle	atom	atom	atom	angle	atom	atom	atom	angle
C11A	Ru1A	C12A	97.0 (8)	C2A	Ru2A	Ru1A	75.3 (3)	C32B	Ru3B	C31B	90.9 (6)
C11A	Ru1A	C13A	98.3 (8)	C2A	Ru2A	Ru3A	46.6 (3)	C32B	Ru3B	C2B	94.4 (5)
CIIA	Ru1A	C1A	91.6(7)	S1A	Ru2A	Ru1A	531(1)	C32B	Bu3B	S1B	1644(4)
CIIA	Ru14	S1A	99.1 (6)	S1A	$R_{11}2\Delta$	Ru3A	529(1)	C32B	Ru3B	B12B	104.4(4) 1126(4)
CIIA	Du1A	D112A	134.0 (6)	Du1A	Ru2/1	Ruon R	88 01 (5)	CalB	Du2D	CoB	171.0(4)
C19A	Du1A	C12A	104.0(0)	Coop	DunD	Coop	00.01(0)	ColD	D100D	S1P	97.9 (4)
C12A	Du1A	CIA	91.0 (7) 90 5 (6)	C20D	DuoD	C22D	01.1(7)	ColD	DuoD	D.0D	1171(4)
CI2A	D.1A	S1A	100 + (5)	C23D	D.OD	C21B	54.4(1)	COR	D. OD	Ru2D	117.1(4)
CIZA	RulA	SIA D.a.	103.4 (5)	Coop	Ru2D				RUSD D.OD	DUOD	60.7 (4) 54.0 (9)
CIZA	RulA	RuzA	109.7 (5)	C23B	Ru2B	C2B	94.9 (0)	C2B	RUSB	Ru2B	54.3 (3)
CI3A	RulA	UIA	169.8 (7)	C23B	Ru2B	SIB	161.8 (5)	SIB	Ru3B	Ru2B	55.3 (1)
CI3A	RulA	SIA	90.4 (5)	C23B	RuzB	RulB	109.1(5)	Ru3A	SIA	RulA	111.6 (1)
C13A	RulA	Ru2A	117.0 (6)	C23B	Ru2B	Ru3B	132.5 (4)	Ru3A	SIA	Ru2A	72.1(1)
C1A	RulA	SIA	85.8 (4)	C22B	Ru2B	C21B	97.5 (6)	RulA	SIA	Ru2A	71.8 (1)
C1A	RulA	Ru2A	53.4 (4)	C22B	Ru2B	C1B	124.7 (5)	Ru3B	S1B	Ru1B	113.8 (1)
S1A	Ru1A	Ru2A	55.1(1)	C22B	Ru2B	C2B	159.0 (5)	Ru3B	S1B	Ru2B	72.2 (1)
C11B	Ru1B	C12B	95.1 (7)	C22B	Ru2B	S1B	89.6 (5)	Ru1B	S1B	Ru2B	71.2(1)
C11B	Ru1B	C13B	95.0 (6)	C22B	Ru2B	Ru1B	83.0 (4)	C2A	C1A	Ru1A	129 (1)
C11B	Ru1B	C1B	98.6 (5)	C22B	Ru2B	Ru3B	135.4 (5)	C2A	C1A	Ru2A	73.0 (7)
C11B	Ru1B	S1B	103.5 (5)	C21B	Ru2B	C1B	137.8 (6)	Ru1A	C1A	Ru2A	80.9 (5)
C11B	Ru1B	Ru2B	144.1(5)	C21B	Ru2B	C2B	102.2(5)	C2B	C1B	Ru1B	129 (1)
C12B	Ru1B	C13B	95.5 (7)	C21B	Ru2B	S1B	103.5 (5)	C2B	C1B	Ru2B	72.6 (7)
C12B	Ru1B	C1B	87.2 (6)	C21B	Ru2B	Ru1B	156.5 (5)	Ru1B	C1B	Ru2B	78.8 (4)
C12B	Ru1B	S1B	160.7 (5)	C21B	Ru2B	Ru3B	73.8 (4)	C1A	C2A	C41A	116 (1)
C12B	Ru1B	Ru2B	105.5 (5)	C1B	Ru2B	C2B	35.9 (4)	C1A	C2A	Ru3A	124(1)
C13B	Ru1B	C1B	165.9(5)	C1B	Ru2B	S1B	77.9 (3)	C1A	C2A	Ru2A	70.4 (7)
C13B	Ru1B	S1B	88.2 (4)	C1B	Ru2B	Ru1B	46.7 (3)	C41A	C2A	Ru3A	120 (1)
C13B	Ru1B	Ru2B	1115(4)	Č1B	Ru2B	Ru3B	74.6 (3)	C41A	C2A	Ru2A	128 5 (9)
CIB	Ru1B	S1B	84.8 (4)	C2B	Ru2B	S1B	78.6 (3)	Ru3A	C2A	R1124	79.5 (4)
CIB	Ru1B	Ru2B	54.5(3)	C2B	R112B	Ru1B	76.0 (3)	C1B	C2B	C41B	114(1)
S1B	Ru1B	Ru2B	55.8 (1)	C2B	Ru2D	Ruse	16.0 (0)	C1B	C2B	Rusp	196(1)
C23A	Ru1D	C_{21}	93 6 (6)	S1B	Ru2D	Ru1B	53 01 (9)	CIB	C2B	RuoD Ru2B	715(7)
C23A	Du2A	C221A	06 3 (6)	S1B	D119D	Duan	59 59 (0)	CAIR	C2B	D12D	1100 (8)
C23A	DugA	C14	1471(5)	D ₁₁ D	D.0D	D2D	02.00 (5) 90.90 (5)	C41D	COP	D.OD	113.3 (8)
C23A	RuZA Du0A	COA	147.1(0)	Cont		COOL	09.30 (D) 05 0 (C)	041D	Cap	Ru2D	127.0 (6)
C23A	RuZA	CZA CIA	110.9(3)	COOA	RUJA D. OA	C32A	95.0 (6)	RU3D			19.3 (4)
C23A	RuzA	SIA	97.7 (4)	C33A	RUJA	CSIA	97.6 (6)	OIIA	CITA	RUIA	172 (2)
C23A	RuzA	RulA	149.8 (4)	C33A	RUJA	CZA	94.3 (5)			Ruib	178 (2)
C23A	Ru2A	Ru3A	77.3 (4)	C33A	Ru3A	SIA	96.3 (5)	012A	CI2A	RulA	177 (2)
C2IA	Ru2A	CZZA	93.5 (6)	C33A	Ru3A	Ru2A	134.2 (5)	OI2B	C12B	RulB	174 (1)
C21A	Ru2A	CIA	88.3 (5)	C32A	Ru3A	C31A	90.2 (6)	O13A	C13A	RulA	179 (2)
C21A	Ru2A	C2A	90.8 (5)	C32A	Ru3A	C2A	93.5 (6)	013B	CI3B	RulB	178 (2)
C21A	Ru2A	S1A	167.5 (4)	C32A	Ru3A	S1A	168.7 (4)	021A	C21A	Ru2A	178 (1)
C21A	Ru2A	RulA	116.3(4)	C32A	Ru3A	Ru2A	116.5 (4)	O21B	C21B	Ru2B	173 (1)
C21A	Ru2A	Ru3A	125.4(4)	C31A	Ru3A	C2A	167.2(5)	022A	C22A	Ru2A	174 (1)
C22A	Ru2A	C1A	116.4(5)	C31A	Ru3A	S1A	87.4 (4)	O22B	C22B	Ru2B	176 (2)
C22A	Ru2A	C2A	152.5(5)	C31A	Ru3A	Ru2A	113.6 (4)	O23A	C23A	Ru2A	175 (1)
C22A	Ru2A	S1A	90.7 (5)	C2A	Ru3A	S1A	86.6 (4)	O23B	C23B	Ru2B	176 (2)
C22A	Ru2A	Ru1A	78.5 (4)	C2A	Ru3A	Ru2A	53.9 (3)	O31A	C31A	Ru3A	178 (1)
C22A	Ru2A	Ru3A	140.7 (5)	S1A	Ru3A	Ru2A	55.0 (1)	O31B	C31B	Ru3B	174 (1)
C1A	Ru2A	C2A	36.5 (4)	C33B	Ru3B	C32B	93.7 (6)	O32A	C32A	Ru3A	179 (1)
C1A	Ru2A	S1A	79.3 (3)	C33B	Ru3B	C31B	92.9 (7)	O32B	C32B	Ru3B	175 (1)
C1A	Ru2A	Ru1A	45.7 (3)	C33B	Ru3B	C2B	93.7 (6)	O33A	C33A	Ru3A	177 (1)
C1A	Ru2A	Ru3A	75.0 (3)	C33B	Ru3B	S1B	101.9 (4)	O33B	C33B	Ru3B	179 (2)
C2A	Ru2A	S1A	80.2 (3)	C33B	Ru3B	Ru2B	138.4 (5)				
							• /				

NMR spectroscopy and by a single-crystal X-ray diffraction analysis. The compound crystallizes with two independent molecules in the asymmetric crystal unit. Both molecules are structurally similar. An ORTEP diagram of one of these is shown in Figure 1. Final positional parameters are listed in Table II. Intramolecular bond distances and angles are listed in Tables III and IV. The molecule consists of an open triangular cluster of three ruthenium atoms with two Ru-Ru bonds. The metal atoms are bridged by a triply bridging sulfido ligand and a triply bridging HC_2Ph ligand. The HC_2Ph has adopted the familiar μ_3 - bonding mode with the unsubstituted carbon C(1) bonded to Ru(1) and Ru(2) and the phenylsubstituted carbon C(2) bonded to Ru(2) and Ru(3). In both molecules the Ru(1)-Ru(2) bond was found to be slightly shorter than the Ru(2)-Ru(3) bond, 2.789 (2) Å [2.764 (2) Å] vs. 2.800 (2) Å [2.796 (2) Å]. The value in brackets is for the second independent molecule. The Ru-S distances to the central metal atom Ru(2), 2.410 [2.415 (4)] Å, are significantly longer than those to external metal atoms, Ru(1)-S, 2.348 (4) [2.332 (4)] Å, and Ru(3)-S, 2.345 (4) [2.331 (3)] Å. A similar effect was observed in the compounds $Fe_3(CO)_9(\mu_3-S)_2^{15}$ and $Os_3(CO)_9(\mu_3-S)_2^{16}$ This could be attributed to steric crowding as a result of the higher coordination number of the central metal atom. The C(1)-C(2) distance in the alkyne ligand at 1.43 (2) [1.42 (2)] Å is typical of that observed for triply bridging alkyne ligands.¹⁷ The hydrogen atom on C(1) was located

⁽¹⁵⁾ Wei, C. H.; Dahl, L. F. Inorg. Chem. 1965, 4, 493. (16) Adams, R. D.; Horvath, I. T.; Segmuller, B. E.; Yang, L. W. Or-ganometallics 1983, 2, 144.

⁽¹⁷⁾ Raithby, P. R.; Rosales, M. J. Adv. Inorg. Radiochem. 1985, 29, 169

Table V. Positional Parameters and B(eq) for Ru₄(CO)₉(μ -CO)₂(μ_4 - η^2 -HC₂Ph)(μ_4 -S) (3)

		/ 4 (+)		
atom	x	У	z	$B(eq), Å^2$
Ru1	-0.077490 (41)	0.137606 (27)	-0.227357 (45)	3.3
Ru2	-0.352103 (40)	0.162854 (26)	-0.190933 (40)	2.9
Ru3	-0.412669 (37)	0.259123 (26)	-0.448222 (38)	2.5
Ru4	-0.103993 (39)	0.272873(27)	-0.426646 (43)	3.3
s	-0.27968(12)	0.127803 (82)	-0.43771 (13)	2.9
011	0.15315(50)	0.17603 (31)	0.04848(54)	5.8
O12	-0.23952 (53)	0.00931(32)	-0.01156 (51)	10.3
O13	0.00708 (44)	-0.04990 (29)	-0.31449 (52)	6.5
014	0.17868(42)	0.19464 (31)	-0.39236 (58)	9.4
O21	-0.46133 (52)	0.21717 (33)	0.09244 (49)	7.4
O22	-0.63809 (46)	0.03444 (33)	-0.27139 (48)	5.2
O31	-0.36098 (44)	0.38975 (30)	-0.69116 (44)	6.0
O32	-0.62120 (45)	0.37627 (36)	-0.33909 (60)	7.1
O33	-0.65088 (42)	0.12564 (31)	-0.65633 (46)	4.4
041	0.09220 (43)	0.45720 (30)	-0.38403 (52)	5.9
O42	-0.08019 (53)	0.26151 (37)	-0.75725 (50)	9.7
C1	-0.15004 (50)	0.26937 (31)	-0.18484 (51)	2.8
C2	-0.25729(46)	0.31644 (30)	-0.25822 (46)	2.7
C11	0.06720 (60)	0.15844(37)	-0.05611 (66)	4.4
C12	-0.24107 (63)	0.06790 (39)	-0.09201 (60)	5.0
C13	-0.02422 (54)	0.01815 (38)	-0.27917 (62)	4.2
C14	0.06357 (55)	0.20067 (37)	-0.36461 (65)	4.8
C21	-0.41726 (58)	0.19905 (38)	-0.01479 (61)	4.6
C22	-0.53077 (61)	0.08346 (40)	-0.24073 (58)	4.5
C31	-0.37472 (53)	0.33921 (37)	-0.60076 (57)	3.6
C32	-0.54529 (55)	0.33185(41)	-0.38071 (62)	3.9
C33	-0.56590 (54)	0.17682(38)	-0.58280 (55)	3.6
C41	0.01707 (53)	0.38832(41)	-0.40281 (59)	4.7
C42	-0.08856 (57)	0.26576(41)	-0.63364 (66)	5.8
C51	-0.26377 (47)	0.41295(32)	-0.19534 (49)	2.7
C52	-0.25739 (56)	0.48889(36)	-0.28351 (61)	4.3
C53	-0.26498 (68)	0.57653 (40)	-0.22271 (79)	5.4
C54	-0.28047 (82)	0.58878(47)	-0.07430 (86)	5.8
C55	-0.28689 (82)	0.51573(46)	0.01307 (74)	6.6
C56	-0.27541 (74)	0.42939 (44)	-0.04444 (66)	5.5
H1	-0.0927 (38)	0.3054(26)	-0.1022 (41)	1.1
H52	-0.2469 (50)	0.4784 (33)	-0.4048 (55)	4.1
H53	-0.2453 (63)	0.6290 (44)	-0.2837 (67)	6.5
H54	-0.2823 (66)	0.6416 (45)	-0.0451 (70)	6.2
H55	-0.3021 (66)	0.5265(45)	0.1137 (72)	7.2
H56	-0.2811(55)	0.3853(36)	-0.0017(58)	3.5

in the structural analysis. This hydrogen shows a characteristically low-field shift, δ 8.83, in the ¹H NMR spectrum.¹⁸ Compound 2 is structurally similar to the related iron compound Fe₃(CO)₉(μ_3 - η^2 -HC₂Ph)(μ_3 -PC₆H₄OMe).¹⁹

When solutions of 2 and Ru(CO)₅ were heated to reflux in cyclohexane solvent, two new higher nuclearity cluster complexes Ru₄(CO)₉(μ -CO)₂(μ_4 - η^2 -HC₂Ph)(μ_4 -S) (3) and Ru₅(CO)₁₃(μ -CO)(μ_4 - η^2 -HC₂Ph)(μ_4 -S) (4) were obtained in 50% and 8% yields, respectively. Compound 4 was obtained independently from the reaction of 3 with Ru(CO)₅ in refluxing cyclohexane in 26% yield. Both 3 and 4 were characterized by IR and ¹H NMR spectroscopy and by single-crystal X-ray diffraction analyses.

An ORTEP drawing of the molecular structure of 3 is shown in Figure 2. Final positonal parameters are listed in Table V. Intramolecular bond distances and angles are listed in Tables VI and VII. The molecule consists of a cluster of four ruthenium atoms arranged approximately in the shape of a parallelogram. There are four Ru-Ru bonds. Two of these, Ru(1)-Ru(2) = 2.7188 (8) Å and Ru (1)-Ru(4) = 2.7293 (9) Å, are relatively short. One is of

Table VI. Intramolecular Distances (Å) for $\operatorname{Ru}_4(\operatorname{CO})_9(\mu-\operatorname{CO})_2(\mu_4-\eta^2-\operatorname{HC}_2\operatorname{Ph})(\mu_4-\operatorname{S})$ (3)

_							
	atom	atom	dist	atom	atom	dist	
	Ru1	C11	1.871 (6)	Ru3	Ru4	2.8514 (8)	
	Ru1	C13	1.930 (6)	Ru4	C41	1.875 (6)	
	Ru1	C14	2.091 (5)	Ru4	C42	1.884 (6)	
	Ru1	C1	2.158(5)	Ru4	C14	2.032 (5)	
	Ru1	C12	2.260 (6)	Ru4	C1	2.278(5)	
	Ru1	S	2.447(1)	Ru4	C2	2.363(4)	
	Ru1	Ru2	2.7188 (8)	Ru4	\mathbf{S}	2.478(1)	
	Ru1	Ru4	2.7293 (9)	011	C11	1.134 (6)	
	Ru2	C21	1.860 (5)	012	C12	1.142 (6)	
	Ru2	C22	1.879 (6)	013	C13	1.117 (6)	
	Ru2	C12	2.002 (6)	014	C14	1.159 (6)	
	Ru2	C1	2.267(5)	021	C21	1.138 (6)	
	Ru2	C2	2.425(4)	O22	C22	1.138 (6)	
	Ru2	\mathbf{S}	2.465 (1)	O31	C31	1.129 (6)	
	Ru2	Ru3	2.780(1)	O32	C32	1.119 (6)	
	Ru3	C31	1.880 (6)	O33	C33	1.120 (6)	
	Ru3	C32	1.890 (6)	O41	C41	1.132 (6)	
	Ru3	C33	1.954 (5)	O42	C42	1.123 (6)	
	Ru3	C2	2.121 (4)	C1	C2	1.395 (6)	
	Ru3	\mathbf{S}	2.420(1)	C2	C51	1.501 (6)	

intermediate length, Ru(2)-Ru(3) = 2.780 (1) Å, and fourth, Ru(3)-Ru(4) = 2.8514 (8) Å, is comparatively long. On one side of the cluster is a quadruply bridging sulfido ligand. On the other side is a quadruply bridging HC_2Ph ligand. This molecule is structurally very similar to the compound $\operatorname{Ru}_4(\operatorname{CO})_9(\mu-\operatorname{CO})_2(\mu_4-\eta^2-\operatorname{PhC}_2\operatorname{Ph})(\mu_4-\operatorname{PPh})$ (6) that was recently reported by Carty.²⁰ Compound 6, however, contained two long and two short Ru-Ru bonds. In both 3 and 6, the two short Ru-Ru bonds contain bridging carbonyl ligands. The cluster is distorted from the shape of a square due to the coordination of the two carbon atoms of the alkyne ligand. This distortion is shown by the bond angles $\operatorname{Ru}(2)$ - $\operatorname{Ru}(1)$ - $\operatorname{Ru}(4) = 83.78 (2)^{\circ}$, $Ru(1)-Ru(2)-Ru(3) = 96.77 (3)^{\circ}, Ru(2)-Ru(3)-Ru(4) =$ $80.47 (2)^{\circ}$, and $Ru(1)-Ru(4)-Ru(3) = 94.86 (3)^{\circ}$. Both carbon atoms of the alkyne are each bonded to three metal atoms. The ligand could be viewed as σ -bonded to the metal atoms Ru(1) and Ru(3) and π -bonded to Ru(2) and Ru(4).¹⁷ The C(1)–C(2) bond distance, 1.395 (6) Å, is not significantly different from that in 2. The Ru-S bond distances in 3 are significantly longer than those in 2. It appears to be a general property that metal-sulfur distances to quadruply bridging sulfido ligands are longer than the metal-sulfur distances to triply bridging sulfido ligands.²¹ The osmium compound $Os_4(CO)_{10}(\mu$ -CO)(μ_4 - $HC_2CO_2Me(\mu_4-S)$ (7) has a structure similar to 3 but has only one bridging carbonyl ligand instead of two. $^{\rm 22}$ $\,$ There is a well-known tendency of metal carbonyl complexes of the second- and third-row elements to favor structures with terminal CO ligands over those with bridging CO ligands.²³ The difference between 3 and 7 may be an example of this effect operating to a lesser degree between elements of the second and third rows.

An ORTEP drawing of 4 is shown in Figure 3. Final positional parameters are listed in Table VIII. Intramolecular bond distances and angles are listed in Tables IX and X. Compound 4 is very similar to 3 with the excep-

⁽¹⁸⁾ Sappa, E.; Tiripicchio, A.; Braunstein, P. Chem. Rev. 1983, 83, 203.

⁽¹⁹⁾ Knoll, K.; Orama, O.; Huttner, G. Angew Chem., Int. Ed. Engl. 1984, 23, 976.

⁽²⁰⁾ Lunniss, J.; MacLaughlin, S. A.; Taylor, N. J.; Carty, A. J.; Sappa,
E. Organometallics 1985, 4, 2066.

⁽²¹⁾ Adams, R. D.; Horvath, I. T.; Yang, L. W. J. Am. Chem. Soc. 1983, 105, 1533.

 ⁽²²⁾ Adams, R. D.; Wang, S. Organometallics 1986, 5, 1272.
 (23) Colton, R.; McCormick, M. J. Coord. Chem. Rev. 1980, 31, 1.

Ruthenium Clusters Containing a PhC=CH Ligand

Table VII. Intramolecular Bond Angles (deg) for $\text{Ru}_4(\text{CO})_9(\mu-\text{CO})_2(\mu_4-\eta^2-\text{HC}_2\text{Ph})(\mu_4-\text{S})$ (3)

		14010 1	<u> </u>	ilur Donu i	mBros (408/101		/2(#4 1) 110	24 147 (144 ~	// (0)	
atom	atom	atom	angle	atom	atom	atom	angle	atom	atom	atom	angle
C11	Ru1	C13	92.4 (2)	C1	Ru2	Ru1	50.3 (1)	C1	Ru4	C2	34.9 (1)
C11	Ru1	C14	92.2 (2)	C1	Ru2	Ru3	75.7 (1)	C1	Ru4	\mathbf{S}	77.6 (1)
C11	Ru1	C1	92.1(2)	\mathbf{S}	Ru2	Ru1	56.07 (3)	C1	Ru4	Ru1	50.1(1)
C11	Ru1	C12	91.4 (2)	S	Ru2	Ru3	54.56 (3)	C1	Ru4	Ru3	74.1 (1)
C11	Ru1	\mathbf{S}	172.4(2)	Ru1	Ru2	Ru3	96.77 (3)	C2	Ru4	\mathbf{S}	79.0 (1)
C11	Ru1	Ru2	117.4(2)	C31	Ru3	C32	92.4 (2)	C2	Ru4	Ru1	80.2 (1)
C11	Ru1	Ru4	119.7 (2)	C31	Ru3	C33	93.2 (2)	C2	Ru4	Ru3	46.8 (1)
C13	Ru1	C14	89.9 (2)	C31	Ru3	C2	103.7 (2)	\mathbf{s}	Ru4	Ru1	55.80 (4)
C13	Ru1	C1	175.5(2)	C31	Ru3	S	114.5(2)	s	Ru4	Ru3	53.45 (3)
C13	Ru1	C12	90.0 (2)	C31	Ru3	Ru2	157.5 (1)	Ru1	Ru4	Ru3	94.86 (3)
C13	Ru1	S	95.0 (2)	C31	Ru3	Ru4	78.0 (2)	Ru3	\mathbf{S}	Ru1	115.28(5)
C13	Ru1	Ru2	123.6(2)	C32	Ru3	C33	93.2 (2)	Ru3	\mathbf{s}	Ru2	69.35 (4)
C13	Ru1	Ru4	123.3(2)	C32	Ru3	C2	88.4 (2)	Ru3	\mathbf{S}	Ru4	71.19 (4)
C14	Ru1	C1	89.9 (2)	C32	Ru3	\mathbf{S}	153.1(2)	Ru1	S	Ru2	67.21(4)
C14	Ru1	C12	176.4(2)	C32	Ru3	Ru2	98.8 (2)	Ru1	S	Ru4	67.30 (4)
C14	Ru1	S	89.5 (2)	C32	Ru3	Ru4	136.6 (2)	Ru2	\mathbf{S}	Ru4	94.75 (5)
C14	Ru1	Ru2	131.4(1)	C33	Ru3	C2	162.9 (2)	C2	C1	Ru1	134.6 (3)
C14	Ru1	Ru4	47.6 (1)	C33	Ru3	S	85.7 (2)	C2	C1	Ru2	79.0 (3)
C1	Ru1	C12	89.9 (2)	C33	Ru3	Ru2	105.5(2)	C2	C1	Ru4	75.9 (3)
C1	Ru1	S	80.5 (1)	C33	Ru3	Ru4	129.1 (1)	Ru1	C1	Ru2	75.8 (1)
C1	Ru1	Ru2	53.9 (1)	C2	Ru3	S	85.2(1)	Ru1	C1	Ru4	75.9 (1)
C1	Ru1	Ru4	54.0 (1)	C2	Ru3	Ru2	57.4 (1)	Ru2	C1	Ru4	106.3(2)
C12	Ru1	S	86.9 (1)	C2	Ru3	Ru4	54.4(1)	C1	C2	C51	117.2(4)
C12	Ru1	Ru2	46.3 (1)	S	Ru3	Ru2	56.10 (3)	C1	C2	Ru3	124.1(3)
C12	Ru1	Ru4	130.0 (1)	S	Ru3	Ru4	55.36 (3)	C1	C2	Ru4	69.2 (2)
S	Ru1	Ru2	56.72 (3)	Ru2	Ru3	Ru4	80.47 (2)	C51	C2	Ru3	118.6 (3)
s	Ru1	Ru4	56.90 (4)	C41	Ru4	C42	89.4 (2)	C51	C2	Ru4	127.1(3)
Ru2	Rul	Ru4	83.78 (2)	C41	Ru4	C14	93.6 (2)	Ru3	C2	Ru4	78.8 (1)
C21	Ru2	C22	86.8 (2)	C41	Ru4	Cl	97.2 (2)	011	C11	Ru1	176.1 (5)
C21	Ru2	C12	93.8 (2)	C41	Ru4	C_2	94.5 (2)	012	C12	Ru2	147.2 (5)
C21	Ru2	C1	101.4 (2)	C41	Ru4	S	173.5 (2)	012	C12	Rul	133.8 (5)
C21	Ru2	S	173.8 (2)	C41	Ru4	Rul	123.5(1)	Ru2	C12	Rul	79.0 (2)
C21	Ru2	Rul	128.2(2)	C41	Ru4	Ru3	121.8 (2)	013	C13	Rul	177.3 (5)
C21	Ru2	Ru3	119.3 (2)	C42	Ru4	C14	94.6 (2)	014	C14	Ru4	139.4 (5)
C22	Ru2	C12	95.9 (2)	C42	Ru4	CI	172.7(2)	014	C14	Rul	137.7 (5)
C22	Ru2	CI	166.9 (2)	C42	Ru4	C2	141.7(2)	Ru4	CI4	Rul	82.9 (2)
C22	Ru2	S	92.7 (2)	C42	Ru4	S	95.7 (2)	021	C21	Ru2	176.7 (5)
C22	Ru2	Rul	131.1(2)	C42	Ru4	Rul	128.0 (2)	022	C22	Ru2	179.1 (6)
C22	Ku2	Ru3	91.3 (2)	C42	Ru4	Ru3	99.8 (2)	031	C31	Ru3	175.0 (5)
C12	Ru2	CI	93.8 (2)	C14	Ku4		88.1 (2)	032	C32	Ru3	178.4 (5)
012	Ru2	5	92.4 (2)	C14	Ku4	02	123.1(2)	033	C33	Ru3	176.2 (5)
012	Ru2	Kui	54.7 (2)	014	Ru4	5	90.0 (2)	041	041	Ru4	177.8 (5)
012	Ru2	Ru3	146.5 (2)	C14	Ru4	Rul	49.5 (2)	042	042	Ru4	179.6 (5)
CI	Ru2	S	78.0(1)	C14	Ku4	Ku3	141.6 (2)	C52	U51	C56	117.3 (5)

tion that the Ru(1)-Ru(4) bond in 4 is bridged by a Ru-(CO)₄ group instead of a carbonyl ligand. This change produces a significant lengthening of the Ru(1)-Ru(4) bond, 2.8340 (7) Å in 4 vs. 2.7293 (9) Å in 3. The Ru-(1)-Ru(2) and Ru(2)-Ru(3) bonds have both become shorter by approximately 0.03 Å. The Ru(3)-Ru(4) bond has not changed in length significantly. The Ru-Ru bonds to the bridging Ru(CO)₄ group, 2.7535 (8) and 2.7449 (7) Å, are not unusual.²⁴ There are no significant differences in the metal-ligand bonding between 3 and 4.

Discussion

The results of this study are summarized in Scheme I. The formation and structure of compound 2 are fully explicable in terms of the conventional bonding theories.¹ An alkyne ligand serving as a four-electron donor was substituted for a CO ligand in 1, and the electron-precise open cluster 2 was formed. The polyhedral electron count (PEC) for 2 is 56 and leads to the prediction of a nido-

Figure 3. An ORTEP diagram of $\operatorname{Ru}_5(\operatorname{CO})_{13}(\mu$ -CO)(μ_4 - η^2 -HC₂Ph)(μ_4 -S) (4) showing 50% probability thermal ellipsoids. The hydrogen atom H(1) is shown with an artificially reduced thermal parameter, B = 1.0 Å².

pentagonal-bipyramidal shape for the cluster according to the polyhedral skeletal electron pair theory.^{1a} Examination of the structure of 2 shows that it does, indeed, possess this shape. The sulfur atom, the two external ruthenium atoms, and the two alkyne carbon atoms define the pentagonal plane. The central ruthenium atom is one apical vertex. The other apical vertex is missing.

⁽²⁴⁾ Bruce, M. I. In Comprehensive Organometallic Chemistry; Wilkinson, F., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Chapter 32.6.

Compound 2 readily adds one metal carbonyl containing group to form 3. The cluster of 3 can be viewed as a pentagonal bipyramid formed by filling the missing vertex in 2 with a ruthenium atom. The PEC of 70 for 3 leads to the prediction of a closo-pentagonal-bipyramidal cluster.^{1a} Curiously, compound 3 violates the EAN rule by being electron deficient by the amount of two electrons. This electron deficiency could, in part, be responsible for the short lengths of two of the Ru-Ru bonds, but the presence of the bridging carbonyl ligands across these bonds also appears to have an important influence.²⁵

Compound 3 also adds a mononuclear ruthenium carbonyl group to form 4. This occurs by the substitution of one of the bridging carbonyl groups in 3 with a $\operatorname{Ru}(\operatorname{CO})_4$ group. The electron count in the cluster is not changed by this substitution. The PEC of 84 is consistent with the observed structure but would also be consistent with that of a closo polyhedron containing eight vertices.^{1a} Simple electron counting does not allow one to distinguish between the two possibilities; however, the bonding advantages of bridging $\operatorname{M}(\operatorname{CO})_4$ groups have been discussed recently by Mingos.²⁶ As in 3 the cluster in 4 is also electron deficient by the amount of two electrons according to the EAN rule.

We have demonstrated previously the ability of transition-metal clusters to undergo enlargements by condensation and agglomerization reactions.⁴ It is believed that the lone pair of electrons on the bridging sulfido ligands plays a key role in the initial attachment of the unsaturated metal fragment by the formation of an $S \rightarrow M$ coordinate bond. A number of examples of such adducts A and B

(25) (a) Vahrenkamp, H.; Wolters, D. J. Organomet. Chem. 1982, 224,
C17. (b) Jaeger, T.; Aime, S.; Vahrenkamp, H. Organometallics 1986, 5, 245.

(26) Evans, D. G.; Mingos, D. M. P. Organometallics 1983, 2, 435.

Table VIII. Positional Parameters and B(eq) for $Ru_5(CO)_{13}(\mu-CO)(\mu_4-\eta^2-HC_2Ph)(\mu_4-S)$ (4)

	Rus(CO)13	(μ-CO)(μ ₄ -η -ΠC	$21 \text{ m}(\mu_4 - 3) (4)$	
atom	x	У	2	$B(eq), Å^2$
Ru1	0.410776 (37)	0.176747 (16)	0.328878 (21)	2.15 (1)
Ru2	0.460959 (36)	0.115840 (17)	0.182226(21)	2.12(1)
Ru3	0.202841 (36)	0.039792 (16)	0.168739 (20)	1.95 (1)
Ru4	0.190974 (35)	0.075520 (16)	0.340923 (20)	1.86 (1)
Ru5	0.224493 (40)	0.170859 (17)	0.462873(21)	2.45(2)
\mathbf{S}	0.20774(11)	0.153171 (50)	0.222343(65)	2.23(4)
011	0.67990 (41)	0.19014 (21)	0.45000 (24)	5.4(2)
012	0.63772 (49)	0.24292 (20)	0.21190 (25)	6.2(2)
O13	0.36916 (47)	0.32580 (17)	0.34292 (25)	5.3 (2)
O21	0.75367 (41)	0.05737(21)	0.12844(25)	5.8 (2)
O22	0.40788 (50)	0.16551(24)	0.00592(24)	6.7(2)
O31	-0.05179 (38)	-0.04946 (18)	0.21826(24)	4.4 (2)
O32	0.34682 (46)	-0.06813 (21)	0.06891(24)	5.8(2)
O33	0.03273 (45)	0.08830(21)	0.00918 (23)	5.6(2)
041	0.18026 (44)	-0.02485 (17)	0.47899(22)	4.7 (2)
O42	-0.14798 (38)	0.08443(20)	0.33959 (24)	5.1(2)
O51	0.46638 (42)	0.07173 (18)	0.52928 (21)	4.4 (2)
O52	-0.02585 (45)	0.24367 (20)	0.35993 (23)	5.2(2)
O53	0.33198 (52)	0.29398 (19)	0.55684 (24)	5.7 (2)
O54	0.00389 (48)	0.13468(23)	0.59619 (26)	6.5(2)
C1	0.44422(45)	0.07254(20)	0.31498(26)	2.1(2)
C2	0.37243(41)	0.02281(19)	0.26559 (23)	1.8(2)
C11	0.57724 (52)	0.18510 (23)	0.40501 (30)	3.2(2)
C12	0.55540 (57)	0.20016(25)	0.22605 (31)	3.8(2)
C13	0.37949 (53)	0.26991 (24)	0.33731(29)	3.2(2)
C21	0.64386 (52)	0.07876 (25)	0.15061 (29)	3.4(2)
C22	0.42900 (53)	0.14539 (25)	0.07159 (31)	3.6(2)
C31	0.04140 (51)	-0.01382 (23)	0.20177 (29)	3.0(2)
C32	0.29240 (53)	-0.02757 (25)	0.10627 (29)	3.4(2)
C33	0.09228 (53)	0.07032 (23)	0.06866 (30)	3.3(2)
C41	0.18487 (48)	0.01283 (22)	0.42592 (28)	2.7(2)
C42	-0.01899 (53)	0.08164 (24)	0.34173 (27)	3.1(2)
C51	0.37937 (53)	0.10906 (23)	0.50556 (27)	2.9 (2)
C52	0.06979 (58)	0.21761(24)	0.39508 (29)	3.4(2)
C53	0.29337 (59)	0.24791 (24)	0.52472 (29)	3.5(2)
C54	0.08488 (56)	0.14760 (26)	0.54636 (32)	3.8(2)
C61	0.42726(44)	-0.04677 (19)	0.27704 (24)	2.0 (2)
C62	0.33215 (53)	-0.09693 (21)	0.30125 (28)	2.7(2)
C63	0.38466 (61)	-0.16042 (23)	0.31294 (31)	3.4(2)
C64	0.53284 (60)	-0.17555 (24)	0.30074 (30)	3.3(2)
C65	0.62741 (60)	-0.12688 (26)	0.27674 (32)	3.6(2)
C66	0.57800 (53)	-0.06243 (24)	0.26606 (30)	3.1(2)
H 1	0.5278(41)	0.0579 (18)	0.3460 (22)	1.3 (8)
H62	0.2292 (43)	-0.0886 (18)	0.3073 (23)	1.6 (8)
H63	0.3227 (59)	-0.1918 (27)	0.3318 (32)	5 (1)
H64	0.5681(52)	-0.2184 (24)	0.3056 (28)	4 (1)
H65	0.7137 (41)	-0.1346 (18)	0.2696 (22)	1.1 (8)
H66	0.6390 (49)	-0.0290 (21)	0.2532(27)	3 (1)

Table IX. Intramolecular Distances (Å) for $\operatorname{Ru}_{\delta}(\operatorname{CO})_{13}(\mu-\operatorname{CO})(\mu_4-\eta^2-\operatorname{HC}_2\operatorname{Ph})(\mu_4-\operatorname{S})$ (4)

 		0/13(# 00)(#4 H	11021 1	-/ (#4 ~/	(-)
 atom	atom	dist	atom	atom	dist
Ru1	C11	1.876 (5)	Ru4	C1	2.295 (4)
Ru1	C13	1.909 (5)	Ru4	C2	2.305 (4)
Ru1	C1	2.140 (4)	Ru4	s	2.466 (1)
Ru1	C12	2.173(5)	Ru4	Ru5	2.7449 (7)
Ru1	\mathbf{S}	2.466 (1)	Ru5	C54	1.911 (5)
Ru1	Ru2	2.6954 (6)	Ru5	C53	1.929 (5)
Ru1	Ru5	2.7535 (8)	Ru5	C52	1.952 (5)
Ru1	Ru4	2.8340(7)	Ru5	C51	1.955 (5)
Ru2	C21	1.870 (5)	011	C11	1.138 (5)
Ru2	C22	1.873 (5)	012	C12	1.158 (5)
Ru2	C12	2.011 (5)	013	C13	1.137 (5)
Ru2	C1	2.301 (4)	021	C21	1.133 (5)
$\mathbf{Ru2}$	C2	2.450 (4)	022	C22	1.132 (6)
Ru2	S	2.472 (1)	O31	C31	1.134 (5)
Ru2	Ru3	2.7526 (8)	O32	C32	1.132(5)
Ru3	C32	1.881 (5)	O33	C33	1.126(5)
Ru3	C31	1.884(5)	041	C41	1.141(5)
Ru3	C33	1.937 (5)	O42	C42	1.141(5)
Ru3	C2	2.135 (4)	051	C51	1.132(5)
Ru3	\mathbf{s}	2.446 (1)	O52	C52	1.126(6)
Ru3	Ru4	2.8447(7)	O53	C53	1.110(5)
Ru4	C41	1.858 (5)	054	C54	1.122(6)
Ru4	C42	1.861 (5)	C1	C2	1.411 (6)

л

able X. Intramolecular Bond Angles (deg) for $\operatorname{Ru}_{\epsilon}(\operatorname{CO})_{19}(\mu-\operatorname{CO})(\mu_{4}-\eta^{2}-\operatorname{HC}_{9}\operatorname{Ph})(\mu_{4}-\eta^{2}-\eta^$	-S)	u.	C)/)	Ì	Ĺ	3	r	ł	1	2	P	ſ	J	J	J	J	•	9	4		,	!,	5	;	;	5	5	2		ſ	[C	l	((((ľ	I	J	3			E	E	ŀ	I]		-	_	2	ŕ	n	1	•		•		u	()	(1)))	Ć	(3	C	(u	((•	1),	1)	0	C	3	С	C	(e	.(L	u	ı	ł	ł	I	e j	•	r	r)))	D	ά	fe	f	1)	r)	ť	g	g	М	B	e	e	k	d	ć	(í	(I		l	1	3	3	s	H	e	6	ŀ]	l	Ľ	Q	1	n	n	3	ú	١	١	١
---	-----	----	---	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	----	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	--	---	---	---	---	---	---	---	--	---	--	---	----	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	----	---	---	---	---	---	---	---	---	---	----	---	---	---	---	---	---	-----	---	---	---	---	----	---	---	----	---	---	---	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

		Table A	. Intramolecu	lar Donu A	uRies (d	eg) for r	$u_{5}(CO)_{13}(\mu - CO)_{13}(\mu - CO)_{13}(\mu$	$(\mu_4 - \eta^2 - \Pi C_2)$	$(\mu_4 - 5)$) (4)	
atom	atom	atom	angle	atom	atom	atom	angle	atom	atom	atom	angle
C11	Ru1	C13	88.7 (2)	C32	Ru3	C31	94.1 (2)	C54	Ru5	C53	92.4 (2)
C11	Ru1	C1	92.7 (2)	C32	Ru3	C33	90.2 (2)	C54	Ru5	C52	92.7 (2)
C11	Ru1	C12	89.9 (2)	C32	Ru3	C2	88.2 (2)	C54	Ru5	C51	93.6 (2)
C11	Ru1	S	172.8 (1)	C32	Ru3	s	149.5 (2)	C54	Ru5	Ru4	105.5 (1)
C11	Ru1	Ru2	116.7 (1)	C32	Ru3	Ru2	94.6 (2)	C54	Ru5	Ru1	167.2 (1)
C11	Ru1	Ru5	88.9 (1)	C32	Ru3	Ru4	136.7 (1)	C53	Ru5	C52	95.2 (2)
C11	Ru1	Ru4	122.9 (1)	C31	Ru3	C33	92.9 (2)	C53	Ru5	C51	97.8 (2)
C13	Ru1	C1	178.1 (2)	C31	Ru3	C_2	102.9 (2)	C53	Ru5	Ru4	162.1 (1)
C13	Ru1	C12	86.0 (2)	C31	Ru3	S	116.4 (1)	C53	Ru5	Ru1	100.1 (1)
C13	Ru1	S	97.8 (1)	C31	Ru3	Ru2	159.1 (1)	C52	Ru5	C51	165.2 (2)
C13	Ru1	Ru2	122.8 (1)	C31	Ru3	Ru4	79.5 (1)	C52	Ru5	Ru4	84.0 (1)
C13	Ru1	Ru5	84.0 (1)	C33	Ru3	C2	164.2 (2)	C52	Ru5	Ru1	88.7 (1)
C13	Ru1	Ru4	127.3 (1)	C33	Ru3	S	89.4 (1)	C51	Ru5	Ru4	81.5 (1)
C1	Ru1	C12	92.8 (2)	C33	Ru3	Ru2	106.0 (1)	C51	Ru5	Ru1	82.2 (1)
C1	Ru1	S	80.7 (1)	C33	Ru3	Ru4	132.6 (1)	Ru4	Ru5	Ru1	62.05 (2)
C1	Ru1	Ru2	55.4(1)	C2	Ru3	S	84.0 (1)	Ru3	s	Ru1	115.06 (4)
C1	Ru1	Ru5	97.3 (1)	C_2	Ru3	Ru2	58.5 (1)	Ru3	S	Ru4	70.78 (3)
C1	Ru1	Ru4	52.7 (1)	C2	Ru3	Ru4	52.8 (1)	Ru3	S	Ru2	68.08 (3)
C12	Ru1	S	87.5 (1)	S	Ru3	Ru2	56.41 (3)	Ru1	S	Ru4	70.13 (3)
C12	Ru1	Ru2	47.3 (1)	S	Ru3	Ru4	54.95 (3)	Ru1	S	Ru2	66.17 (3)
C12	Ru1	Ru5	169.9 (1)	Ru2	Ru3	Ru4	81.16 (2)	Ru4	S	Ru2	95.04 (4)
C12	Ru1	Ru4	129.4 (1)	C41	Ru4	C42	88.9 (2)	C2	C1	Ru1	134.3 (3)
S	Ru1	Ru2	57.01 (3)	C41	Ru4	C1	99.9 (2)	C2	C1	Ru4	72.5 (2)
S	Ru1	Ru5	94.83 (3)	C41	Ru4	C2	96.1 (2)	C2	C1	Ru2	78.6 (2)
S	Ru1	Ru4	54.94 (3)	C41	Ru4	S	176.1 (1)	Ru1	C1	Ru4	79.4 (1)
Ru2	Ru1	Ru5	141.12 (2)	C41	Ru4	Ru5	88.2 (1)	Ru1	C1	Ru2	74.6 (1)
Ru2	Ru1	Ru4	82.35 (2)	C41	Ru4	Ru1	125.6 (1)	Ru4	C1	Ru2	104.8 (2)
Ru5	Ru1	Ru4	58.83 (2)	C41	Ru4	Ru3	122.3 (1)	C1	C2	C61	117.7 (3)
C21	Ru2	C22	88.4 (2)	C42	Ru4	C1	169.8 (2)	C1	C2	Ru3	125.1 (3)
C21	Ru2	C12	94.7 (2)	C42	Ru4	C2	138.6 (2)	C1	C2	Ru4	71.7 (2)
C21	Ru2	C1	100.6 (2)	C42	Ru4	S	93.1 (1)	C61	C2	Ru3	117.0 (3)
C21	Ru2	S	174.0 (2)	C42	Ru4	Ru5	91.5 (1)	C61	C2	Ru4	126.9 (3)
C21	Ru2	Rul	126.3 (2)	C42	Ru4	Rul	129.8 (1)	Ru3	C2	Ru4	79.6 (1)
C21	Ru2	Ru3	118.6 (2)	C42	Ru4	Ru3	95.7 (1)	011	C11	Rul	178.8 (4)
C22	Ru2	C12	95.8 (2)	Cl	Ru4	C2	35.7 (1)	012	C12	Ru2	145.1 (4)
C22	Ru2	CI	167.1(2)	C1	Ru4	S	77.8 (1)	012	C12	Rul	134.7 (4)
C22	Ru2	S	92.5 (1)		Ru4	Ru5	93.9 (1)	Ru2	C12	Rul	80.1 (2)
C22	Ru2	Rul	130.4 (2)	Cl	Ru4	Rul	47.9 (1)	013	C13	Rul	176.3 (5)
C22	Ru2	Ru3	90.7 (2)		Ru4	Ru3	75.2 (1)	021	C21	Ru2	177.3 (4)
C12	Ru2	Cl	92.5 (2)	C2	Ru4	S	80.2 (1)	022	C22	Ru2	177.4 (5)
C12	Ru2	S	91.1 (1)	C2	Ru4	Ru5	129.5 (1)	031	C31	Ru3	175.2 (4)
C12	Ru2	Rul	52.6 (1)	C2	Ru4	Rul	78.7 (1)	032	C32	Ru3	179.7 (4)
C12	Ru2	Ru3	146.3 (1)	C2	Ru4	Ru3	47.6 (1)	033	C33	Ru3	177.6 (5)
	Ru2	S	77.6 (1)	S C	Ku4	Ru5	95.05 (3)	041	C41	Ru4	178.8 (4)
C_1	Ru2	Rul	50.0 (1)	S	Ru4	Rul	54.93 (3)	042	C42	Ru4	177.7 (4)
	Ru2	Ru3	77.0 (1)	5	Ru4	Ru3	54.27 (3)	051	C51	Ru5	177.9 (4)
5	Ku2	Rul	56.82 (3)	Ru5	Ku4	Kul	59.12 (2)	052	052	Ru5	175.5 (4)
S	Ru2	Ru3	55.51 (3)	Ru5	Ru4	Ru3	148.71 (2)	053	C53	Ru5	176.6 (4)
Ru1	Ru2	Ru3	99.04 (2)	Rul	Ru4	Ru3	93.73 (2)	O54	C54	Ru5	178.9 (5)

have been isolated and structurally characterized.²⁷ Ligand eliminations from such adducts could pave the way for metal-metal bond formation and enlargement of the clusters. If ligand loss is facile, the adducts will not be observed. It is believed that a mechanism such as this is operative in the formation of the compounds 3 and 4. By combining such synthetic methodologies with an understanding of bonding that allows the prediction of structure, it is expected that the synthesis of cluster compounds will eventually change from that of an art to that of a true science. Acknowledgment. The research was supported by the National Science Foundation under Grant No. CHE-8612862. The AM-300 NMR spectrometer was purchased with funds from the National Science Foundation, Grant No. CHE-8411172.

Registry No. 1, 105121-22-0; 2, 110078-05-2; 3, 110078-06-3; 4, 110078-07-4; 5, 110078-08-5; $\operatorname{Ru}(\operatorname{CO})_{5}$, 16406-48-7; $\operatorname{Ru}_{3}(\operatorname{CO})_{12}$, 15243-33-1; phenylacetylene, 536-74-3.

Supplementary Material Available: Tables of hydrogen atom parameters for 2 and intramolecular distances and angles for the phenyl rings in 2-4, and anisotropic thermal parameters (U values) for 2-4 (10 pages); listings of structure factor amplitudes for 2-4 (64 pages). Ordering information is given on any current masthead page.

^{(27) (}a) Adams, R. D.; Horvath, I. T.; Wang, S. Inorg. Chem. 1985, 24,
1728. (b) Winter, A.; Jibril, I.; Huttner, G. J. Organomet. Chem. 1983,
242, 259. (c) Adams, R. D.; Babin, J. E.; Natarajan K. J. Am. Chem. Soc.
1986, 108, 3518.