Dlcarbonyitrls(*q2-trans* **-cyclooctene)rut henium: Synthesis and Molecular Structure of the First Stable M(CO),(olefin), Type Compound**

Rlchard G. Bail, Gong-Yu Kiel, and Josef Takats"

Department of Chemistry, University of Alberta Edmonton, Alberta, Canada T6G 2G2

Carl Krüger,[†] E. Raabe,[†] Friedrich-Wilhelm Grevels,^{*!} and Rainer Moser[‡]

Max-Planck-Znstitut fur Kohlenforschung and Max-Planck-Znstitut fur Strahlenchemie 0-4330 Miilheim a.d. Ruhr, Federal Republic of Germany

Received March 11, 1987

Summary: Photolysis of Ru(CO)₅ or Ru₃(CO)₁₂ in the presence of *trans* -cyclooctene (t-COE) gives Ru(CO)_{5-x}- $(t$ -COE)_x ($x = 1$ -3). The bis- and tris(olefin) derivatives are obtained as a mixture of two isomers, symmetry *D,* and C_2 . The structure of $Ru(CO)₂(t-COE)₃(D₃)$ isomer) has been determined by X-ray diffraction.

Carbonyl-olefin complexes of the iron triad transition metals constitute an important area of investigation from both the synthetic^{la} and theoretical^{1b} points of view. Although $M(CO)_{3}$ (olefin)₂-type molecules have been synthesized,² structurally characterized,³ and shown to be active catalyst precursors for olefin isomerization, 2a,4 the isolation of stable $M(CO)_2$ (olefin)₃ compounds so far re-
mained elusive.⁵ In view of the known stability en-In view of the known stability enhancement that trans-cyclooctene $(t$ -COE) imparts on the metal-olefin bonding, 6 it was decided to investigate its reaction with ruthenium carbonyls $[Ru(CO)]$ ₅ and $Ru₃$ - $(CO)_{12}$ under photochemical activation. Here we report the synthesis and structure of the first stable $M(CO)₂$. $(olefin)_3$ molecule $(M = Ru; olefin = t-COE)$.

Photolysis of $Ru(CO)_{5}$ in the presence of trans-cyclooctene in pentane results in consecutive substitution of CO by the olefinic ligand and gives rise to $(\eta^2-t\text{-COE})Ru(CO)_4$ depending on the wavelength and duration of irradiation (Scheme I).⁷ With long-wavelength irradiation $(\lambda > 370)$ nm) 1 is the exclusive product. (1) , $(\eta^2-t\text{-COE})_2\text{Ru(CO)}_3$ **(2), and** $(\eta^2-t\text{-COE})_3\text{Ru(CO)}_2$ **(3)**,

Alternatively, $Ru_3(CO)_{12}$ can be photolyzed in the presence of excess t-COE in benzene. Extended irradiation in a quartz immersion vessel gives an easily separable mixture of 2 and 3^8 Both of these two complexes are air and thermally stable solids, whereas 1 is isolated **as** an oily material that is somewhat labile in solution.

The CO stretching vibrational patterns of the com p lexes^{7,8} are consistent with trigonal-bipyramidal geometry and equatorial positions of the olefinic ligands.

Because of the chiral nature of t-COE two isomers of **2** and **3** can be expected. Indeed, complex **2** was isolated as a mixture of **2A** $(C_s$ symmetry) and **2B** $(C_2$ symmetry) which are virtually indistinguishable by infrared spectroscopy. Assignments of the 13 C NMR resonances⁸ is based on the different CO patterns in the low-temperature spectrum (three lines with 1:1:1 intensity ratio for **2A** and two lines with 1:2 intensity ratio for **2B).** Likewise, the

two isomers of 3 $(3A, D_3$ symmetry; $3B, C_2$ symmetry) are distinguished by 13C NMR spectroscopy, in this case on the basis of the different number of lines in the organic region (one set of t-COE signals for **3A** and two sets of t-COE signals with **1:2** intensity ratio for **3B).** The two isomers, **3A** and **3B,** are separated by repetitive crystallization, **3A** being the predominant and more stable product.

Noteworthy is the observation that the 13C NMR coordination shift $\lceil \Delta \delta \rceil = \delta$ (*t*-COE) – δ (complex)] of the olefinic carbon atoms does not parallel the observed stabilities of the complexes but decreases in the order **1** > **2** > 3 (1 $\Delta\delta = 78.1$ ppm; **2A**, $\Delta\delta = 77.2$ ppm; **2B**, $\Delta\delta = 74.5$ ppm; **3A,** $\Delta \delta = 69.0$ ppm; **3B,** $\Delta \delta = 72.2/71.1$ ppm). This may be interpreted as a result of increasing demand for

Int. Ed. Engl. 1981, 20, 452. (3) (a) Grevels, F.-W.; Schneider, K.; Kriiger, C.; Goddard, R. 2. *Naturforsch., B: Anorg. Chen., Org. Chem.* 1980,35B, 360. (b) Angermund, H.; Grevels, F.-W.; Moser, R.; Benn, R.; Kriiger C.; Romano, M. J., to be submitted for publication

(4) Mitchener, J. C.; Wrighton, M. S. *J. Am. Chem. SOC.* 1983, *105,* 1065.

(5) Recently, labile M(CO)₂(C₂H₄)₃-type compounds have been observed and characterized. (a) Wuu, Y.-M.; Bentsen, J. G.; Brinkley, C. G.; Wrighton, M. S. *Inorg. Chem.* 1987, 26, 530 (M = Fe, Ru). (b) Kiel, G. Y.; Takats, J.; Grevels, F.-W. J. Am. Chem. Soc. 1987, 109, 2227 (M = Os). (c) Gagné, M.; Takats, J., unpublished observations (M = Ru). (6) Grevels, F.-W.; Skibbe, V. J. Chem. Soc., Chem. Commun. 1984, 682. Skibbe, V.

(7) The following conditions refer to the most convenient preparation from Ru(CO)₅: 1, $\lambda > 370$ nm, 1 h; 2, $\lambda > 280$ nm, 1.5 h; 3 $\lambda > 180$ nm, 0.5 h. 1: pale yellow oil; yield 90%; IR (pentane) ν_{CO} 2098 (m), 2017 (s), 1991 (s), 1988 (sh) cm⁻¹; ¹³C NMR (CD₂Cl₂, -40 °C) δ

 $(8) \text{ Ru}_3(CO)_{12} (1.00 \text{ g}, 1.56 \text{ mmol})$ and t -COE (3 mL) in benzene (300 mL) were irradiated (Philips HPK 125 W, quartz immersion well) under Ar for 5 h. Concentration to 75 mL precipitated a white solid that was filtered off, washed with methanol, and dried under vacuum (0.96 g of 3A, 42%; crystals of **3A** suitable for X-ray crystallography were obtained by recrystallization from toluene). The mother liquor was evaporated to dryness and extracted with methanol. The remaining residue was re- crystallized from toluene to give **3B** (0.17 g, 7%). The methanol extract, upon concentration and cooling, gave several fractions of **2A/2B** with varying isomer ratios (total yield 0.35 g, 18%). **2A/2B:** off-white solid; IR (hexane) ν_{CO} 2070 (m), 1993 (s, br), 1985 (vs) cm⁻¹; ¹³C NMR (tolu-
ene-ds, 0 °C, data for 2A/2B isomers) δ 56.7/59.4 (CH), 41.4/41.7 (CH₂),
37.0/37.2 (CH₂), 29.3 (CH₂), CO signals at -60 °C, 206.8, 19

Scheme I hv pentane $h\nu$, benzene $Ru(CO)_{5}$ 1/₃Ru₃(CO)₁₂ $Ru(CO)_{4}(r-COE)$ $-CO/+r-COE$ $\overline{11}$ **1** +I-COE *hv* -co 1 $Ru(CO)_3(t-COE)_2$ **2** *+f-COE hv* -co 1 Ru(CO)₂(t-COE)₃ **3**

^{(1) (}a) *Comprehensiue Organometallic Chemistry;* Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds; Pergamon: Oxford, 1982; Vol. 4. (b) Albright, T. A.; Hoffman, R.; Thibeault, J. C.; Thorn, D. L. J. Am. Chem. *SOC.* 1979,101, 3801 and references therein.

^{(2) (}a) Fleckner, H.; Grevels, F.-W.; Hess, D. *J.* Am. *Chem. SOC.* 1984, 106,2027. (b) Grevels, F.-W.; Reuvers, J. G. A.; Takats, J. *Angew. Chem.,*

Kohlenforschung.

^{*} Strahlenchemie.

d(metal) $\rightarrow \pi^*$ (olefin) back-donation which, contrary to d(metal) $\rightarrow \pi^*(\text{olefin})$ back-donation which, contrary to
d(metal) $\rightarrow \pi^*(\text{eq-CO})$ back-donation, is restricted to interaction with metal d orbitals in the equatorial plane.

The dynamic behavior of **2** and **3** is still under investigation. Preliminary results indicate that, in the case of **2,** CO scrambling and olefin rotation are not coupled, and the latter process appears to possess the lower energy barrier. Olefin rotation is not observable with **3A** for symmetry reasons but seems to freeze out in the case of **3B** at temperature below -60 °C.

To confirm unequivocally the geometry and to establish benchmark metrical parameters for this first stable M- (CO) ₂(olefin)₃-type complex, the structure of **3A** was determined by single-crystal X-ray crystallography⁹ (Figure 1). The figure clearly shows the trigonal-bipyramidal geometry, trans disposition of the two carbonyl groups, olefinic ligands lying in the equatorial plane, and each properly oriented to allow for *D3* molecular symmetry (the molecule possesses rigorous, crystallographically imposed C_2 symmetry). The deviation of the three t -COE ligands from the equatorial plane is very small. The sum of the internal and external C-Ru-C angles is 360.3°, very close to the expected **360'.** Thus this part of the molecule resembles greatly the established¹⁰ and predicted¹¹ geometry for \widetilde{M} (olefin)₃ (M = Ni, Pt) type complexes. The Ru-C(o1efin) bond lengths **(2.253, 2.250,** and **2.244 A)** are comparable but marginally larger than similar distances in $Ru(CO)_{3}(\eta^{2}-\text{methy1} \text{ acrylate})_{2}^{[2a]}$ (2.223–2.245 Å) and in

Figure 1. Molecular structure of 3A: (A) view along O-C-Ru-C-O axis; (B) side view. Some relevant bond distances (A): Ru-Cl = **2.244 (2), C1O-C11** = **1.399 (2), C2O-C20'** = **1.395 (2). Some relevant bond angles (deg): C1-Ru-Cl'** = **178.6** (l), **ClO-Ru-Cll** C20-Ru-C20' = $36.2(1)$. (Primed atoms related to unmarked **atoms by the twofold symmetry axis.)** $= 1.930$ (2), Ru-C10 $= 2.253$ (2), Ru-C11 $= 2.250$ (2), Ru-C20 $= 36.2$ (1), C10-Ru-C10' $= 83.1$ (1), C11-Ru-C20 $= 84.3$ (1),

 $Ru(CO)₄(\eta^2\text{-dimethyl fumarate})^{12b}$ (2.197 and 2.199 Å).

The ready isolation of complex **3** and the dramatically improved stability compared to other simple olefin derivatives of mononuclear ruthenium carbonyls provide further evidence for the special place that trans-cyclooctene occupies in the chemistry of transition-metal olefin complexes. Full details on compounds **1-3,** the analogous osmium derivatives, and related $Os(CO)_{5-x}(cis-cyclo$ octene), $(x = 1, 2)$ will be provided in a full report.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council and the Max-Planck Gesellschaft for financial support and Professor Wrighton for communicating his results prior to publication.

Registry No. 1, 110174-58-8; 2, 110191-28-1; 3, 110191-29-2; $Ru(CO)_{5}$, 16406-48-7; $Ru_{3}(CO)_{12}$, 15243-33-1.

⁽⁹⁾ Unintentionally, the X-ray analysis was performed at both labo-ratories. The results are virtually indistinguishable. Both seta of data have been submitted as supplementary material. For expediency only the relevant data from Mülheim appear explicity in the text. Crystal data
of 3A: monoclinic space group $C2/c$ (No. 15); crystal size 0.18 × 0.43 ×
0.29 mm; $Z = 4$; $d_{\text{calof}} = 1.30$ g cm⁻³; $\mu(\text{Mo Ka}) = 6.33$ cm⁻¹; $\lambda =$ **A; scan mode w/26. Cell data were derived by least-squares procedure on 8 values of 75 reflections: a** ⁼**19.927 (2),** *b* = **11.7150 (5),** *c* = **14.4924** (8) Å; $\beta = 132.554$ (4) °; $V = 2492.2$ Å³. Total number of reflections: 5618 $(\pm h, \pm k, +l)$ collected on an automated diffractometer (Enraf-Nonius CAD4); (sin θ)/ λ_{max} 0.646; 2815 unique reflections of which 2588 were
observed $[I \ge 2\sigma(I)]$; final R value, $R = 0.018$ $[R_w = 0.026, w = 1/\sigma^2(F_o)]$; $GOF = 1.53.$

⁽¹⁰⁾ Stone, F. G. A. *Acc. Chern. Res.* **1981,** *14,* **318 and references therein.**

⁽¹¹⁾ Rösch, N.; Hoffmann, R. *Inorg. Chem.* 1974, 13, 2656.
(12) (a) Liu, L.-K.; Krüger, C.; Grevels, F.-W.; Takats, J., to be sub-
mitted for publication. (b) Ball, R. G.; Gagné, M.; Takats, J., to be **submitted for publication.**

Supplementary Material Available: Summary of the crystal data, final positional and thermal parameters, and bond distances and angles (9 pages); a listing of structure factor amplitudes (15 pages). Ordering information is given on any current masthead page.