$W_2(n-Pr)$ ₂ $(\eta^2-C_2Me_2)$ ₂ $(O-I-Pr)$ ₄, W₂(μ -C₂Me₂)₂(O-i-Pr)₄, and $W_4(\mu$ -CEt)₂(μ -C₂Me₂)₂(η ²-C₂Me₂)₂(O-i-Pr)₆. Competitive α - and β -CH Activation Pathways at a **Dlmetal Center**

Malcolm H. Chisholm," Bryan W. Elchhorn, and John C. Huffman

Department of Chemistry and Molecular Structure Center Indiana University, Bloomington, Indiana 4 7405

Received May 26, 1987

Summary: 1,2-W₂(R)₂(NMe₂)₄ compounds (where R = i-Bu or i-Pr) react in hydrocarbon solvents with i-PrOH **(4** equiv) and MeC= CMe (2 equiv) to give $W_2(R)_2(\eta^2 C_2Me_2$ ₂(O-*i*-Pr)₄ (I), where $R = n$ -Pr or *i*-Bu. Compound $I(n-Pr)$ slowly reacts further in solution at room temperature $(t_{\infty} = ca. 5 days)$ to give $W_2(\mu-C_2Me_2)_2(O-i-Pr)_4$ (IIa) and $W_4(\mu$ -CEt)₂(μ -C₂Me₂)₂(η ²-C₂Me₂)₂(O-i-Pr)₆ (III) in a 1:2 ratio with elimination of propane, propene, and i-PrOH. Formally, the formation of IIa and I11 represent competing β - and α -CH activation processes, respectively. Formation of I11 is a rare example of a W-0 bond cleavage facilitating W-C multiple-bond formation. The molecular structure of III reveals an unusual W_4 chain containing a grossly unsymmetrical crosswise $W_2(\mu - C_2)$ moiety. Thermal decomposition of I(i-Bu) produces I Ia selectively in high yield.

Single-crystal X-ray crystallography often reveals new classes of compounds for which useful synthetic routes remain to be established. The structural characterization of $(t-BuO)_2W(\mu-C_2Ph_2)_2W(O-t-Bu)_2$ ¹ as one component separable only by crystal selection from other products in the reaction between $W_2(O-t-Bu)_6(M=M)$ and PhC=CPh at $+70$ °C in toluene, suggested the possible existence of a new class of compounds of formula $(R'O)_2W(\mu C_2R_2''$)₂W(OR')₂ (II). These species would represent isomers of $(\mathrm{R/O})_2\mathrm{W}(\mu\text{-}\mathrm{CR''})(\mu\text{-}\mathrm{C}_3\mathrm{R}_3'')\mathrm{W}(\mathrm{OR'})_2$ compounds that we have recently prepared from C-C bond-forming reactions involving $(\hat{R}'\hat{O})_2\hat{W}(\mu-CR'')_2W(OR')_2$ compounds and alkynes.²⁻⁴ We reasoned that a rational synthesis of the bis(a1kyne)-bridged compounds I1 would involve a β -hydrogen atom initiated, alkyl group elimination (eq 1). This reaction is analogous to an established alkyl group disproportionation from a dinuclear molybdenum center.⁵

1,2-W₂R₂(OR')₄ + 2R''C=
$$
CR'' \rightarrow
$$

(R'O)₂W(μ -C₂R₂'')₂W(OR')₂ +alkane + alkene (1)

We describe here our initial findings prompted by this line of reasoning. These studies show that α -CH activation

Figure 1. A ball-and-stick drawing of the $W_2(n-Pr)_2(\eta^2 C_2Me_2$)₂(O-*i*-Pr)₄ molecule. Pertinent bond distances **(A)** and angles (deg) are as follows: $W(1)-W(1)' = 2.681$ (1), $W(1)-C(10) = 2.18$ (1), $W(1)-C$ (alkyne) = 2.05 (3) (average), $W(1)-O(6) = 1.88$ = 2.18 (1), W(1)-C(alkyne) = 2.05 (3) (average), W(1)-O(6) = 1.88 (1), W(1)-O(2) = 2.05 (1), W(1)-O(2) = 2.15 (1); W(1)-O(2)-C(3) = 138.9 (6), C(13)-C(14)-C(15) = 137 (1).

competes effectively with β -CH activation to produce an interesting and unexpected divergence in products.

Addition of *i*-PrOH (4 equiv) to $1,2-W_2(i-Pr)_2(NMe_2)_4^6$ in hexane at 0 °C followed by the addition of MeC \equiv CMe $(2$ equiv) produces $1,2-W_2(n-Pr)_2(\eta^2-C_2Me_2)_2(O-i-Pr)_4$ [I- $(n-Pr)$] in high yield according to eq 2.⁷ Compound I(n-Pr)

1,2-W₂(*i*-Pr)₂(NMe₂)₄ + 4*i*-PrOH
$$
\frac{0 \text{ °C}}{\text{hexane}}
$$
 $\frac{2\text{MeC}=\text{CMe}}{1.2\text{·W}_2(n\text{-}Pr)_2(\eta^2\text{-}C_2\text{Me}_2)_2(\text{O}-i\text{-}Pr)_4 + 4\text{ HNMe}_2$ (2)
\n $I(n\text{-}Pr)$

can be crystallized from hexane in a **59%** yield and has been characterized by ¹H and ¹³C 1H NMR, IR, and electronic absorption spectroscopy, elemental analysis, and X-ray crystallography.⁸ The solid-state structure of I(n-X-ray crystallography.⁸ The solid-state structure of $I(n-Pr)$ in reaction 2 results from an alkyl isomerization (*i-Pr - n-Pr*) and requires a 2 hydrography of the absorption followed by and requires a β -hydrogen atom abstraction followed by a reinsertion of propene into the W-H bond. When reaction 2 is carried out employing $1,2\text{-}W_2(i-Bu)_2(NMe_2)_4$, $1,2-W_2(i-Bu)_2(\eta^2-C_2Me_2)_2(\bar{O}\cdot i\cdot Pr)_4$ [I(*i*-Bu)] is formed in a 44% isolated yield. Compound I(i-Bu) has been characterized by ¹H and ¹³C{¹H} NMR and IR spectroscopy.

0276-7333/87/2306-2264\$01.50/0 *0* 1987 American Chemical Society

⁽¹⁾ Cotton, F. A.; Schwotzer, W.; Shamshoum, E. S. Organometallics **(2)** Chisholm, M. H.; Heppert, J. A.; Huffman, J. C. *J.* Am. *Chem.* **SOC. 1983, 2, 1167.**

⁽³⁾ Chisholm, M. H.; Heppert, J. A,; Kober, E. M.; Lichtenberger, D. **1985,** *107,* **5116.**

L. Organometallics, in press.

(4) Chisholm, M. H.; Heppert, J. A. Adv. Organomet. Chem. **1986**, 26, **97.**

⁽⁵⁾ Chetcuti, **M. J.;** Chisholm, M. H.; Folting, K.; Haitko, D. **A,;** Huffman, J. **C.** *J. Am. Chem. SOC.* **1982, 104, 2138.**

⁽⁶⁾ Chisholm, M. H.; Haitko, D. A.; Huffman, J. C. *J.* Am. *Chem.* SOC. **1981,** *103,* **4046.**

⁽⁷⁾ Note the use of dry and oxygen-free solvents and inert atmospheres (N_2) throughout.
(8) Crystal data for $I(n-Pr)$ at -155 °C: $a = 23.133$ (8) Å, $b = 8.543$

⁽⁸⁾ Crystal data for $I(n\text{-}Pr)$ at -155 °C : $a = 23.133$ (8) Å, $b = 8.543$
(2) Å, $c = 17.020$ (5) Å, $\beta = 112.56$ (1)°, $Z = 4$, $d_{\text{calc}} = 1.707$ g cm⁻¹, and space group C2/c. For 1816 reflections having $F > 3\sigma(F)$ and $R_w(F) = 0.036$. Crystal data for **III** at -155 °C: $a = 17.477$ (7) Å, *b* = 10.379 (4) Å, $c = 13.072$ (4) Å, $\beta = 93.65$ (1)°, $Z = 4$, $d_{\text{caled}} = 1.948$ g cm⁻³, and space group $P2_1/a$. For the 3110 reflections having $F > 3\sigma(F)$
(from a total of 4241 reflections, Mo K α , 6° < 2 θ < 45°) the final residuals
are $R(F) = 0.036$ and $R_w(F) = 0.036$. Anal. Calcd for $W_2O_4C_{2$ elemental analysis (combustion) is a common characteristic of alkylidyne-bridged compounds similar to **111.** For example, all of compounds IV (where $R = t$ -Bu, SiMe_s, or Ph) registered low in carbon content by one carbon atom per molecule. The "missing" carbon atom is presumably the alkylidyne $(\mu$ -CR) carbon.

Figure 2. A ball-and-stick drawing of the $W_4(\mu$ -CEt)₂(μ -C₂Me₂)₂(η ²-C₂Me₂)₂(O-*i*-Pr)₆ molecule. Pertinent bond distances (A) and angles (deg) are as follows: $W(1)-W(2) = 2.721$ (1), $W(2)-W(2)' = 3.5$, $W(1)-C(\eta^2$ -alkyne) = 2.03 (1) (average), W- (1) -C(8) = 2.01 (1), W(1)-C(9) = 2.51 (1), W(2)-C(8) = 2.48 (1), $W(2)-C(9) = 2.00(1), W(2)-O(19) = 1.91(1), W(2)-O(15) = 1.99$ $(1), W(2)-O(15)' = 2.29 (1), W(1)-O(11) = 1.89 (1), W(1)-C(23) = 2.00 (1), W(2)-C(23) = 1.92 (1); C(3)-C(4)-C(5) = 136 (1),$ $C(23)-W(2)-O(15)' = 159$ (1).

Compounds I are thermally unstable in the solid-state and in hydrocarbon solvents at room temperature. Thermolysis of $I(n-Pr)$ at 50 °C in C_6D_6 for 30 h in the dark yields $W_2(\mu-C_2Me_2)_2(O-i-Pr)_4$ (IIa) and $W_4(\mu-CEt)_2(\mu (C_2Me_2)_2(\eta^2-C_2Me_2)_2(\overline{O}\cdot i\text{-Pr})_6$ (III) in 1:2 concentration ratio, with the formal elimination of propane, propene, and *i-*PrOH. Compound IIa is presumably formed from a β -H elimination pathway, eq 1, whereas the formation of I11 requires α -CH activation. There is, of course, a problem with nomenclature in dinuclear systems since an α -hydrogen to one metal is a β -hydrogen to the other (M-M-CH) and the mechanism of hydrogen atom transfer is not known.⁹

Thermolysis of $I(i-Bu)$ at room temperature for 2 days in C_6D_6 in the dark produces IIa as the only observable organometallic product. Compound IIa can be isolated in high yield from thermolyzed pentane solutions of $I(i-Bu)$ as analytically pure,⁸ dark brown cubes. The ¹H and ¹³C-^{{1}H} NMR data¹⁰ reliably establish that IIa is an analogue of the structurally characterized compound $(t-BuO)_2W$ - $(\mu$ -C₂Ph₂)₂W(O-t-Bu)₂¹ and is depicted below.

(9) M-M-CH interactions have been seen in both crystallographic

studies and in dynamic NMR studies. E.g. as in (a) $O_{8_3}(H)(\mu$ -CH $)_3(CO)_{10}$;
Shapley, J. R.; Calvert, R. B. J. Am. Chem. Soc. 1978, 100, 7726. (b)
Cp₂Ti(μ -CH₂)(L_OCH₂)(RICOD): Park, J. W.; MacKenzie, P. B.; Sc $= 6.1 \text{ Hz}, \text{OCHMe}_2$), 3.25 (3 H, s, μ -C₂Me₂), 3.09 (3 H, s, μ -C₂Me₂), 2.96 ${}^{3}_{3}J_{\text{HH}} = 6.1 \text{ Hz}, \text{OCH}$ M_{e_2}), 0.92 (3 H, d, ${}^{3}J_{\text{HH}} = 6.1 \text{ Hz}, \text{OCH}$ M_{e_2}), 0.88 (3 $OCHMe₂$). $\overline{OCHMe_2}$, 3.84 (1 H, sept, ${}^3J_{\text{HH}} = 6.1 \text{ Hz}$, $\overline{OCHMe_2}$), 3.84 (1 H, sept, ${}^3J_{\text{HH}} = 6.1 \text{ Hz}$, $\overline{OCHMe_2}$), 3.57 (1 H, sept, ${}^3J_{\text{HH}}$ = 6.1 Hz, OCHMe₂), 3.25 (3 H, s, μ -C₂Me₂), 3.09 (3 H, s, μ -C₂Me₂), 2.96
(6 H, s, η^2 -C₂Me₂), 1.89 (3 H, t, ³J_{HH} = 7.4 Hz, μ -CCH₂Me), 1.06 (3 H, d, $\mathcal{L}_{\text{HH}} = 6.1 \text{ Hz}, \text{O}(\text{L}) = 6.1 \text{ Hz$

Compound I11 can be isolated as a yellow crystalline solid in low yield from thermolyzed solutions of $I(n-Pr)$ by two successive, fractional crystallizations from pentane. The H NMR spectrum¹⁰ reveals three signals for the $MeC\equiv CMe$ ligands in the integral ratio 1:1:2, three different 0-i-Pr ligands, each having diastereotopic Me groups, and an **ABX,** spin system for the propylidyne ligand. The data are consistent with the molecular structure found in the solid-state⁸ given that rotation of the η^2 -C₂Me₂ ligand is fast in the NMR time scale. A ball-and-stick drawing of I11 is shown in Figure **2.**

If the alkyne ligands are taken to occupy one coordination site at a metal, then the coordination geometry about the terminal tungsten atoms is pseudotetrahedral whereas the internal tungsten atoms are in trigonal-bipyramidal environments with the μ -alkyne moieties occupying equatorial sites. The bridging alkyne is grossly distorted^{11,12} (θ = 35°) from a perpendicular position (θ = 0) as evidenced by the distances $W(1) - C(8) = 2.01$ (1) Å, $W(1) - C(9) = 2.51$ (1) Å, $W(2) - C(8) = 2.48$ (1) Å, and $W(2) - C(9) = 2.00(1)$ Å. The $W(1) - W(2)$ distance, 2.721 (1) **A,** is long, indicative of a W-W single bond at most while the $W(2)$ to $W(2)'$ distance, 3.5 Å, is nonbonding.

The structure of I11 is unprecedented, and the formation of III in the thermal decomposition of $I(n-Pr)$ is puzzling. Formally, III is formed by a double α -CH activation process in which one H atom is used to eliminate alkane and the other i-PrOH. Bis(alky1) complexes analogous to I typically decompose according to eq **3** to form alkynecoupled $HW_2(\mu\text{-CR})(\mu\text{-}C_4\text{Me}_4)(O\text{-}i\text{-}Pr)_4$ compounds (IV), where $R = Ph$ or $SiMe₃$.¹³ Conceivably, compound III

$$
W_2(CH_2R)_2(\eta^2-C_2Me_2)_2(O\text{-}i\text{-}Pr)_4 \xrightarrow[\text{hexane}]{60 °C} \text{H}W_2(\mu\text{-}CR)(\mu\text{-}C_4Me_4)(O\text{-}i\text{-}Pr)_4 + RCH_3 \text{ (3)}
$$
\nIV

could be converted to IV $(R = Et)$ by coupling the alkyne ligands and oxidative addition of 1 equiv of i-PrOH per \overline{W}_2 subunit. However, NMR tube reactions indicate that I11 and i-PrOH do not react at room temperature. Furthermore, when reaction 3 employing α -deuteriated CD₂Ph ligands was carried out in the presence of excess i-PrOH, no W-H formation was observed as would be required if an intermediate akin to III was involved. Thus it appears that the α -CH activation pathway is altered by the presence of the β -CH atoms.

Further work is in progress.14

Supplementary Material Available: Tables of fractional coordinates and isotropic thermal parameters, anisotropic thermal parameters, bond distances, and bond angles (6 pages); a listing of structure factor amplitudes (8 pages). Ordering information is given on any current masthead page.

⁽¹¹⁾ Ahmed, **K. J.;** Chisholm, M. H.; Folting, K.; Huffman, J. C. Or-

ganometallics **1986,** 5, 2171. (12) Hoffman, R.; Calhorda, M. J. Organometallics **1986,** 5, 2181. (13) Chisholm, M. H.; Eichhorn, B. W.; Huffman, J. C. J. Chem. *SOC.,* Chem. Commun. **1985,** 861.

⁽¹⁴⁾ We thank the Department of Energy, Office of Basic Research, Chemical Sciences Division, and the Wrubel Computing Center for support. B.W.E. is the 1986/1987 Indiana University SOH10 fellow.