

Subscriber access provided by SHANGHAI JIAOTONG UNIV

Four-, five-, or six-membered methanide auracycles: x-ray structure of [(C6F5)2AuPPh2CH(AuC6F5)PPh2CHCOOMe]

Rafael. Uson, Antonio. Laguna, Mariano. Laguna, Isabel. Lazaro, and Peter G. Jones *Organometallics*, **1987**, 6 (11), 2326-2331• DOI: 10.1021/om00154a010 • Publication Date (Web): 01 May 2002 **Downloaded from http://pubs.acs.org on April 27, 2009**

More About This Article

The permalink http://dx.doi.org/10.1021/om00154a010 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Four-, Five-, or Six-Membered Methanide Auracycles: X-ray Structure of $[(C_6F_5)_2AuPPh_2CH(AuC_6F_5)PPh_2CHCOOMe]$

Rafael Usón.* Antonio Laguna, Mariano Laguna, and Isabel Lázaro

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain

Peter G. Jones

Institut fur Anorganische Chemie der Universität, 3400 Göttingen, West Germany

Received February 10, 1987

The complexes [R₂ClAuPPh₂CH₂PPh₂CH₂COOMe]ClO₄ and [R₂ClAuSPPh₂CH₂PPh₂CH₂COOMe]ClO₄ $(R = C_6F_5)$ can be deprotonated with AgClO₄, Na₂CO₃, or NaH to synthesize four, five, or six-membered $[R_2AuSPPh_2CHPPh_2CH_2COOMe]ClO_4,$ [R₂AuPPh₂CHPPh₂CHCOOMe], auracycles: $[R_{2}-$ AuPPh₂CH₂PPh₂CHCOOMe]ClO₄, or [R₂AuSPPh₂CHPPh₂CHCOOMe]. The methanide C atom in these neutral complexes is a nucleophile and can be used as donor atom to form homodinuclear complexes $[R_2Au{SPPh_2(AuX)PPh_2CHCOOMe}]$ (X = C_6F_6) or $[R_2Au{PPh_2CH(AuX)PPh_2CHCOOMe}]$ (X = Cl, C_6F_5) or heterodinuclear complexes [$R_2Au\{PPh_2CH(AgPPh_3)PPh_2CHCOOMe\}]ClO_4$. The structure of $[(C_6F_5)_2Au[PPh_2CH(AuC_6F_5)PPh_2CHCOOMe]]$ has been solved by X-ray crystallography. It crystallizes in space group \tilde{PI} with a = 12.719 (5) Å, b = 12.830 (5) Å, c = 17.918 (7) Å, $\alpha = 70.67$ (3)°, $\beta = 76.11$ (3)°, $\gamma = 72.07$ (3)°, and Z = 2.

Introduction

The synthesis of gold(I) or gold(III) methanide complexes by the reaction between precursors of the type [R_nAuPPh₂CH₂PPh₂R']ClO₄ and NaH as a deprotonating agent, to give neutral [$R_nAuPPh_2CHPPh_2R'$] ($R_n = C_6F_5$, (C_6F_5)₂Cl, (C_6F_5)₃; R' = Me, $CH_2C_6H_5$, $CH_2C_6F_5$) is well-documented,¹⁻⁴ but only single deprotonation of the diphosphine ligand has been observed so far.

Suitable modification of the precursor, i.e., the use of $[(C_6F_5)_2ClAu(PPh_2CH_2PPh_2CH_2COOMe)]^+ClO_4^-$ or $[(C_6F_5)_2ClAu(SPPh_2CH_2PPh_2COOMe)]^+ClO_4^-,$ enables the deprotonation of either one or two methylene groups by choice of the reaction conditions: at room temperature and with Na_2CO_3 or $AgClO_4$ as deprotonating agents single deprotonation under simultaneous halide abstraction takes place, leading to the cationic four- or five-membered au-

racycles $[(C_6F_5)_2Au(SPPh_2CHPPh_2COOMe)]ClO_4$ or $[(C_{6}F_{5})_{2}Au(PPh_{2}CH_{2}PPh_{2}CHCOOMe)]ClO_{4}$, while NaH at room temperature or Na₂CO₃ in refluxing chloroform deprotonates both CH₂ groups to give the neutral five- or six-membered auracycles [(C₆F₅)₂Au(PPh₂CHPPh₂CH-COOMe)] or $[(C_6F_5)_2AuSPPh_2CHPPh_2CHCOOMe)],$ whose methanide carbon atoms can serve as electron donors to other metal centers, thus forming homo- or heteronuclear derivatives.

Results and Discussion

The substituted phosphinophosphonium salts were prepared by the following processes (eq 1 and 2).

$$1 + {}^{1}/{}_{8}S_{8} \rightarrow [SPPh_{2}CH_{2}PPh_{2}CH_{2}COOMe]ClO_{4} (2)$$
2

Both complexes 1 and 2 react with the dimer $[Au(\mu Cl(C_6F_5)_2]_2$, cleaving the bridges and affording (eq 3) the cationic gold(III) derivatives 3 and 4.

$$\frac{\frac{1}{2}[Au(\mu-Cl)(C_{6}F_{5})_{2}]_{2} + [Ph_{2}PCH_{2}PPh_{2}CH_{2}COOMe]ClO_{4} \text{ or} \\ [SPPh_{2}CH_{2}PPh_{2}CH_{2}COOMe]ClO_{4} \rightarrow \\ [(C_{6}F_{5})_{2}ClAuPPh_{2}CH_{2}PPh_{2}CH_{2}COOMe]ClO_{4} \text{ or} \\ 3 \\ [(C_{6}F_{5})_{2}ClAuSPPh_{2}CH_{2}PPh_{2}CH_{2}COOMe]ClO_{4} (3) \\ 4 \end{bmatrix}$$

At room temperature, NaH reacts with complexes 3 or 4 in dichloromethane solution to give five- or six-membered auracycles (see Schemes I and II) as the result of the precipitation of the perchlorato anion and the chloride ligand (as the sodium salts) and the simultaneous deprotonation of both CH₂ groups with evolution of molecular hydrogen.

Analogous results (complexes 5 or 6) are obtained by reaction of complexes 3 or 4 with Na_2CO_3 in refluxing chloroform (albeit without H₂ evolution, NaHCO₃ being formed instead).

At room temperature, dichloromethane solutions of complex 3 also react with Na_2CO_3 , but only the CH₂ group α to the COOMe moiety undergoes deprotonation and as a result the cationic five-membered auracycle $[(C_6F_5)_{2}]$

 $AuPPh_2CH_2PPh_2CHCOOMe_ClO_4$ (7) is obtained. The same complex 7 can also be obtained by reaction of complex 3 with AgClO₄ (eq 5), the enhanced acidity of the CH_2 group α to COOMe outweighing that of the perchloric acid.

 $[(C_6F_5)_2ClAuPPh_2CH_2PPh_2CH_2COOMe]ClO_4 \xrightarrow{AgClO_4} AgCl + HClO_4 + 7 (5)$

⁽¹⁾ Usón, R.; Laguna, A.; Laguna, M.; Manzano, B. R.; Jones, P. G.; Sheldrick, G. M. J. Chem. Soc., Dalton Trans. 1984, 839.
 (2) Usón, R.; Laguna, A.; Laguna, M.; Lázaro, I.; Morata, A.; Jones, P.

G.; Sheldrick, G. M. J. Chem. Soc., Dalton Trans. 1986, 669. (3) Laguna, A.; Laguna, M.; Rojo, A.; Fraile, M. N. J. Organomet.

<sup>Chem. 1986, 315, 269.
(4) Usón, R.; Laguna, A.; Laguna, M.; Lázaro, I.; Tartón, M. T. J.</sup> Chem. Soc., Dalton Trans. in press.

At room temperature, dichloromethane solutions of complex 4 react with AgClO₄ to deprotonate the CH₂ bridge between the two P atoms and form a cationic four-membered auracycle $[(C_6F_5)_2AuSPPh_2CHPPh_2-CH_2COOMe]ClO_4$ (8), the presence of the S atom also enhancing the acidity of the nearest CH₂ group. Dichloromethane solutions of complex 4 react with Na₂CO₃ at room temperature to give mixtures of complexes 6 and 8, as can be inferred from the IR and NMR spectra (see below).

Complexes 5 and 6 react (1:1) with $HClO_4$ to give complex 7 or $[(C_6F_5)_2AuSPPh_2CH_2PPh_2CHCOOMe]ClO_4$ (9); i.e., the methanide CH group undergoes protonation and cationic complexes result.

The basic nature of the methanide CH groups in complexes 5 and 6 can also be demonstrated through the reactions of these complexes with other metal centers containing one weakly coordinating ligand (e.g., $[Au(C_6F_5)-$ (tht)], [AuCl(tht)], $[Ag(OClO_3)PPh_3]$) which afford homoor heterobinuclear derivatives (complexes 10–13, see Schemes I and II). The structure of $[(C_6F_5)_2Au \{PPh_2CH(AuC_6F_5)PPh_2CHCOOMe\}]$ (10) has been established by X-ray crystallography (Figure 1). Coordination geometry and molecular dimensions are as expected; in particular, bond lengths and angles at the methanide groups are in good agreement with those observed in related complexes.^{1,2} The relative configurations at C(1) and C(2) are *RR* (and *SS*, both mirror images are present in

Table I.	Analytical	and Physical	Data for	Complexes	1-13
----------	------------	--------------	----------	-----------	------

		anal. found (calcd)						
complex	yield, %	C	Н	Au or Au + Ag	Λ_{M}^{a}	mp,° ℃	mol wt found (calcd)	$\nu(CO),^d$ cm ⁻¹
1, [PPh ₂ CH ₂ PPh ₂ CH ₂ COOMe]ClO ₄	88	60.0 (60.4)	4.7 (4.9)		121	129		1730
2, [SPPh ₂ CH ₂ PPh ₂ CH ₂ COOMe]ClO ₄	90	56.8 (57.1)	4.65 (4.6)		133	154		1720
3, $[R_2ClAuPPh_2CH_2PPh_2CH_2COOMe]ClO_4$	87	42.9 (42.75)	2.55 (2.4)	17.8 (17.55)	118	183		1735
4, $[R_2CIAuSPPh_2CH_2PPh_2CH_2COOMe]CIO_4$	78	41.65 (41.6)	2.5 (2.35)	17.15 (17.05)	130	166		1730
5, [R ₂ ÁuPPh ₂ CHPPh ₂ ĆHCOOMe]	83	48.7 (48.7)	2.85 (2.55)	20.65 (19.95)	10	205	939 (986)	1715
6, [R ₂ AuSPPh ₂ CHPPh ₂ CHCOOMe]	75	46.85 (47.15)	2.7 (2.45)	19.75 (19.35)	15	206 dec	964 (1018)	1715
7, [R ₂ AuPPh ₂ CH ₂ PPh ₂ CHCOOMe]ClO ₄	88	44.4 (44.2)	2.55(2.4)	18.5 (18.1)	120	238 dec		1725
8, $[R_2AuSPPh_2CHPPh_2CH_2COOMe]ClO_4$	65	43.15 (42.95)	2.5 (2.35)	17.1 (17.6)	101 ^b	194 dec		1735
9, $[R_2AuSPPh_2CH_2PPh_2CHCOOMe]ClO_4$	58	42.6 (42.95)	2.35 (2.35)	18.15 (17.6)	117°	163		1670
10, $[R_2Au{PPh_2CH(AuC_6F_5)PPh_2CHCOOMe}]$	78	40.7 (40.9)	1.8 (1.85)	29.2 (29.15)	2	233	1310 (1350)	1685
11, [R ₂ Au{PPh ₂ CH(AuCl)PPh ₂ CHCOOMe}]	81	39.25 (39.4)	2.15 (2.05)	33.0 (32.3)	5	178 dec	1231 (1219)	1710
12, {R ₂ Au{PPh ₂ CH(AgPPh ₃)PPh ₂ CHCOOMe}]ClO ₄	82	47.9 (47.85)	2.85 (2.75)	21.4 (20.95)	128	214 dec		1690
13, $[R_2\dot{A}u(SPPh_2CH(AuC_6F_5)PPh_2CHCOOMe)]$	70	39.85 (39.95)	2.05 (1.8)	27.95 (28.5)	2	124	1306 (1385)	1700

^a In acetone ($c \ 5.10^{-4} \text{ M}$); $\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. ^b In nitromethane. ^c Or decomposition. ^d In Nujol mulls.

Table II. NMR Data						
	1]	³¹ P{ ¹ H} NMR ^c				
compound	P-CH ₂ -P or P-CH ₂ -CO or P-CH-P P-CH-CO		Au-P or Me Au-S-P		C-P-C	Ag-PPh ₃
1, [PPh ₂ CH ₂ PPh ₂ CH ₂ COOMe]ClO ₄ 2, [SPPh ₂ CH ₂ PPh ₂ CH ₂ COOMe]ClO ₄ 3, [R ₂ ClAuPPh ₂ CH ₂ PPh ₂ CH ₂ COOMe]ClO ₄ 4, [R ₂ ClAuSPPh ₂ CH ₂ PPh ₂ CH ₂ COOMe]ClO ₄	4.65 m 4.75 dd (12.2, 15.6) 5.14 dd (14, 18.2) 5.61 "t" (15.2)	4.21 d (13.3) 4.65 d (12.9) 4.29 d (13) 4.38 d (13.3)	3.43 s 3.60 s 3.64 s 3.57 s	21.91 s, br 33.71 d 16.99 m 39.41 d	21.91 s, br 20.49 d (8.5) 21.63 d (14.6) 21.13 d (14.4)	
5, [R ₂ AuPPh ₂ CHPPh ₂ CHCOOMe]	2.06 dd (18.2) ^b	3.68 d (4.8)	3.11 s	33.66 dm	42.63 d (96.6)	
6, [R ₂ AuSPPh ₂ CHPPh ₂ CHCOOMe]	3.51 "t" (8.8)	4.20 d (3.7)	3.03 s	39.12 d	36.13 d (4.7)	
7, R ₂ AuPPh ₂ CH ₂ PPh ₂ CHCOOMe]ClO ₄	4.99 "dt", 5.61 "dt" ^e	4.13 d (1.8)	3.62 s	29.94 m	44.92 d (42.8)	
8, $[R_2AuSPPh_2CHPPh_2CH_2COOMe]ClO_4$	3.09 dd (11.8, 16.2)	4.01 "dd", 4.32 "t"e	3.34 s	58.90 d	24.54 d (12.9)	
9, [R ₂ AuSPPh ₂ CH ₂ PPh ₂ CHCOOMe]ClO ₄	4.97 "q", 5.50 "q" ^e	3.41 d (6.4)	3.23 s	35.85 d	24.33 d (12.7)	
10, $[R_2Au\{PPh_2CH(AuC_6F_5)PPh_2CHCOOMe\}]$	4.04 dd (15.8, 20.9)	4.18 dd (3.5, 4.7)	3.48 s	40.98 dm	52.44 d (49.7)	
11, $[R_2Au\{PPh_2CH(AuCl)PPh_2CHCOOMe\}]$	4.51 dd (15.7, 20.9)	4.05 dd (3.2, 4.4)	3.47 s	37.61 dm	48.59 d (53.2)	
12, [R ₂ Au{PPh ₂ CH(AgPPh ₃)PPh ₂ CHCOO- Me]]ClO ₄	4.98 m	3.93 s, br	3.38 s	34.02 dm	49.87 d (54)	14.66 dd (579, 667) ^d
13, $[R_2Au{SPPh_2CH(AuC_6F_5)PPh_2CHCOO-Me]]$	4.38 "t" (18.2)	3.28 d (6.5)	3.43 s	42.95 d	28.15 d (7.8)	

^aRecorded in CDCl₃ at 200 MHz referenced to internal TMS; δ (J_{P-H} in Hz); s = singlet, d = doublet, "t" = apparent triplet, "q" = apparent quartet, dd = doublet of doublet, dm = doublet of multiplet, m = multiplet, br = broad. ^bPart X of an ABX system, so the number in parentheses is the sum of J_{AX} and J_{BX} . ^cReferenced to external H₃PO₄. ^d $J_{P-107}Ag$ and $J_{P-109}Ag$. ^cSee text.

the crystal).

Complexes 1-4 and 7-13 are air- and moisture-stable white solids. The methanides 5 and 6 are yellow solids, and the latter must be preserved under dry nitrogen. The cationic derivatives 3, 4, 7-9, and 12 behave as 1:1 electrolytes (in acetone or nitromethane solutions),⁵ and their IR spectra show bands at 1100 (s, br) and 620 (m) cm⁻¹, which are characteristic of the ClO_4^- anion.⁶ In contrast, acetone solutions of complexes 5, 6, 10, 11, and 13 are nonconducting; the molecular weights of these complexes (isopiestic, in chloroform) are in good agreement with the expected values.

Two strong bands in the 800 cm⁻¹ region confirm that both C_6F_5 groups in complexes 3-13 are mutually cis;⁷

 ν (Au-Cl)⁸ is observed at 330 (3), 320 (4), or 325 cm⁻¹ (11). The methanide group in complexes 5 and 6 gives rise to strong absorptions⁴ (at 1210 and 1250 cm⁻¹ for 5 and at 1210 and 1255 cm⁻¹ for 6) which are absent after protonation of this group with HClO₄ (complexes 7 and 9) or after coordination to a gold or silver center (complexes 10–13).

The ν (CO) vibration⁹ in ligands 1 and 2 is not very sensitive to the different situations in complexes 3-13 (Table I).

Table II presents ¹H NMR data for the complexes (the

⁽⁵⁾ Geary, W. J. Coord. Chem. Rev. 1971, 7, 81.

⁽⁶⁾ Hathaway, B. J.; Underhill, A. E. J. Chem. Soc. 1961, 3091.

⁽⁷⁾ Usón, R.; Laguna, A.; García, J.; Laguna, M. Inorg. Chim. Acta 1979, 37, 201.

⁽⁸⁾ Usón, R.; Laguna, A.; Vicente, J. Rev. Acad. Cienc. Exactas Fis.
Quim. Nat., Zaragoza 1976, 31, 211.
(9) Vicente, J.; Chicote, M. T.; Cayuelas, J. A.; Fernández-Baeza, J.;

⁽⁹⁾ Vicente, J.; Chicote, M. T.; Cayuelas, J. A.; Fernändez-Baeza, J.; Jones, P. G.; Sheldrick, G. M.; Espinet, P. J. Chem. Soc., Dalton Trans. 1985, 1163.

Figure 1. Molecular structure of complex 10, showing the atom-numbering scheme (phenyl H's omitted; the radii arbitrary). The relative configurations at C(1) and C(2) are RR.

phenylic protons, which appear as multiplets between 7 and 8 ppm and are in agreement with the proposed formula, are omitted) that distinguish the site of single deprotonation. Thus, the resonances due to the moieties P-CH₂-P or P-CH-P generally appear as double doublets, pseudotriplets "t", or triplets as a consequence of the coupling with the P atoms. Although the ylidic carbon atoms are chiral centers when coordinated to the gold atom (complexes 5-13), the NMR spectra do not permit decision between R and S enantiomers. The P-CH₂-P moiety, in complexes 7 and 9, behaves as a ABXY system that appears as a deceptively simple spectrum, each signal giving rise to an apparent doublet of triplets or to an apparent quartet, which have not been analyzed. Moreover, the group (P-CH-P)AgPPh₃ (complex 12) appears as a multiplet by coupling with the P atoms and with 107 Ag and 109 Ag.

The group P-CH₂-CO in complexes 3 and 4 gives rise to doublets with ${}^{2}J_{P-H} > 10$ Hz. In complex 8 both protons are inequivalent and appear as the deceptively simple ABXY system. Deprotonation and subsequent bonding to the Au(III) center shift the signal to higher fields as a doublet with ${}^{2}J_{P-H} < 6.5$ Hz and ${}^{4}J_{P-H} = 0$; in complexes 10 and 11 the latter constant is nonzero and the signal is a doublet of doublets. The CH₃ group resonates as a singlet in all cases.

The ³¹P{¹H} NMR spectra show two coupled P atoms in all cases except complex 1 which shows only one signal (even at -50 °C) at 21.91 (s, br) ppm, while the precursor [PPh₂CH₂PPh₂CH₂COOMe]Cl shows two doublets at 24.68 and -26.32 ppm, $J_{P-P} = 65$ Hz, in agreement with previous observations for the reported bromide derivative.¹⁰ In complexes 3, 5, 7, and 10–12, with a direct Au–P bond, coupling with the fluorine nuclei of the trans C₆F₅ group gives rise to a doublet of multiplets, confirming the cis stereochemistry. In complex 8 the signal at a lower field (58.90 ppm) confirms its structure as a four-membered auracycle (compare³ with 69.56 ppm in the similar

 $[(C_6F_5)_2AuSPPh_2CHPPh_2S]$ compound).

Since each of the complexes 10-13 has two chiral centers, four isomers are possible in each case. Since the single and sharp methyl resonance and the simple ${}^{31}P{}^{1}H{}$ spectra rule out the presence of diastereomers, we have in our samples either only one isomer or an enantiomeric mixture (see above, structure of complex 10).

Experimental Section

Instrumentation and general experimental techniques were as described earlier.² The yields, melting points, C, H, and Au analyses, conductivities, molecular weights, and ν (CO) of the novel complexes are listed in Table I. ¹H and ³¹P{¹H} NMR data are listed in Table II. All the reactions were run at room temperature if not mentioned otherwise.

Preparation of the Ligands. [Ph₂PCH₂PPh₂CH₂CO-OMe]ClO₄ (1). To a solution of Ph₂PCH₂PPh₂ (1.15 g, 3 mmol) in 15 mL of chloroform was added ClCH₂COOMe (0.33 mL, 3.6 mmol), and the mixture was stirred for 5 days; then the solution was evaporated to ca. 5 mL, and addition of Et₂O (15 mL) led to precipitation of [Ph₂PCH₂PPh₂CH₂COOMe]Cl as a white solid, 85% yield. To a solution of the chloride (0.986 g, 2 mmol) in CH₂Cl₂ (20 mL) was added AgClO₄ (0.415 g, 2 mmol), and the mixture was stirred for 6 h. The AgCl formed was filtered off, and the solution was evaporated to ca. 5 mL; addition of Et₂O (15 mL) gave 1 as a white solid (95%).

[SPPh₂CH₂PPh₂CH₂COOMe]ClO₄ (2). To a suspension of 1 (1.11 g, 2 mmol) in toluene (30 mL) was added S₈ (0.16 g, 0.62 mmol), and the mixture was stirred for 6 h at reflux temperature. The resulting white solid was filtered off, washed with CS₂ (3 × 3 mL), and recrystallized from CH₂Cl₂/Et₂O (90%).

Preparation of the Complexes. $[R_2ClAuPPh_2CH_2P-Ph_2CH_2COOMe]ClO_4$ (3) and $[R_2ClAuSPPh_2CH_2PPh_2-CH_2COOMe]ClO_4$ (4). To a suspension of $[Au(\mu-Cl)(C_6F_5)_2]_2^{11}$ (0.227 g, 0.2 mmol) in CH₂Cl₂ (20 mL) was added 1 (0.223 g, 0.4 mmol) or 2 (0.236 g, 0.4 mmol). After 3 h of stirring, a slight turbidity was removed by filtration through a layer of Kieselguhr (1 cm). Concentration to ca. 5 mL and addition of Et₂O (15 mL) led to the precipitation of complexes 3 and 4, as white solids.

 $[\mathbf{R}_2 \mathbf{A} \mathbf{u} \mathbf{P} \mathbf{P} \mathbf{h}_2 \mathbf{C} \mathbf{H} \mathbf{P} \mathbf{P} \mathbf{h}_2 \mathbf{C} \mathbf{H} \mathbf{C} \mathbf{O} \mathbf{O} \mathbf{M} \mathbf{e}]$ (5) and $[\mathbf{R}_2 - \mathbf{A} \mathbf{u} \mathbf{S} \mathbf{P} \mathbf{P} \mathbf{h}_2 \mathbf{C} \mathbf{H} \mathbf{P} \mathbf{P} \mathbf{h}_2 \mathbf{C} \mathbf{H} \mathbf{C} \mathbf{O} \mathbf{O} \mathbf{M} \mathbf{e}]$ (6). (a) A diethyl ether (20 mL)

AuspPh₂CHPPh₂CHCOOMe [6]. (a) A diethyl ether (20 mL) suspension of NaH (0.3 g, 12.5 mmol) and complex 3 (0.337 g, 0.3 mmol) or 4 (0.347 g, 0.3 mmol) was stirred for 3 h. The excess of NaH and the precipitated NaClO₄ and NaCl were filtered off under N₂, and the solution was evaporated to ca. 2 mL; addition of *n*-hexane (10 mL) gave 5 or 6 as yellow solid.

(b) To a solution of 3(0.11 g, 0.1 mmol) or 4(0.115 g, 0.1 mmol)in CHCl₃ (20 mL) was added Na₂CO₃ (0.3 g, 2.8 mmol), and the mixture was stirred for 2 h at reflux temperature. The excess of Na₂CO₃ and the precipitated NaClO₄ and NaCl were filtered off under N₂, and the solution was evaporated to ca. 1 mL; addition of *n*-hexane (10 mL) gave 5 or 6, respectively.

 $[\mathbf{R}_2 \mathbf{A} \mathbf{u} \mathbf{P} \mathbf{P}_1 \mathbf{C} \mathbf{H}_2 \mathbf{C} \mathbf{P} \mathbf{P}_2 \mathbf{C} \mathbf{H} \mathbf{C} \mathbf{O} \mathbf{O} \mathbf{M} \mathbf{e}] \mathbf{C} \mathbf{I} \mathbf{O}_4$ (7). This complex can be obtained in different ways.

(a) To a yellow solution of 5 (0.197 g, 0.2 mmol) in Et₂O (15 mL) was added HClO₄ (0.022 mL of 9.198 M solution, 0.2 mmol). The solution turned immediately white, whereby a white solid (7) precipitated and was filtered off (88%).

(b) To a solution of 3 (0.225 g, 0.2 mmol) in dichloromethane (20 mL) was added Na_2CO_3 (0.3 g, 2.8 mmol), and the mixture was stirred for 3 h. The excess of Na_2CO_3 and the precipitated NaCl were filtered off, and the solution was evaporated to 2 mL; addition of Et₂O gave 7 (70%).

(c) To a solution of 3 (0.225 g, 0.2 mmol) in dichloromethane (20 mL) was added AgClO₄ (0.042 g, 0.2 mmol), and the mixture was stirred for 8 h. Working as described in method b, 7 (85%) was obtained.

[R₂ÅuSPPh₂ĊHPPh₂CH₂COOMe]ClO₄ (8). Working as described for 7, method c, but starting from 4 (0.231 g, 0.2 mmol), gave 8.

 $[\mathbf{R}_2 \dot{\mathbf{A}} \mathbf{u} \mathbf{SPPh}_2 \mathbf{CH}_2 \mathbf{PPh}_2 \dot{\mathbf{CHCOOMe}}] \mathbf{ClO}_4$ (9). Working as described for 7, method a, but starting from 6 (0.204 g, 0.2 mmol), gave 9.

 $[\mathbf{R}_{2}\dot{\mathbf{A}}\mathbf{u}\{\mathbf{PPh}_{2}\mathbf{CH}(\mathbf{A}\mathbf{u}\mathbf{X})\mathbf{PPh}_{2}\dot{\mathbf{C}}\mathbf{H}\mathbf{C}\mathbf{O}\mathbf{O}\mathbf{Me}\}][\mathbf{X}=\mathbf{C}_{6}\mathbf{F}_{5}(10),\mathbf{C}\mathbf{I}$

⁽¹⁰⁾ Oosawa, Y.; Urabe, H.; Saito, T.; Sasaki, Y. J. Organomet. Chem. **1976**, *122*, 113.

⁽¹¹⁾ Usón, R.; Laguna, A.; Laguna, M.; Abad, M. J. Organomet. Chem. 1983, 249, 437.

Table III. Atom Coordinates $(\times 10^4)$ and Isotropic Temperature Factors $(Å^2 \times 10^3)$ for Compound 10

	*	21	7	IT
	*	y	~	
Au(1)	4160 (1)	6339 (1)	2422.5 (.5)	$44 (1)^a$
Au(2)	8219 (1)	4176 (1)	3243.5 (.5)	46 (1) ^a
P(1)	6067 (5)	6134 (5)	2415 (3)	$42 (3)^{a}$
P(2)	5761 (5)	3883(5)	3178 (3)	43 (3) ^a
C(12)	7989 (11)	5953 (12)	1296 (8)	55 (6)
C(13)	8612	5806	567	72 (8)
C(14)	8096	5706	-2	82 (8)
C(15)	6056	5750	150	60 (7)
C(10)	0900	5702	100	50 (C)
C(10)	0332	5900	000	03 (0)
$C(\Pi)$	6849	6000	1457	42 (6)
C(22)	6283(13)	7290 (13)	3426 (8)	77 (8)
C(23)	6489	8201	3579	99 (10)
C(24)	6759	9108	2945	95 (9)
C(25)	6822	9104	2158	84 (9)
C(26)	6616	8194	2005	64 (7)
C(21)	6346	7287	2639	51 (6)
C(32)	6356 (13)	2726(11)	4689 (9)	67 (7)
C(33)	6586	1766	5337	83 (8)
C(34)	6482	721	5326	92 (9)
C(35)	6148	636	4666	99 (10)
C(36)	5918	1596	4017	80 (8)
C(30)	6022	2641	4017	49 (G)
O(31)	5420 (10)	2041	4029	40 (0)
C(42)	5429 (10)	3266 (13)	1919 (9)	61 (6) 57 (0)
C(43)	5783	2873	1239	77 (8)
C(44)	6920	2602	933	68 (7)
C(45)	7701	2723	1307	86 (9)
C(46)	7346	3116	1987	68 (7)
C(41)	6210	3387	2293	40 (5)
C(51)	9906 (10)	3555 (13)	3329 (10)	59 (7)
C(52)	10667	3625	2620	84 (9)
C(53)	11810	3185	2648	109 (11)
C(54)	12193	2676	3384	65 (7)
C(55)	11432	2606	4093	78 (8)
C(56)	10289	3045	4066	64 (7)
C(61)	3957 (13)	8050 (11)	1717 (9)	49 (6)
C(62)	3915	8352	900	74 (8)
C(63)	3783	9490	449	76 (8)
C(64)	3691	10326	815	123 (12)
C(65)	3732	10024	1632	95 (9)
C(66)	3865	8886	2084	64(7)
C(71)	2465 (9)	6527 (12)	2413 (9)	40(5)
C(72)	1657	6023	2410 (0)	40 (6)
C(72)	590	7025	2010	45 (0) 95 (0)
C(73)	200	4750 6750	2404	85 (0)
0(74)	1010	0152	2424 1000	00 (9)
O(70)	1016	0300	1000	02 (0)
C(76)	2144	6244	1828	73 (8)
C(1)	6492 (17)	4885 (17)	3174 (12)	50 (6)
C(2)	4330 (17)	4650 (17)	3168 (11)	47 (6)
C(3)	3738 (18)	4723 (18)	4009 (12)	52 (6)
C(4)	2020 (22)	4711 (22)	4925 (16)	79 (8)
O(1)	4111 (13)	4975 (13)	4457 (9)	69 (5)
O(2)	2713 (13)	4526 (13)	4180 (9)	66 (5)
F(52)	10360(13)	3973 (17)	1924 (8)	$144 \ (11)^a$
F(53)	12571(14)	3226(17)	1989 (10)	157 (12)ª
F(54)	13279 (11)	2222(14)	3417 (11)	123 (11)ª
F(55)	11806 (13)	2106 (15)	4788 (10)	124 (11) ^a
F(56)	9589 (11)	2948 (14)	4733 (7)	97 (8) ^a
F(62)	3975 (13)	7595 (13)	533 (8)	92 (9) ^a
F(63)	3728 (16)	9768 (17)	-334 (9)	152 (12)ª
F(64)	3593 (18)	11427(14)	375 (13)	173 (14)
F(65)	3676 (19)	10840 (16)	1969 (13)	$164 (14)^a$
F(66)	3869 (12)	8607 (11)	2860 (7)	83 (8) ^a
$\mathbf{F}(72)$	1945 (11)	7234 (13)	3536 (8)	87 (8) ^a
F(73)	-249(13)	7396 (17)	3553(12)	$135(12)^{a}$
F(74)	-857(12)	6876 (18)	2422(14)	166 (15)4
F(75)	747 (17)	6129 (20)	1255 (14)	$186 (17)^{a}$
F(76)	2923 (12)	5768 (14)	1301 (9)	105 (10) ^a

^a Equivalent isotropic U calculated from anisotropic U.

471.

(11)]. To a solution of 5 (0.197 g, 0.2 mmol) in diethyl ether (20 mL) was added $[Au(C_6F_5)(tht)]^{12}$ (0.090 g, 0.2 mmol) or $[AuCl-(tht)]^{11}$ (0.060 g, 0.2 mmol). After 4 h of stirring, the solution was

Table IV. Selected Bond Lengths (Å) and Angles (deg) for Compound 10

	Bond L	engths	
Au(1) - P(1)	2.354 (7)	Au(1)-C(61)	2.111 (13)
Au(1)-C(71)	2.098 (14)	Au(1) - C(2)	2.113 (20)
Au(2)-C(51)	2.071 (14)	Au(2) - C(1)	2.119 (21)
C(11) - P(1)	1.798 (15)	C(21) - P(1)	1.805(22)
C(31) - P(2)	1.813 (15)	C(41) - P(2)	1.803 (20)
C(1) - P(1)	1.756 (20)	C(1) - P(2)	1.802 (28)
C(2) - P(2)	1.784(21)	C(2) - C(3)	1.534 (30)
C(3)-O(1)	1.192 (36)	C(3) - O(2)	1.348 (31)
C(4)-O(2)	1.460 (31)		
	Bond A	Angles	
P(1)-Au(1)-C(61)	91.9 (6)	P(1)-Au(1)-C(71)	179.3 (5)
C(61)-Au(1)-C(71)	87.7 (7)	P(1)-Au(1)-C(2)	88.7 (7)
C(61)-Au(1)-C(2)	177.7 (8)	C(71)-Au(1)-C(2)	91.7 (8)
C(51)-Au(2)-C(1)	177.0 (10)	Au(1)-P(1)-C(11)	109.6 (7)
Au(1)-P(1)-C(21)	114.0 (6)	C(11)-P(1)-C(21)	109.2 (9)
Au(1)-P(1)-C(1)	106.2 (9)	C(11)-P(1)-C(1)	110.5 (9)
C(21)-P(1)-C(1)	107.2 (12)	C(31)-P(2)-C(41)	107.1 (9)
C(31)-P(2)-C(1)	109.3 (11)	C(41)-P(2)-C(1)	112.8 (10)
C(31)-P(2)-C(2)	115.0 (9)	C(41)-P(2)-C(2)	106.8 (10)
C(1)-P(2)-C(2)	105.8 (12)	Au(2)-C(1)-P(1)	119.6 (12)
Au(2)-C(1)-P(2)	114.1 (11)	P(1)-C(1)-P(2)	107.0 (14)
Au(1)-C(2)-P(2)	111.9 (12)	Au(1)-C(2)-C(3)	107.1 (15)
P(2)-C(2)-C(3)	111.3 (16)	C(2)-C(3)-O(1)	124.4 (22)
C(2)-C(3)-O(2)	112.6 (23)	O(1)-C(3)-O(2)	122.9 (20)
C(3)-O(2)-C(4)	117.3 (23)		

evaporated to ca. 5 mL and addition of hexane (20 mL) gave 10. Under analogous conditions, using [AuCl(tht)], complex 11 precipitated and was filtered off.

 $[R_2Au{PPh_2CH(AgPPh_3)PPh_2CHCOOMe}]ClO_4$ (12). To a solution of 5 (0.197 g, 0.2 mmol) in dichloromethane (20 mL) was added $[Ag(OClO_3)PPh_3]^{13}$ (0.094 g, 0.2 mmol), and the mixture was stirred for 1 h. Evaporation to ca. 5 mL and addition of diethyl ether (20 mL) gave 12.

 $[\mathbf{R}_2 \mathbf{A}\mathbf{u} \{ \mathbf{SPPh}_2 \mathbf{CH}(\mathbf{A}\mathbf{uC}_6\mathbf{F}_5)\mathbf{PPh}_2 \mathbf{CHCOOMe} \}]$ (13). To a solution of 6 (0.204 g, 0.2 mmol) in diethyl ether (20 mL) was added $[\mathrm{Au}(\mathrm{C}_6\mathbf{F}_5)(\mathrm{tht})]$ (0.090 g, 0.2 mmol)], and the mixture was stirred for 2 h. Partial concentration to ca. 5 mL and addition of hexane gave 13.

Crystal Structure Determination of Compound 10. Crystal data: C₄₆H₂₅AuF₁₅O₂P₂: M_r 1350.56; triclinic; $P\overline{1}$; a = 12.719 (5) Å, b = 12.830 (5) Å, c = 17.918 (7) Å; $\alpha = 70.67$ (3)°, $\beta = 76.11$ (3), $\gamma = 72.07$ (3)°; U = 2594 Å³; Z = 2, $D_{calcd} = 1.73$ g cm⁻³, F(000) = 1280, Mo K α ; $\lambda_{\alpha} = 0.71069$ Å; μ (Mo K α) = 5.8 mm⁻¹. Colorless sphenoidal crystals were grown by diffusion of hexane into a solution of 10 in 1,2-dichloroethane. A crystal with dimensions $0.4 \times 0.2 \times 0.15$ mm was used to measure 9888 profile-fitted intensities¹⁴ on a Stoe-Siemens four-circle diffractometer ($2\theta_{max} \ge 45^{\circ}$). Absorption corrections were based on ψ scans. Of 6761 unique reflections, 4053 with $F > 4\sigma(F)$ were used for all calculations (program system SHELXTL). Cell constants were refined from 2θ values of 42 reflections in the range 20–23°.

The structure was solved by the heavy-atom method and refined to R = 0.072 and $R_w = 0.062$ [Au, P, and F were anisotropic; aromatic rings as rigid hexagons with C-C = 1.395 Å, and C-H (where appropriate) = 0.96 Å; methylide H using riding model; weighting scheme $w^{-1} = \sigma^2(F) + 0.0005F^2$; 280 parameters]. Final atomic coordinates are given in Table III with derived bond lengths and angles in Table IV.

Acknowledgment. We thank the DGA for the award of a fellowship to I.L. and the CAICYT and the Fonds der Chemischen Industrie for financial support.

Registry No. 1, 110317-28-7; **2**, 110317-30-1; **3**, 110317-11-8; **4**, 110317-13-0; **5**, 110317-14-1; **6**, 110317-15-2; **7**, 110317-17-4; **8**,

⁽¹²⁾ Usôn, R.; Laguna, A.; Vicente, J. J. Organomet. Chem. 1977, 131,

⁽¹³⁾ Cotton, F. A.; Falvello, L. R.; Usón, R.; Forniés, J.; Tomás, M.; Casas, J. M.; Ara, I. *Inorg. Chem.* **1987**, *26*, 1366.

⁽¹⁴⁾ Clegg, W. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1981, A37, 22.

110317-19-6; 9, 110317-21-0; 10, 110317-22-1; 11, 110317-23-2; 12, 110317-26-5; 13, 110317-24-3; $[Au(\mu-Cl)(C_6F_5)_2]_2$, 87105-61-1; $[Au(C_6F_5)(tht)]$, 60748-77-8; [AuCl(tht)], 39929-21-0; [Ag- $(OClO_3)PPh_3]$, 73165-02-3; $[Ph_2PCH_2PPh_2CH_2COOMe]Cl$, 110317-31-2.

Supplementary Material Available: Tables of anisotropic thermal parameters, hydrogen atom coordinates, bond lengths, and bond angles (4 pages); a listing of structure factor amplitudes (40 pages). Ordering information is given on any current masthead page.

Reactivity of a Labile Molybdenocene Olefin Complex with Organic π -Acceptors

Jun Okuda*1 and Gerhard E. Herberich

Institute of Inorganic Chemistry, Technische Hochschule Aachen, D-5100 Aachen, Federal Republic of Germany

Received February 13, 1987

The reactivity of highly labile molybdenocene (Z)-stilbene complex $\text{Cp}_2\text{Mo}[\eta^2 - (Z) - \text{C}_6\text{H}_5\text{CH} = \text{CHC}_6\text{H}_5]$ (1) (Cp = η^5 -C₅H₅) with organic acceptor molecules has been investigated. 1 reacts readily with various olefinic and heteroolefinic ligands L to give molybdenocene complexes of the formula Cp_2MoL (L = formaldehyde, nonenolizable ketones, benzalanilide, and thiobenzophenone). Spectroscopic data indicate dihapto coordination of L at the Cp_2Mo fragment via C=C, C=N, C=O, and C=S bonds. Protic substances and some strong acceptors induce a Z-E isomerization of coordinated (Z)-stilbene in 1, resulting in the formation of the (E)-stilbene complex $Cp_2Mo[\eta^2-(E)-C_6H_5CH=CHC_6H_5]$ (2) which is significantly less labile than the (Z)-stilbene complex. Maleic anhydride catalyzes this isomerization reaction rapidly and cleanly. Extremely electrophilic ketones R_2CO ($R = CO_2C_2H_5$, CF_3) are head-to-head coupled at the divalent molybdenum center of 1 to afford molybdenocene diolato complexes $Cp_2Mo(O_2C_2R_4)$ exclusively. The reaction of 1 with 9,10-phenanthrenequinone gives the enediolato complex $Cp_2Mo(O_2C_{14}H_8)$ of which the oxidation electrochemistry was studied.

Introduction

The metallocene of molybdenum Cp_2Mo ($Cp = \eta^5 - C_5H_5$) was electronically and structurally characterized by infrared, ultraviolet-visible, and magnetic circular dichroism spectra using matrix isolation methods.² The 16-electron species molybdenocene has previously been postulated as a reactive intermediate in the two-electron reduction of molybdenocene dichloride Cp₂MoCl₂,³ the reductive elimination of alkane RH from an alkyl hydride $Cp_2MoR(H)$,^{4,5} the photolysis of the carbonyl Cp₂MoCO,⁶ and the photoelimination of dihydrogen from the dihydride Cp_2MoH_2 .⁷ In the presence of two-electron ligands L these reactions give low-valent molybdenocene complexes of the type Cp₂MoL, whereas in the absence of any suitable ligand, a so-called dehydromolybdenocene dimer $[CpMo(\mu \eta^{1}:\eta^{5}-C_{5}H_{4})]_{2}$ is formed.⁸ The reactivity pattern of molybdenocene in solution thus appears to be dominated by an addition reaction of ligand L and by a dimerization reaction which can be viewed as self-insertion of one monomeric molybdenocene unit into the C-H bond of another. With the aid of flash photolysis experiments on the dihydride Cp₂MoH₂, molybdenocene has also been detected as a short-lived species in solution.⁹

Recently, we have described the synthesis and some properties of an unusually labile molybdenocene olefin complex, viz. the (Z)-stilbene adduct of molybdenocene $Cp_2Mo[\eta^2-(Z)-C_6H_5CH=CHC_6H_5]$ (1). Its high reactivity has been utilized for the preparation of acetylene complexes of molybdenocene $Cp_2Mo(\eta^2-RC \equiv CR')$ in a very general way.¹⁰ The observation that the olefinic ligand in 1 is very easily lost giving the dimerization product of molybdenocene and that various acetylenes RC=CR' replace (Z)-stilbene under mild conditions suggested to us to regard the (Z)-stilbene complex 1 as a synthetically useful versatile functional equivalent of monomeric molybdenocene. In order to explore further the reactivity of 1, we investigated its reaction with a selection of organic substrates functioning as good π -acceptors such as olefins and heteroolefins. Since metal-ligand bonding in Cp₂MoL type complexes is mainly stabilized by back bonding from the electron-rich d^4 -metal center of the Cp_2Mo fragment to the acceptor orbital of the ligand L,¹¹ we hoped that with these ligands 1 would easily undergo substitution reactions to give low-valent molybdenocene complexes.

In this paper we wish to report the extension of the ligand replacement reaction leading to a number of new

Present address: Anorganisch-chemisches Institut, Technische Universität München, D-8046 Garching, Federal Republic of Germany.
 (2) (a) Chetwynd-Talbot, J.; Grebenik, P.; Perutz, R. N. Inorg. Chem.
 1982, 21, 3647. (b) Cox, P. A.; Grebenik, P.; Perutz, R. N.; Robinson, M.

^{(4) (}a) Nakamura, A.; Otsuka, S. J. Am. Chem. Soc. 1972, 94, 1886. (b) Nakamura, A.; Otsuka, S. J. Am. Chem. Soc. 1973, 95, 7262. (c) Nakamura, A.; Otsuka, S. J. Mol. Catal. 1975/76, 1, 285.

⁽⁵⁾ Marsella, J. A.; Caulton, K. G. J. Am. Chem. Soc. 1980, 102, 1747. (6) Wong, K. L. T.; Thomas, J. L.; Brintzinger, H. H. J. Am. Chem. Soc. 1974, 96. 3694.

 ⁽⁷⁾ Geoffroy, G. L.; Bradley, M. G. Inorg. Chem. 1978, 17, 2410.
 (8) (a) Berry, M.; Cooper, N. J.; Green, M. L. H.; Simpson, S. J. J.
 Chem. Soc., Dalton Trans. 1980, 29. (b) Meunier, B.; Prout, K. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1979, B35, 2558.

⁽⁹⁾ Perutz, R. N.; Scaiano, J. C. J. Chem. Soc., Chem. Commun. 1984, 457

 ⁽¹⁰⁾ Herberich, G. E.; Okuda, J. Chem. Ber. 1984, 117, 3112.
 (11) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1729.