

Subscriber access provided by SHANGHAI JIAOTONG UNIV

Conversion of primary amines to carbamate esters using palladium chloride and di-tert-butyl peroxide. Double carbonylation of secondary amines

Howard. Alper, Giuseppe. Vasapollo, Frederick W. Hartstock, Michael. Mlekuz, David J. H. Smith, and George E. Morris Organometallics, **1987**, 6 (11), 2391-2393• DOI: 10.1021/om00154a020 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on April **27**, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/om00154a020 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

financial support of this project.

Registry No. PhC=CPh, 501-65-5; CH₃O₂CC=CCO₂CH₃, 762-42-5; C₂H₅C=CC₂H₅, 928-49-4; HO(CH₃)₂CC=CCCH₃)₂OH, 142-30-3; PhC=CCH(OC_2H_5)₂, 6142-95-6; (C_2H_5O)₂CHC=CC- $H(OC_2H_5)_2$, 3975-08-4; PhC=CCO₂CH₃, 4891-38-7; (azobenzene-C²,N)Pd(CH₃CN)₂+BF₄-, 110294-93-4; (azotoluene- C^2 , N)Pd(CH₃NO₂)₂+BF₄', 110294-95-6; 2,3,4-triphenylcinolinium tetrafluorobroate, 103905-36-8; 3,4-bis(methoxycarbonyl)-2-phenylcinolinium tetrafluoroborate, 103905-40-4; 3,4-diethyl-2-phenylcinolinium tetrafluoroborate, 103905-38-0; 2-phenyl-3,4-(1,1,3,3-tetramethyl-2-oxa-1,3-propanediyl)cinolinium tetrafluoroborate, 110294-97-8; 4-(diethoxymethyl)-2,3-diphenylcinolinium tetrafluoroborate, 110313-44-5; 3,4-bis(diethoxymethyl)-2-phenylcinolinium tetrafluoroborate, 110294-99-0; 2,4-diphenyl-3-(methoxycarbonyl)cinolinium tetrafluoroborate, 110295-01-7; 3,4-diphenyl-6-methyl-2-(4-methylphenyl)cinolinium tetrafluoroborate, 110295-03-9; 3,4-diethyl-6-methyl-2-(4-methylphenyl)cinolinium tetrafluoroborate, 110295-05-1; $bis(\mu$ chloro)bis(azobenzene-C²,N)dipalladium (II), 14873-53-1; (azobenzene-C²,N)PdnCH₃NO₂)₂+BF₄-, 110295-07-3; 2,3-diphenyl-1butene, 22875-84-9; 3-phenyl-1-propene, 300-57-2; 1-phenyl-1propene, 637-50-3; styrene, 100-42-5; methylacrylate, 96-33-3; phenylacetylene, 536-74-3; bis(trimethylsilyl)acetylene, 14630-40-1; benzenediazoniumcarboxylate, 1608-42-0.

Supplementary Material Available: Figures 1, 2, and 3 showing the structures of 1,2,3-triphenylcinnolinium tetrafluoroborate (I), 2,3-diphenyl-3-(diethoxymethyl)cinnolium tetrafluoroborate (II), and methyl 2,4-diphenylcinnolinium-3carboxylate tetrafluoroforate (III), respectively, crystallographic data for compounds I-III, tables containing atomic coordinates and isotropic thermal parameters (Tables 1s, 7s, and 13s), bond lengths (Tables 2s, 8s, and 14s), bond angles (Tables 3s, 9s, and 15s), and hydrogen atom coordinates (Tables 5s, 11s, and 16s) for compounds I-III, and tables of anisotropic thermal parameters (Tables 4s and 10s) for compounds I and II (18 pages); listings of observed and calculated structure factors for compounds I-III (Tables 6s, 12s, and 17s) (31 pages). Ordering information is given on any current masthead page.

Conversion of Primary Amines to Carbamate Esters Using Palladium Chloride and Di-tert-butyl Peroxide. Double **Carbonylation of Secondary Amines**

Howard Alper, *1 Giuseppe Vasapollo, Frederick W. Hartstock, and Michael Mlekuz

Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 9B4

David J. H. Smith and George E. Morris

B.P. Research Centre, Chertsey Road, Sunbury-on-Thames, Middlesex, England TW16 7LN

Received April 9, 1987

Primary aliphatic and aromatic amines react with carbon monoxide and di-tert-butyl peroxide in alcohol, catalyzed by palladium and copper chlorides, to give carbamate esters in good yields; double carbonylation to oxamate esters, using the peroxide or oxygen, resulted in the case of secondary amines.

In 1985, we described the reaction of primary aromatic amines with carbon monoxide, oxygen, alcohol, hydrochloric acid, cupric chloride, and palladium chloride as the catalyst to give the carbamate ester in 16-99% yield.² While this reaction occurs at room temperature and atmospheric pressure, it is too slow to be commercially viable, while the use of elevated pressures is unsafe due to the explosive nature of mixtures of carbon monoxide and oxygen. Also, an undesirable side reaction, associated with the coproduction of water, is the conversion of carbon monoxide to carbon dioxide. Therefore, an effort was made to utilize a substitute for oxygen in this process. Recently, di-tert-butyl peroxide was found to be effective for the palladium- and copper-catalyzed oxidative carbonylation of methanol to dimethyl oxalate and dimethyl carbonate.³ We now wish to report (i) that this peroxide is very useful, as an oxygen substitute, in the conversion of both aliphatic and aromatic primary amines to carbamate esters, (ii) that ureas are the principal products at elevated temperatures and pressures, and (iii) that with either oxygen or di-tert-butyl peroxide, secondary amines afford products resulting from a novel double as well as monocarbonylation reaction.

Methyl cyclohexylcarbamate (2, $R = C_6 H_{11}$, R' = H, R''= CH_3) was obtained in 86% yield when cyclohexylamine was carbonylated in methanol by using palladium chloride as the catalyst, hydrochloric acid, di-tert-butyl peroxide, and copper(II) chloride at room temperature and 1-atm pressure.

$$\frac{\text{RR'NH} + \text{CO} + \text{R''OH}}{1} \xrightarrow{\frac{\text{PdCl_2, CuCl_2}}{[(CH_2)_3\text{CO}], \text{ acid, room temp, 1 atm}}} \text{RR'NCOOR'' + RR'NCOCOOR''}$$

-

The yield of ester was 17% when the reaction was repeated in the absence of the peroxide while 18% carbamate ester resulted in the absence of acid (but the peroxide was present). Another effective acid was tetrafluoroboric acid, and even the Lewis acid born trifluoride could be used in this reaction. The optimum ratio of substrate/ $[(CH_3)_3CO]_2/CuCl_2/PdCl_2$ for these reactions is 5.0/5.0/ 1.0/0.5, and 1-2 drops of acid were used in all cases.

Killam Research Fellow, 1986–1988.
 Alper, H.; Hartstock, F. W. J. Chem. Soc., Chem. Commun. 1985, 1141

⁽³⁾ Morris G.; Oakley, D.; Pippard, D. A.; Smith, D. J. H. J. Chem. Soc., Chem. Commun. 1987, 410, 411.

Table I. Reaction of Primary Amines with CO/O₂ or [(CH₃)₃CO]₂/PdCl₂/CuCl₂/Acid/Alcohol^a

	O_2 (A) or			
	$[(CH_3)_3CO]_2$			yield of
amine	(B)	acid	alcohol	2, ^{6,c} %
$\overline{C_6H_{11}NH_2}$	В	HC1	CH ₃ OH	86
• • •		HCl	CH ₃ OH	17
	В		CH ₃ OH	18
$C_{12}H_{25}NH_2$	В	HCl	CH ₃ OH	79
	В	HBF₄	CH ₃ OH	72
	В	BF_3	CH ₃ OH	70
	Α	HCI	CH ₃ OH	99
	Α	HCl	C ₂ H ₅ OH	99
	А	HCl	(CH ₃) ₃ COH	81
	А		(CH ₃) ₃ COH	64
$n-C_4H_9NH_2$	В	HBF_4	CH ₃ OH	88
	А	HC1	CH ₃ OH	96
	Α	HCl	(CH ₃) ₃ COH	66
$t-C_4H_9NH_2$	Α	HCl	CH ₃ OH	98
	Α	HCl	(CH ₃) ₃ COH	40
PhCH ₂ NH ₂	В	HCl	CH₃ÕH	42
	В	HBF_4	CH₃OH	81
	В	BF_3	CH ₃ OH	85
PhNH ₂	В	HCI	CH₃OH	60 ^d
	В	BF_3	$CH_{3}OH$	67
	В	HBF_4	CH₃OH	56
	В		CH₃OH	19
$p-CH_3OC_6H_4NH_2$	В	HCl	CH ₃ OH	68 ^e
$2,6-(CH_3)_2C_6H_3NH_2$	В	HC1	CH ₃ OH	30 ^e

^aConditions: amine, 5.0 mmol; $[(CH_3)_3CO]_2$, 5.0 mmol (or O₂); acid, 1–2 drops; PdCl₂, 0.5 mmol; CuCl₂, 1.0 mmol; alcohol, 60 mL; room temperature, 1 atm. ^bSee ref 2 for yields obtained from the ArNH₂/CO/O₂ reaction. ^cPhysical data [i.e., mp or bp, IR, NMR (¹H, ¹³C), MS] were in accord with literature results. ^d38% using CuCl instead of CuCl₂. ^e2.0 mmol of CuCl₂.

Carbamate esters were obtained in good yields from either primary aliphatic or aromatic amines, and the results are listed in Table I (yields are also reported for aliphatic primary amines using oxygen—not described previously). Note that, unlike aromatic amines and oxygen, acid is beneficial but not essential in the case of primary aliphatic amines. Di-*tert*-butyl peroxide is also useful when primary aliphatic amines are employed as reactants.

Elevated temperatures and pressures have a significant influence on the reaction of aromatic but not aliphatic amines (e.g., n-butylamine still affords the carbamate ester as the main product at 7–8 atm and 92 °C). For example, aniline reacts with cuprous chloride, palladium chloride, and an equimolar amount of di-tert-butyl peroxide in methanol at 8.9 atm and 78 °C for 2 h, to give diphenylurea (carbanilide) in 56% yield and N-phenylmethylcarbamate in 6% yield. Only diphenylurea is formed (50% yield) if the reaction is repeated in the presence of added lithium chloride for 2.5 h. However, after a reaction time of 15.5 h, the urea was isolated in 88% yield and 2, R = Ph, R'= H, R'' = CH₃, was obtained in 6% yield, and some dimethyl carbonate formation was detected. Note that little or no carbonate ester of the solvent alcohol is produced until all the amine has been consumed.

Extension of the carbonylation reaction to secondary amines using either di-*tert*-butyl peroxide or oxygen afforded not only the carbamate ester 2 but also the oxamate ester 3, arising from a novel double carbonylation reaction. Varying amounts of 2 and 3 were isolated, depending on the nature of the substrate (Table II). Although amines containing relatively bulky R groups do give appreciable quantities of the oxamic acid ester, one cannot attribute the results to steric effects alone. Also, the ratio of 2/3is quite different when one compares the results obtained by using oxygen with di-*tert*-butyl peroxide. Furthermore the product ratio, in the case of oxygen, is sensitive to the

Table II. Reaction of Secondary Amines with CO/O₂ or [(CH₃)₃CO]₂/PdCl₂/CuCl₂/HCl/CH₃OH^a

amine	O_2 (A) or $[(CH_2)_2CO]_2$		products, ^b %	
	(B)	O ₂ /CO ratio	2	3
(C ₆ H ₁₁) ₂ NH	A	2	2	25
	Α	3	11	7
	Α	4	20	6
	Α	0.2	6	16
$C_6H_{11}NHCH_3$	Α	2	12	4
	В		17	43
$(C_2H_5)_2NH$	Α	2	44	14 ^c
$(i-C_3H_7)_2NH$	Α	2	31	6
	В		20	35
$(i-C_4H_9)_2NH$	В		32	27
piperidine	Α	2	16	12
	В		64	16

^aConditions: amine, 5.0 mmol; $[(CH_3)_3CO]_2$, 5.0 mmol (or O_2); PdCl₂, 0.5 mmol; CuCl₂, 1.0 mmol; HCl, 0.1 mmol; CH₃OH, 60 mL. ^bProducts were identified by comparison of spectral results with literature data and/or by independent synthesis. ^c2 and 3 were obtained in 49% and 8% yields, respectively, using $(C_2H_5)_2$ NH/ PdCl₂/CuCl/LiCl/[(CH₃)₃CO]₂/CH₃OH at 90 °C and 5.9 atm for 3.5 h.

proportion of O_2/CO (see results for dicyclohexylamine) with the oxamate most favored by using a $2/1 O_2/CO$ ratio. . These results, together with those reported earlier for the oxidative carbonylation of methanol with di-*tert*-butyl peroxide,³ are consistent with carbonylation occurring mainly at a palladium center while copper activates the peroxide (formation of a copper alkoxide intermediate) and reoxidizes the palladium.

A possible mechanism to account for the role of palladium in the conversion of amines to 2 and 3 is outlined in Scheme I (illustrated for a secondary amine and methanol). Interaction of the amine, alcohol, palladium chloride, and acid may generate the chloroalkoxypalladium compound 4. Insertion of carbon monoxide (CO binding to Pd followed by ligand migration-path a) would give 5 which, on reaction with additional amine, affords 6. Reductive elimination from 6 would generate the carbamate ester 2. An alternative pathway (path b) for formation of 2 involves CO displacement of chloride 8, followed by reaction with amine to give 9 and then reductive elimination. The oxamate ester 3 can arise by CO insertion into either 6 or 9 to give 7 and subsequent reductive elimination. It is conceivable that the conversion of 6 to 7 is assisted by the presence of a bulky R_2 unit. It is not obvious why 9, if formed, should afford only 2 in the case

of a primary amine and 2 and 3 when a secondary amine is used as the substrate. In the case of the CO/O_2 reaction, use of greater than a 2/1 ratio of O_2/CO gives the carbamate ester as the major product, and this may be a consequence of oxygen retarding CO insertion into 6 (but not 4). Note that most of the steps in paths a and b (e.g., 6 \rightarrow 7 \rightarrow 3; 8 \rightarrow 9) are analogous to mechanisms proposed for the double carbonylation of halides to α -keto amides.⁴⁻⁸

There has been considerable interest in recent years in the palladium complex catalyzed double carbonylation of halides to α -keto amides, acids, and esters.⁴⁻⁸ α -Keto amides are obtained in good yields when quite bulky amines such as di-*n*-propylamine are used, but only monocarbonylation occurs for diisopropylamine or diisobutylamine. Finally, a recent report described the reaction of piperidine with a catalytic amount of PdCl₂(CH₃CN)₂, cuprous iodide, trimethyl orthoformate, carbon monoxide, and oxygen to give the oxamate 10 in 29% yield and 1,1'-oxalyldipiperidine (11) in 44% yield. However, a very high pressure of carbon monoxide (77.4 atm or 80 kg/cm²) is required, while no double carbonylation occurs with 1/1 CO/O₂ (1 atm).⁹

In conclusion, while this research raises a number of questions concerning the mechanism of the above reactions [e.g., what is the precise role of acid, O_2 , and $((CH_3)_3CO)_2$?], the following significant findings have resulted from this work: (i) di-*tert*-butyl peroxide can be employed as an oxygen substitute for the conversion of primary amines to carbamate esters in good yields; (ii) Lewis or protonic acids can be used in these reactions; (iii) with oxygen or the peroxide, secondary amines afford both carbamate and oxamate esters (albeit in modest yields), the latter arising from a double carbonylation reaction. This approach to the synthesis of carbamate esters is superior to others¹⁰ in terms of mildness and simplicity, and the oxamate ester

- (5) Kobayashi, T.; Tanaka, M. J. Organomet. Chem. 1982, 233, C64.
 (6) Chen, J.; Sen, A. J. Am. Chem. Soc. 1984, 106, 1506.
- (7) Tanaka, M.; Kobayashi, T.; Sakakura, T. J. Chem. Soc., Chem. Commun. 1985, 837.
- (8) Fell, B.; Kohl, W. Chem. Ztg. 1986, 110, 401 and references cited therein.
- (9) Murahashi, S.-I.; Mitsue, Y.; Ike, K. J. Chem. Soc., Chem. Commun. 1987, 125.
- (10) Fukuoka, S.; Choro, M.; Kohno, M. J. Chem. Soc., Chem. Commun. 1984, 399. Fukuoka, S.; Choro, M.; Kohno, M. J. Org. Chem. 1984, 49, 1458.

preparation compares favorably with the alkyloxalyl chloride-amine reaction.

Experimental Section

General Data. All of the chemicals used were purchased from commercial suppliers and were used as received. Gas chromatographic determinations were made on a Varian Vista 6000 gas chromatograph (FID detector) equipped with a 2-m 5% Carbowax 20m (or OV-17) on Chromosorb W column. A Perkin-Elmer 783 spectrometer was used for infrared spectral determinations and Varian EM-360 and XL-300 instruments were used to record nuclear magnetic resonance spectra, while mass spectral determinations were made by using a VG 5050 micromass spectrometer.

General Procedure for the Palladium Chloride Catalyzed Carbonylation of Amines with Di-tert-butyl Peroxide. Carbon monoxide was bubbled through methanol (60 mL) for 15 min. Palladium chloride (0.5 mmol) was added followed, 3 min later, by the acid (1-2 drops). The mixture was stirred under carbon monoxide for 10 min, and $CuCl_2$ (1.0 mmol) was added, followed by the amine (5.0 mmol) and then di-tert-but 1 peroxide (5.0 mmol). The reaction mixture was stirred overnight at room temperature and 1 atm and filtered, and the filtrate was concentrated by rotary evaporation. Compounds 2 and 3 (if formed) were separated and isolated by ether extraction, and then the ether extract was subjected to preparative thin-layer chromatography (ether-hexane), affording products in yields given in Tables I and II.

The reactions involving oxygen instead of di-*tert*-butyl peroxide were also effected at ambient temperature and 1 atm, with a flowmeter used to control the proportions of carbon monoxide and oxygen. The procedure was, except for the noted change, identical with that described for di-*tert*-butyl peroxide.

Acknowledgment. We are grateful to British Petroleum and to the Natural Sciences and Engineering Research Council of Canada for support of this research.

Registry No. 1 ($\mathbf{R} = C_6 H_{11}$, $\mathbf{R}' = \mathbf{H}$), 108-91-8; ¹ ($\mathbf{R} = C_{12} H_{25}$, $\mathbf{R}' = \mathbf{H}$), 124-22-1; 1 ($\mathbf{R} = C_4 H_9$, $\mathbf{R}' = \mathbf{H}$), 109-73-9; 1 ($\mathbf{R} = t - C_4 H_9$, $\mathbf{R}' = \mathbf{H}$), 109-73-9; 1 ($\mathbf{R} = t - C_4 H_9$, $\mathbf{R}' = \mathbf{H}$), 109-73-9; 1 ($\mathbf{R} = t - C_4 H_9$, $\mathbf{R}' = \mathbf{H}$), 109-73-9; 1 ($\mathbf{R} = t - C_4 H_9$, $\mathbf{R}' = t - C_$ R' = H), 75-64-9; 1 (R = PhCH₂, R' = H), 100-46-9; 1 (R = Ph, R' = H), 56-41-7; 1 (R = 4-CH₃OC₆H₄, R' = H), 104-94-9; 1 (R $= 2,3-(CH_3)_2C_6H_3, R' = H), 87-62-7; 1 (R = R' = C_6H_{11}), 101-83-7;$ 1 ($\dot{R} = C_6 H_{11}^{'}, \ddot{R}' = CH_3$), 98-94-2; 1 ($\dot{R} = R' = C_2 H_5$), 109-89-7; 1 ($R = R' = C_3 H_7$ -i), 108-18-9; 1 ($R = R' = C_4 H_9$ -i), 110-96-3; 1 $(R = R' = (CH_2)_5)$, 110-89-4; 2 $(R = C_6H_{11}, R' = H, R'' = CH_3)$, 5817-68-5; 2 (R = $C_{12}H_{25}$, R' = H, R'' = CH₃), 66769-5⁷-1; 2 (R = $C_{12}H_{25}$, R' = H, R'' = $C_{2}H_{5}$), 6268-50-4; 2 (R = $C_{12}H_{25}$, R' = H, $R'' = C(CH_3)_3$, 106810-56-4; 2 (R = C_4H_9 , R' = H, R'' = CH₃), 2594-21-0; 2 (R = C₄H₉, R' = H, R'' = C(CH₃)₃), 5925*t*-58-2; 2 (R = *t*-C₄H₉, R' = H, R'' = CH₃), 27701-01-5; 2 (R = *t*-C₄H₉, R' = H, $R'' = C(CH_3)_3$), 71872-03-2; 2 (R = PhCH₂, R' = H, R'' = CH_3), 5817-70-9; 2 (R = Ph, R' = H, R'' = CH_3), 2603-10-3; 2 (R = $H_3COC_6H_4$, R' = H, $R'' = CH_3$), 14803-72-6; 2 (R = 2,6-(CH_3)_2C_6H_3, R' = H, $R'' = CH_3$), 20642-93-7; 2 (R = $R' = C_6H_{11}$, $R'' = CH_3$, 6946-78-7; 2 (R = C₆H₁₁, R' = CH₃, R'' = CH₃), 56475-81-1; 2 (R = R' = C_2H_5 , R'' = CH_3), 4652-44-2; 2 (R = R' $= C_3H_7 - i, R'' = CH_3$, 31603-4.)-3; 2 (R = R' = C_4H_9 - i, R'' = CH_3), 83487-24-5; 2 (R = R' = (CH₂)₅, R'' = CH₃), 1796-27-6; 3 (R = $R'' = C_6H_{11}, R'' = CH_3$, 110193-54-9; 3 ($l\ell = C_6H_{11}, R' = CH_3$, $R'' = CH_3$, 110193-55-0; 3 ($R = R' = C_2H_5$, $R'' = CH_3$), 110193-56-1; 3 (R = R' = C_3H_7 -c, R'' = CH₃), 110193-57-2; 3 (R $= \mathbf{R}' = \mathbf{C}_4 \mathbf{H}_9 \cdot \mathbf{c}, \mathbf{R}'' = \mathbf{C} \mathbf{H}_3$, 110193-58-3; 3 ($\mathbf{R} = \mathbf{R}' = (\mathbf{C} \mathbf{H}_2)_5$, \mathbf{R}'' = CH₃), 20173-02-8; CH₃OH, 67-56-1; C₂H₅OH, 64-1/-5; (C-H₃)₃COH, 75-65-0; PdCl₂, 7647-10-1; ((CH₃)₃CO)₂, 110-05-4; C₆H₅NHCONHC₆H₅, 26763-63-3.

⁽⁴⁾ Ozawa, F.; Soyama, H.; Yanagihara, H.; Aoyama, I.; Takino, H.; Izawa, K.; Yamamoto, T.; Yamamoto, A. J. Am. Chem. Soc. 1985, 107, 3235.