

Subscriber access provided by CUNY CENTRAL OFFICE

Actinide-to-transition metal bonds. Synthesis, characterization, and properties of metal-metal bonded systems having the tris(cyclopentadienyl)actinide fragment

Richard S. Sternal, and Tobin J. Marks

Organometallics, **1987**, 6 (12), 2621-2623• DOI: 10.1021/om00155a036 • Publication Date (Web): 01 May 2002 **Downloaded from http://pubs.acs.org on April 28, 2009**

More About This Article

The permalink<http://dx.doi.org/10.1021/om00155a036>provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

below -90 °C in toluene $\left($ <-130 °C in diethyl ether) solution substantial line broadening of the ¹H (400 MHz) and 13C (100.6 MHz) NMR CH2 resonances of **2** due to decreasing exchange rates is observed. However, for this compound both the intraligand syn/anti allyl hydrogen scrambling and intramolecular π -/ σ -allyl exchange are taking place so rapidly that up to now **2** has eluded structural characterization on the basis of its "static" low-temperature-limiting NMR spectra.

The molecular structure of **2** was determined by X-ray diffraction at -173 °C.⁶ The zirconium atom is coordinated to a η^5 -cyclopentadienyl ligand and three differently bonded allyl groups arranged around the central metal in a pseudo tetrahedral geometry. One osition is occupied (5) Å, $C(8)$ - $C(9)$ = 1.332 (5) Å; Zr - $C(7)$ - $C(8)$ = 107.9 (2)°]. The remaining tetrahedral bonding sites are used to coordinate two η^3 -allyl moieties. To a first approximation one of these appears to be an ordinary π -allyl ligand [C- $(5)-C(6) = 123.9$ (3)^o] which is only slightly distorted by an "unsymmetrical" coordination to the Cp-Zr unit [C(4) positioned cis and the $C(5)-C(6)$ vector positioned trans to Cp; Zr-C(4) = 2.405 (4) **A,** Zr-C(5) = 2.525 (3) **A,** Zr- $C(6) = 2.549$ (3) Å]. The bonding features of the η^3 -allyl ligand "all-cis" to Cp are substantially different. Increasing zirconium-to-carbon distances $[\text{Zr-C}(1) = 2.442 \ (4)$ Å, $Zr-C(2) = 2.523$ (3) Å, $Zr-C(3) = 2.624$ (3) Å] and decreasing carbon to carbon bond lengths $[C(1)-C(2) = 1.412]$ **(5) A,** C(2)-C(3) = 1.371 (6) **A]** indicate a pronounced distortion toward an unsymmetrical $\sigma,\pi\text{-type}$ ($\eta^3\text{-allyl}$ metal complex structure.' The observed hydrogen positions in the X-ray crystal structure analysis disclose additional systematic distortions of the n^3 -allyl ligands. Relative to the $C(4)$, $C(5)$, $C(6)$ plane the "meso" hydrogen H(5) is tilted substantially toward the zirconium center (0.24 (4) **A).** This is not an uncommon structural feature for a $(\pi$ -allyl)metal complex,⁸ nor is the slight pyramidalization at $C(4)$ (H(4)-syn coplanar, H(4)-anti turned away from the metal by 0.47 (4) **A).** However, a substantial by a σ -allyl group $[Zr-C(7) = 2.375(3)$ Å, C(7)-C(8) = 1.461 (4)-C(5) = 1.387 (5) **A,** C(5)-C(6) = 1.382 **(5) A;** C(4)-C-

twisting at C(6) appears noteworthy. This distortion places H(6)-syn **0.15** (3) **A** out of the allyl carbon plane toward the metal and places $H(6)$ -anti by 0.34 (4) Å in the opposite direction. Similar effects are observed for the hydrogen atoms at the $C(1)$, $C(2)$, and $C(3)$ of the allyl group (distortions: H(2), +0.19 **(4) A;** H(1)-syn in plane; H(1)-anti, -0.43 **(4) A;** H(3)-syn, +0.17 (3) **A;** H(3)-anti, -0.30 (4) **A).** In a formal way this type of an allyl ligand distortion observed in the solid-state structure of **2** might be regarded as modeling an intermediate stage along the reaction coordinate of the $\eta^3 - \eta^1$ interconversion,⁴ although this case is corresponding to a geometry being located rather close to the π -bonded isomer. This ground-state structural feature could possibly help to explain the extremely low activation barrier of the intramolecular allyl isomerization and interconversion. On the basis of the solid-state structure of **2** one might even speculate that the rearrangement of the three allyl ligands is not occurring independently but possibly in a "concerted" fashion.

Acknowledgment. Financial support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Dr. R. Benn and Dr. **A.** Rufinska for many lowtemperature NMR spectra.

Supplementary Material Available: Tables of crystal data, atomic coordiniates, thermal parameters, and selected interatomic distances and angles for 2 (5 pages); a listing of observed and calculated structure factors for 2 (12 pages). Ordering information is given on any current masthead page.

Actlnlde-to-Transition Metal Bonds. Synthesls, Characterization, and Properties of Metal-Metal Bonded Systems Having the Trls(cyclopentadlenyl)actlnide Fragment

Richard S. Sternal and Tobln J. Marks"

Department of Chemistry, North western University Evanston, Illinois 60208

Received Juk 28, 1987

Summary: Reaction of Cp₃AnCI complexes (Cp = η^5 - C_5H_5 ; An = Th, U) and $(CH_3C_5H_4)_3$ ThCI with CpM(CO)₂Na ($M = Fe$, Ru) yields the corresponding metal–metal bonded compounds $Cp_AAn-M(Cp)(CO)_2$ and bonded compounds $\text{Cp}_3\text{An-M}(\text{Cp})(\text{CO})_2$ and $(CH_3C_5H_4)_3Th-M(Cp)(CO)_2$. Electron-releasing tendencies follow the order Cp₃U- > Cp₃Th- \gg $[(CH₃₎₅C₅]₂Th(X)$ - $(X = CI, I, CH₃)$. Evidence for hindered rotation about the metal-metal bonds and facile cleavage by alcohols and ketones is presented.

We recently described' the synthesis and properties of $Cp'_{2}Th(X)Ru(Cp)(CO)_{2}$ complexes $(Cp' = \eta^{5}-(CH_{3})_{5}C_{5}$; Cp = $\eta^{5} \text{-} C_{5}H_{5}$; X = Cl, I, CH₃) which contain unsupported actinide-to-transition metal bonds. $2-4$ The scope of ac-

⁽⁶⁾ Crystallographic data for 2: $C_{14}H_{20}Zr$, M_r 279.5; crystal size 0.31 \times 0.30 \times 0.02 mm; orthorhombic, space group $P2_12_12_1$; a = 8.603 (3) Å, = 1.45 g cm⁻³; graphite-monochromated Mo K α radiation, λ = 0.71069
Å; μ = 8.13 cm⁻¹; no absorption correction has been applied; hydrogen atoms were located in the difference fourier map and refined isotropically; all non-hydrogen atoms were refined anisotropically; the absolute con- figuration was determined by a Hamilton test of the R factor ratio of both enantiomers (significance $\alpha \gg 99.5$ %); Nonius CAD-4 (Ω –2 θ scan technique with scan speeds varying from 1.0 to 10.0° min⁻¹, depending on the standard deviation to intensity ratio of a preliminary 10° min⁻¹ scan; the time taken to measure the background was half that taken to measure time taken to measure the background was half that taken to measure the peak; Ω -scan range ($a + 0.35 \tan \theta$), where *a* was twice the average width of the Ω -scans of several low-angle reflections; horizontal detector aperture (3.0 + 1.05 tan θ) mm and vertical aperture 4.0 mm); reflections measured, 7894 ($\pm h$, $\pm k$, $\pm l$, $1^{\circ} < \theta < 30^{\circ}$); reflections unique, 3804 (R_w
= 0.028); reflections observed, 3174 ($I \geq 2\sigma(I)$); number of variables, 216; $R = 0.029$, $R_w = 0.028$ $(w = 1/\sigma^2(F_o))$; goodness of fit, 1.16; maximum shift/error in the final cycle, 0.1; final difference Fourier, 0.78 e Å⁻³ (close to Zr). $b = 18.520$ (5) Å, $c = 8.033$ (4) Å; $V = 1279.8$ Å³; $Z = 4$; $T = -173$ °C; d_{radod}
 $b = 18.520$ (5) Å, $c = 8.033$ (4) Å; $V = 1279.8$ Å³; $Z = 4$; $T = -173$ °C; d_{radod}

⁽⁷⁾ See, for comparison: Erker, G.; Engel, K.; Dorf, U.; Atwood, J. L.; Hunter, W. E. Angew. Chem. 1982, 94, 915-916. Brauer, D. J.; Krüger, C. Organometallics 1982, 1, 204-207, 207-210. Highcock, W. J.; Mills, R. M.; Spencer, J. L.; Woodward, P. J. Chem. Soc., Chem. Commun. 1982, 128–129. Kai, Y.; Kanehisa, N.; Miki, K.; Kasai, N.; Mashima, K.; Nagasuna, K.; Yasuda, H.; Nakamura, A. Chem. Lett. 1982, 1979–1982. Erker, G.; Engel, 95, 506–507. Erker, G.; Berg, K.; Krüger, C.; Müller, G.; Angermund, K.;
Benn, R.; Schroth, G. *Ibid*. 1984, 96, 445–446. Erker, G.; Dorf, U.; Benn,
R.; Reinhardt, R.-D.; Petersen, J. L*. J. Am. Chem. Soc.* 198 7649-7650.

⁽⁸⁾ Goddard, R.; Krüger, C.; Mark, F.; Stansfield, R.; Zhang, X. Organometallics 1985, 4, 285–290. Clark, T.; Rhode, C.; Schleyer, P. v. R.
Joid. 1983, 2, 1344–1351. Decker, G.; Boche, G. J. Organomet. Chem.
1983, 259, 3 Organometallics 1984, 3, 128-133.

^{(1) (}a) Sternal, R. *S.;* Brock, C. P.; Marks, T. J. *J.* Am. Chem. SOC. 1985,107,8270-8272. (b) Sternal, R. *S.;* Kanatzidis, M. G.; Brock, C. P.; Marks, T. J., submitted for publication.

⁽²⁾ For molecular orbital calculations, see: Bursten, B. E.; Novo-

Gradac, K. J. J. Am. Chem. *Soc.* 1987, 109, 904-905.
Gradac, K. J. J. Am. Chem. Soc. 1987, 109, 904-905.
(3) For studies of systems with bridging ligands, see: (a) Ritchey, J.
M.; Zozulin, A. J.; Wrobleski, D. A.; Ryan, R Moody, D. C.; Paine, R. T. *J.* Am. Chem. SOC. 1985, 107, 501-503. (b) Hay, P. J.; Ryan, R. R.; Salazar, K. V.; Wrobleski, D. **A,;** Sattelberger, A. Hay, F. J.; Kyah, K. K.; Salazar, K. V.; Wrobleski, D. A.; Sattelberger, A.
P. *J. Am. Chem. Soc.* 1986, 108, 313–315. (c) Ortiz, J. V. *J. Am. Chem. SOC.* 1986,108, 550-551.

Table I. Comparative Infrared Spectral Data for Complexes with Actinite-to-Transition Metal Bonds^a

	$\nu_{\rm CO}$, cm ⁻¹	
compound	toluene soln	Nuiol mull
$Cp_3ThFe(Cp)(CO)$ ₂ (1)	1927, 1873	1918, 1855
$Cp3ThRu(Cp)(CO)$, (2)	1949, 1886	1939, 1868
$Cp3UFe(Cp)(CO)$ ₂ (3)	1921, 1869	1915, 1847
$\text{Cp}_3\text{URu}(\text{Cp})(\text{CO})_2$ (4)	1944, 1882	1935, 1864
$(MeC5H4)3ThFe(Cp)(CO)2$ (5)	1927, 1871	1918, 1854
$(MeC5H4)3ThRu(Cp)(CO)2(6)$	1947, 1885	1936.1869
$Cp'_2Th(Cl)Ru(Cp)(CO)_2$	1971, 1910	1967, 1893
$Cp'_2Th(I)Ru(Cp)(CO)_2$	1972. 1911	1968, 1900
$Cp'_2Th(CH_3)Ru(Cp)(CO)_2$	1962, 1897	1958, 1891
CpRu(CO) ₂ I	2055, 2007 ^b	
$CpRu(CO)$ ₂ H	2033.1973 ^b	
$CpRu(CO)2Ge(CH3)3$	2009. 1954 ^c	
$\text{Cp}_2\text{Zr}(CH_3) \text{Ru}(C_p)(CO)_2$		$1950, 1880^d$
$\rm{Cp_{2}Zr}(CH_{3})Fe(Cp)(CO)_{2}$		$1937, 1872^d$

a Spectra at Northwestern were recorded on a Nicolet 7199 FT-IR spectrometer and are considered accurate to ± 1.0 cm⁻¹. b^b Reference 18; CS_2 solution. c^c Sosinsky, B. A.; Knox, S. A. R.; Stone, F. *G.* **A.** *J. Chem.* Soc., Dalton Trans. 1975, 1633-1640; hexane solution. dReference 13.

tinide-transition metal bonding is of great interest in these studies, and we now report an elaboration of such chemistry based upon the Cp_3An - fragment (An = Th, U). Taken together, the two systems provide a perspective on the transmission of metal/ligand electronic effects through, and conformational energetics about, this unusual type of metal-metal bond, as well as evidence for high reactivity.

The reaction of thorium and uranium Cp_3AnCl complexes⁵ with CpM(CO)₂Na reagents (M = Fe,⁶ $\tilde{R}u^7$) in THF yields, after solvent evaporation and recrystallization from THF/pentane (by diffusion), the corresponding extremely air-sensitive Cp,AnM(Cp)(CO), complexes **1-4** (eq 1). In Taken together, the two systems provide a perspect
Taken together, the two systems provide a perspect
the transmission of metal/ligand electronic effects
and conformational energetics about, this unusu
metal-metal bond, a

$$
Cp_3AnCl + CpM(CO)_2Na \xrightarrow[25\text{°C, 2 h}]{THF}
$$

\n
$$
Cp_3AnM(Cp)(CO)_2 + NaCl (1)
$$

\n1–4

1, An = Th, M = Fe, yellow microcrystals,

65% isolated yield

2, An = Th, M = Ru, colorless microcrystals, 73% isolated yield

3, An = U, M = Fe, brown solid, **72%** isolated yield

 4 , An = U, M = Ru, yellow-brown microcrystals,

61 %isolated yield

a similar manner, **tris(methylcyclopentadieny1)** complexes can also be prepared (eq **2).** These new compounds have

2, An = Th, M = Ru, colorless microcrystals, 73% isolated yield
\n3, An = U, M = Fe, brown solid, 72% isolated yield
\n4, An = U, M = Ru, yellow-brown microcrystals, 61% isolated yield
\na similar manner, tris(methylcyclopentadienyl) complexes
\ncan also be prepared (eq 2). These new compounds have
\n
$$
(MeC_5H_4)_3ThCl^8 + CpM(CO)_2Na \frac{THF}{25 \cdot C, 2 h}
$$
\n
$$
(MeC_5H_4)_3ThM(Cp)(CO)_2 + NaCl (2)
$$
\n5, 6

5, M = Fe, pale yellow microcrystals,

85% isolated yield

6, M = Ru, colorless microcrystals,

70% isolated yield

Figure 1. Variable-temperature, 270-MHz ¹H NMR spectra of a solution of Cp₃ThRu(Cp)(CO)₂ (2) in toluene-d₈. The arrow indicates an impurity.

been characterized by standard analytical/spectroscopic techniques,⁹ and compound 1 has also been characterized by X-ray diffraction (Fe-Th = 2.940 (5) Å).¹⁰

Structurally diagnostic *vco* infrared spectral data for **1-6** and related compounds¹¹ are set out in Table I. The

⁽⁴⁾ For studies of systems with actinide-to-main group metal bonds, **see:** (a) Porchia, M.; Casellato, U.; Ossola, F.; Rosetto, G.; Zanella, P.; Graziani, R*. J. Chem. Soc., Chem. Commun.* 1986, 1034–1035. (b)
Porchia, M.; Ossola, F.; Rossetto, G.; Zanella, P.; Brianese, N. *J. Chem.* **SOC.,** Chem. *Commun.* 1987,550-551.

⁽⁵⁾ Marks, T. J.; Seyam, **A.** M.; Wachter, W. A. Inorg. Synth. 1976, *16.* 147-151.

⁽⁶⁾ *King,* R. B. Organometallic Synthesis; Academic: New York, 1965; pp 151-152.

⁽⁷⁾ Gibson, D. H.; Hsu, W.-L.; Ahmed, F. U. *J.* Organomet. Chem. 1981, 215, 379-401.

⁽⁸⁾ Fragalá, I.; Ciliberto, E.; Fischer, R. D.; Sienel, G. R.; Zanella, P. *J.* Orpanomet. Chem. 1976.120. C9-Cl2.

⁽⁹j(a) 1: 'H NMR (C,D,) **8** 6.06 *(8,* 15 H, Cp,Th), 4.25 (s,5 H, CpFe); $^{13}C(^{1}H)$ NMR (THF-d₈) δ 220.2 (CO), 117.9 (Cp₃Th), (83.96 (CpFe); mass spectrum (15 eV), m/e (relative abundance, assignment) 604 (0.7, $Cp_3ThFeCp(CO)_2^+$), 427 (100, Cp_3Th^+). Anal. Calcd for $C_{22}H_{20}O_2FeTh$: C, 43.73; H, 3.34. Found: C, 44.71; H, 3.63. This compound consistently gave C (CO), 117.5 (Cp₃Th), 87.3 (CpRu); mass spectrum (15 eV), *m/e* (relative abundance, assignment) 650 (0.4, Cp₃ThRuCp(CO)₂+), 427 (100, Cp₃Th+). Anal. Calcd for C₂₂H₂₀O₂RuTh: C, 40.68; H, 3.10. Found: C, 41.06; CpFe); ¹³C{¹H} NMR (THF-d₈) δ 272.5 (CO), 89.64 (CpFe), the Cp₃U
signal was not observed; mass spectrum (15 eV), *m/e* (relative abundance, assignment) 433 (100, Cp₃U⁺). Anal. Calcd for C₂₂H₂₀O₂FeU: C, 43.30;
H, 3.30. Found: C, 43.44; H, 3.52. (d) 4: ¹H NMR (C₆D₆) δ -5.26 (br
s, 15 H, Cp₃U), -10.56 (s, 5 H, CpRu); mass spectrum (15 eV), *m*/ (relative abundance, assignment) 656 (0.2, Cp₃URuCp(CO)₂*), 433 (100,
Cp₃U*), 368 (20, Cp₂U*). Anal. Calcd for C₂₂H₂₀O₂RuU: C, 40.31; H,
3.08. Found: C, 40.28; H, 3.12. (e) 5: 'H NMR (C_eD_e, 65 °C) 5 6.02 83.20 (CpFe), 15.76 (CH₃); the ThCp ring carbon atom bonded to the $\rm \check{CH}_3$ group was not observed; mass spectrum (15 eV), m/e (relative abundance, assignment) 469 (100, (MeC₅H₄₎₃Th⁺). Anal. Calcd for C₂₅H₂₆O₂FeTh: 5.99 (br d, 12 H, $\text{Th}(C_5H_4CH_3)_3$), 4.83 (s, 5 H, CpRu), 2.19 (s, 9 H, (Th($\tilde{C}_4H_4CCH_3$), 86.55 (CpRu), 15.70 (CH₃), the Th Cp ring carbon
atom bonded to the CH₃ group was not observed; mass spectrum (15 eV),
 m/e (relative abundance, assignment) 692 (13, (MeC₅H₄)₃ThRuCp-
 $(CO)_2$ (9, 15 H, Cp,Th), 4.77 *(8,* 5 H, CpRu); 13C{'H) NMR (THF-d,) 6 209.5 2.84. (c) 3: ¹H NMR (C_6D_6) δ -5.60 (br s, 15 H, Cp₃U), -12.82 (s, 5 H, $^{13}C(^{1}H)$ NMR (C_6D_6 , 65 °C) δ 219.8 (CO), 119.9, 117.1 (Th($C_4H_4CCH_3$)₃), C, 46.45; H, 4.05. Found: C, 46.45; H, 4.17. *(f)* 6: ¹H NMR $(C_6D_6)^5 \delta 6.04$, $\text{Th}(C_5H_4CH_3)_3$; ¹³C(¹H) NMR (C_6D_6 , 65 °C) δ 209.1 (CO), 119.5, 116.6

⁽¹⁰⁾ Sternal, R. S.; Sabat, M.; Marks, T. J., unpublished results. This compound crystallizes in the orthorhombic space group $Fmmm$ with a $= 24.445$ (8) \AA , $b = 24.846$ (6) \AA , $c = 13.748$ (3) \AA , and $Z = 16$. Structure refinement is in progress, and a full report will be sumitted shortly.

importance of contributing isocarbonyl structures $(I)^{12}$ can

be immediately ruled out either in solution or in the solid state. Instead, the metal-metal bonded structure I1 is in good accord with ν_{CO} , diffraction,¹⁰ and NMR (vide infra) data for all compounds. Trends in the *vco* data indicate that the actinide fragments transfer an appreciable amount of electron density onto the $CpM(CO)$ ₂ groups. This trend is in accord with a relatively polar2 metal-metal bonding description. Comparisons of the $Cp'_2Th(X)Ru(Cp)(CO)_2$ data to those for **2** and **6** also reveal a substantial actinide ligation effect that is transmitted through the metal-metal bond: the Cp₃An fragment is less electron-withdrawing. In addition, the **1/3,2/4** data reveal a small but real actinide effect: thorium is more electron-withdrawing than uranium. That this effect is independent of transition metal argues that it is electronic rather than steric in origin. The $v_{\rm CO}$ data also reveal that $Cp'_2 \rm Th(X)$ - is slightly more electron-withdrawing than $\rm{Cp}_{2}Zr(X)$ -.¹³

Variable-temperature 'H NMR data for **1-6** (e.g., Figure **1)** are consistent with staggered conformations and hindered rotation about the metal-metal bonds in solution $(IIIa-c).¹⁴$ A simple two-site kinetic analysis appropriate

for unequal populations¹⁵ yields the activation parameters compiled in Table 11. Interestingly, the free energies of activation are rather insensitive to metal identity and hence to metal-metal distance. The barriers are comparable to those for alkyl group rotation in Cp_3AnR^{16} com-

(14) A process involving an isocarbonyl intermediate cannot be regi-orously excluded on the basis of these data.

(15) (a) Binsch, G. In *Dynamic Nuclear Magnetic Resonance Spectroscopy;* Jackmaq, L. M., Cotton, F. A., Eds.; Academic: New York, 1975; Chapter 3. (b) Shanan-Atidi, H.; Bar-Eli, K. H. J. *Phys. Chem.* 1970, *74,* 961-963 and references therein.

(16) Marks, T. J.; Seyam, A. M.; Kolb, J. R. J. *Am. Chem. SOC.* 1973, *95,* 5529-5539.

Table **11.** Kinetic Data for Dynamic Processes in Metal-Metal Bonded Organoactinides

compound	T_{c} ^c K	$\Delta \nu$, Hz	$\Delta G^*(T_c)^c$ kcal/mol
$\text{Cp}_3\text{ThFe}(\text{Cp})(\text{CO})_2$ (1)	278	91.66	13.5(7)
$Cp_3ThRu(Cp)(CO)_2(2)$	263	99.58	12.7(7)
$Cp_3UF_6(Cp)(CO)$, (3)	303	550.5	13.7(7)
$\text{Cp}_3\text{URu}(\text{Cp})(\text{CO})$ ₂ (4)	318	601.2	14.4(7)
$(MeC5H4)3ThFe(Cp)(CO)2$ (5)	238	36.92	11.9(7)
$(MeC5H4)3ThRu(Cp)(CO)2(6)$	238	30.33	12.0(7)

 a Coalescence temperature. b Frequency difference at slow exchange. ${}^{\circ}$ Average of ΔG^* 's for the two unequally populated sites.

plexes and for rotations about a number of other metalmetal single bonds.¹⁷

Preliminary experiments indicate that the present actinide-to-transition metal bonds react rapidly with polar reagents. Thus, alcoholysis is rapid and quantitative by NMR (eq 3) to yield the corresponding CpM(CO)₂H com-

$$
Cp_3Th-M(Cp)(CO)_2 + CF_3CH_2OH \xrightarrow[25 \text{°C}]{\text{blue}} Cp_3ThOCH_2CF_3 + CpM(CO)_2H
$$
 (3)
7

$$
M = Fe, Ru
$$

plexes18 (identified by NMR) and the known thorium alkoxide **7.19** More interestingly, complexes **1** and **2** react rapidly and quantitatively (by NMR) with acetone to yield the corresponding transition-metal hydrides (identified by NMR) and thorium enolate 8^{20} (eq 4).

These results expand the number of known systems with actinide-to-transition metal bonds and provide the first information on the transmission of actinide and actinide ligation characteristics through such bonds. Further work will focus on thermochemistry and unusual reactivity patterns.

Acknowledgment. We are grateful to NSF for support. of this research under Grant CHE8306255.

⁽¹¹⁾ Solutions for infrared spectroscopy were prepared in a glovebox using toluene distilled from Na/K alloy. Single-crystal NaCl cells were fitted with O-ring-sealed caps. Prior to spectroscopy, the cells, O-rings, **and** caps were dried under high vaccum at *60* "C for 12 h and then flushed with three fillings of sample solution. Without such precautions, hydrolysis of these extremely sensitive complexes occurs to produce the corresponding CpM(CO)₂H compound. Infrared solutions in ref 1a were corresponding CpM(CO)₂H compound. Infrared solutions in ref 1a were contaminated with this byproduct.

^{(12) (}a) Darensbourg, M. Y. *hog. Inorg. Chem.* 1985,33,221-274. (b) Dormand, A.; Moise, C. *Polhedron* 1985, 4, 595–598. (c) Fagan, P. J.;
Mintz, E. A.; Marks, T. J., unpublished results on Cp₂U[Mo(Cp(CO)₃]₂ quoted in: Marks, T. J.; Ernst, R. D. In Comprehensive Organometallic
Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E., Eds.; Pergamon:
Oxford, 1982; Vol. 3, p 261. (d) Horwitz, C. P.; Shriver, D. F. Adv.
Organomet. Che A. *Inorg. Chem.* 1984, 23, 432–437 and references therein. (f) Merola, J. S.; Campo, K. S.; Gentile, R. A.; Modrick, M. A.; Zentz, S. *Organometallics* 1984, 3, 334–337 and references therein. (1) Organometallics 1984, 3,

⁽¹⁷⁾ Adams, R. D.; Cotton, F. A. in ref 15a, Chapter 12.

⁽¹⁸⁾ Davison, A.; McCleverty, J. A.; Wilkinson, G. J. *Chem. SOC.* **1963,**

⁽¹⁹⁾ Sonnenberger, D. C.; Morss, L. R.; Marks, T. J. *Organometallics* 1133-1138. **19AFi 19AFi 10**
1985, 4, 352-355. (20) (a) 8: ¹H NMR (C₆D₆) δ **6.15 (s, 15 H, Cp₃Th), 4.09 (s, 1 H, CH₂),**

^{3.95 (}s, 1 H, CH₂), 1.74 (s, 3 H, CH₃), ¹³C NMR (C₆D₉) δ 165.4 (s, CO),
117.9 (d, J_{C-H} = 166 Hz, Cp₃Th), 86.97 (t, J_{C-H} = 156 Hz, CH₂), 22.62 (q,
J_{C-H} = 128 Hz, CH₃); IR (Nujol, ν_{CO} , cm⁻¹ ment) 484 (21, $Cp_3ThOC(CH_2)(CH_3)^+$), 427 (15, Cp_3Th^+), 419 (100, CpThO⁺). Anal. Calcd for $C_{18}H_{20}$ OTh: C, 44.63; H, 4.16. Found: C, 44.64; H, 4.09. (b) Such complexes have previously been prepared by carbonylation routes: Sonnenberger, D. C.; Mintz, E. A.; Marks, T. J. J. *Am. Chem. SOC.* 1984, *106,* 3484-3491. $\rm Cp_2Th\text{-}OC(CH_2)(\rm CH_3)$), 377 (19, $\rm Cp_2ThCH_3^+$), 362 (20, $\rm \check{C}p_2Th^+$), 313 (85,