Ln-N distance favors C over A as being the most important contributor. A similar structure is favored for  $(C_5H_5)_3U[\eta^2-C(Me)=N(C_6H_{11})]$ .<sup>35</sup>

## Conclusion

To the extent that CO and isocyanides are similar, these formimidoyl complexes can be viewed as model complexes for the unstable formyl intermediates formed in reductions of CO by metal hydrides.<sup>32,65</sup> The special  $\mu,\eta^2$  nature of the formimidoyl ligands in these complexes precludes assignment of the reaction as a 1,1- or 1,2-metal hydride addition to the C–N bond in CNCMe<sub>3</sub>. However, the structures demonstrate yet another type of coordination mode for reduced ligands of this type.

The coordination geometry found in these  $\mu, \eta^2$ -N-alkylformimidoyl complexes demonstrates that multiply bonded oxygen-free organic units can  $\eta^2$ -coordinate to lanthanide metals as well as to yttrium. These complexes provide yet another example of the close parallel between the chemistry of yttrium and that of the late lanthanide elements of similar radial size. Moreover, this similarity was demonstrated in a system which had considerable potential to show differences. Finally, the presence of both staggered and nearly eclipsed arrangements of cyclopentadienyl rings in 4A and 4B indicates that minor crystal packing effects can influence the relative orientations of cyclopentadienyl rings in complexes of this type.

Acknowledgment. For support of this research, we thank the Division of Basic Energy Sciences of the Department of Energy (W.J.E., J.H.M.) and the National Science Foundation (J.L.A., W.E.H.). We also thank the Camille and Henry Dreyfus Foundation for a Teacher-Scholar Grant (to W.J.E.), and the Alfred P. Sloan Foundation for a research fellowship (to W.J.E.). We thank Professor R. J. Doedens for help with the erbium structure.

**Registry No.** 1, 86528-30-5; 2, 86528-32-7; 3, 86528-31-6; 4, 105834-48-8;  $[(C_5H_5)_2Y(\mu-H)(THF)]_2$ , 80642-73-5;  $[(C_5H_5)_2Y(\mu-D)(THF)]_2$ , 80642-74-6;  $[(CH_3C_5H_4)_2Y(\mu-H)(THF)]_2$ , 80658-44-2;  $[(C_5H_5)_2Er(\mu-H)(THF)]_2$ , 80642-71-3; Me<sub>3</sub>CNC, 7188-38-7.

Supplementary Material Available: Tables of thermal parameters for 1 and 4 (2 pages); listings of structure factor amplitudes for 1 and 4 (30 pages). Ordering information is given on any current masthead page.

# Synthesis, Crystal Structure, and Stereoisomerism of the Alkylidene Complex $(\eta^{5}-C_{5}H_{5})WOs_{3}(CO)_{9}(\mu-O)(\mu-CI)(\mu-CHCH_{2}ToI)$ and Related Complexes

Yun Chi and John R. Shapley\*

Department of Chemistry, University of Illinois, Urbana, Illinois 61801

Joseph W. Ziller and Melvyn Rowen Churchill\*

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14214

Received June 3, 1986

The reaction of CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu_3$ -CCH<sub>2</sub>Tol) (1) with HCl or BCl<sub>3</sub>/H<sub>2</sub>O at ambient temperatures generates the alkylidene complex CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ -Cl)( $\mu$ -CHCH<sub>2</sub>Tol) (3, isomer b) isolated in 65–90% yield. Complex 3b crystallizes in the triclinic space groups  $P\bar{1}$  with a = 9.2724 (32) Å, b = 11.3130 (43) Å, c = 14.0040 (62) Å,  $\alpha = 69.790$  (31)°,  $\beta = 77.236$  (30)°,  $\gamma = 83.700$  (20)°, V = 1343.6 (9) Å<sup>3</sup>, and Z = 2. Convergence of the structure solution was reached with  $R_F = 3.7\%$  for all 3526 unique data ( $R_F = 3.1\%$  for those 3085 data with  $|F_0| > 6\sigma(|F_0|)$ . The metal atoms adopt the "butterfly" configuration typical of 62-electron clusters, with the chlorine atom bridging the wing-tip osmium atoms (Os(1)–Cl = 2.488 (3) Å, Os(3)–Cl = 2.463 (3) Å; Os(1)–Cl–Os(2) = 98.4 (1)°). Three carbonyl groups are bound to each Os atom, while the Cp ligand is bound to W. The oxygen atom is involved in a W=O:→Os bridge, with W=O(1) = 1.786(9) Å, Os(3)–O(1) = 2.126 (8) Å, and <W-O(1)–Os(3) = 99.2 (4)°. The  $\mu$ -alkylidene moiety bridges W and Os(1), with W–C(1) = 2.064 (11) Å, Os(1)–C(1) = 2.196 (11) Å, and <W-C(1)–Os(3) face. Pyrolysis of 3b in refluxing toluene generates an isomeric alkylidene complex 3c isolated in 71% yield and characterized spectroscopically. Treatment of 1 with HBr or HSPh generates analogous alkylidene compounds CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ -X)( $\mu$ -CHCH<sub>2</sub>Tol) (X = Br (4) or SPh (5)); in these cases both stereoisomers are obtained directly. The substitution of a carbonyl ligand in 3b by <sup>13</sup>CO or PPh<sub>2</sub>Me is shown to be stereoselective; activation by both the bridging oxo and the bridging chloro ligands is proposed.

### Introduction

Treatment of the oxo-alkylidyne complex CpWOs<sub>3</sub>-(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ <sub>3</sub>-CCH<sub>2</sub>Tol) (1) with hydrogen gas provides the oxo-alkylidene complex CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ -H)( $\mu$ -CHCH<sub>2</sub>Tol) (2).<sup>1,2</sup> The crystal structure of one form of 2 ( $\equiv$  2a) has been determined,<sup>3</sup> but in solution it coexists with a second isomer ( $\equiv$  2b).<sup>2</sup> Pyrolysis of 2 in refluxing xylenes gives yet a third isomer ( $\equiv$  2c).<sup>4</sup> As part of our further study of the reactivity of 1, we have examined its reactions with certain HX reagents (HCl, HBr, and HSPh) and have found that alkylidene complexes CpWOs<sub>3</sub>-(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ -X)( $\mu$ -CHCH<sub>2</sub>Tol) (X = Cl (3), Br (4), or SPh

Shapley, J. R.; Park, J. T.; Churchill, M. R.; Ziller, J. W.; Beanan, L. R. J. Am. Chem. Soc. 1984, 106, 1144.

<sup>(2)</sup> Park, J. T. PhD. Thesis., University of Illinois at Urbana-Champaign, 1983.

<sup>(3)</sup> Churchill, M. R.; Li, Y. C. J. Organomet. Chem. 1985, 291, 61.
(4) Chi, Y.; Shapley, J. R., unpublished results.

(5)) are formed. Furthermore, these complexes show two isomers, represented by analogous forms **b** and **c**. This paper reports the synthesis and spectroscopic characterization of compounds 3-5, the crystal structure of 3b, and aspects of the reactivity of 3b.



#### **Experimental Section**

General Comments. All reactions were carried out under an atmosphere of nitrogen or argon in oven-dried glassware. Solvents were dried and distilled before use, toluene from molten sodium and dichloromethane from phosphorus pentoxide. The progress of the reactions was monitored by analytical thin-layer chromatography (Silica Gel TLC plates, Eastman). Preparative thin-layer plates were prepared from Silica Gel G (Type 60, E. Merck). Deuterium chloride was generated from the hydrolysis of boron trichloride in a dichloromethane solution of deuterium oxide. CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ <sub>3</sub>-CCH<sub>2</sub>Tol) (1) was prepared by the procedure described previously.<sup>1</sup> Carbon-13 enriched 1 was prepared analogously; note that the alkylidyne carbon as well as the carbonyl carbons are enriched.

Infrared spectra were obtained on a Perkin-Elmer 281B spectrophotometer. Both <sup>1</sup>H NMR (360 MHz) and <sup>13</sup>C NMR (90.4 MHz) were recorded on a Nicolet NT-360 spectrometer. Mass spectra were recorded by the staff of the Mass Spectroscopy Laboratory of the School of Chemical Sciences at the University of Illinois by using a Varian MAT-731 (field desorption) or VG-ZAB (fast atom bombardment) mass spectrometer. All m/z values are referenced to <sup>184</sup>W and <sup>192</sup>Os. Microanalytical data were provided by the Microanalysis Laboratory of the School of Chemical Sciences at the University of Illinois.

Synthesis of CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ -Cl)( $\mu$ -CHCH<sub>2</sub>Tol) (3b) with BCl<sub>3</sub>. A partial vacuum was drawn over a dichloromethane solution (12 mL) of CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ <sub>3</sub>-CCH<sub>2</sub>Tol) (24 mg, 0.02 mmol) in a round-bottom flask, and the flask was charged with boron trichloride (Linde) to a pressure of 1 atm. The solution was then stirred at room temperature for 5 min. The solvent was evaporated in vacuo, the residue was dissolved in dichloromethane, and the solution was washed with distilled water to remove BCl<sub>3</sub>. Purification by preparative TLC (pentane-dichloromethane, 1:1) followed by crystallization from pentane-dichloromethane provided 3b (20 mg, 0.016 mmol, 89%) as an orange-red solid. Some starting material (2 mg, 0.0017 mmol) was also recovered. The <sup>13</sup>C-enriched complex was prepared from <sup>13</sup>C-enriched 1 with BCl<sub>3</sub> in a similar manner. Crystals suitable for X-ray diffraction were grown from a layered solution of dichloromethane-hexane at room temperature.

Synthesis of CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ -Cl)( $\mu$ -CHCH<sub>2</sub>Tol) (3b) with HCl. In a 200-mL pressure bottle capped with a neoprene stopcock, a toluene solution (10 mL) of 1 (7 mg, 0.0058 mmol) was stirred under 1 atm of a mixture of HCl and N<sub>2</sub> (about 1:5) for 1 h at room temperature; the solution color changed to orange. Evaporation of the volatiles, purification by preparative TLC, and subsequent crystallization provided **3b** (4.8 mg, 0.0039 mmol, 67%).

**3b**: FD mass spectrum, m/z 1246 (M<sup>+</sup>); IR (C<sub>6</sub>H<sub>12</sub>)  $\nu$ (CO) 2090 (s), 2064 (vs), 2030 (vs), 2008 (s), 1997 (s), 1987 (s), 1970 (vw), 1956 (w), 1942 (m) cm<sup>-1</sup>; <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 18 °C)  $\delta$  7.30 (d) + 7.22 (d) (4 H, <sup>3</sup>J = 7 Hz, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>), 6.33 (1 H, dd, <sup>3</sup>J = 5.5 and 9.0 Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 6.13 (5 H, s, C<sub>5</sub>H<sub>4</sub>), 4.49 (1 H, dd, <sup>2</sup>J = 14.3 Hz, <sup>3</sup>J = 5.5 Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 4.01 (1 H, dd, <sup>2</sup>J = 14.3, <sup>3</sup>J = 9.0 Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 2.38 (3 H, s, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 18 °C)  $\delta$  139.5, 186.7, 186.3, 183.3, 182.1, 175.7, 175.1, 174.4, 173.1; <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 18 °C)  $\delta$  135.8 (<sup>1</sup>J<sub>C-H</sub> = 130 Hz, <sup>1</sup>J<sub>C-W</sub> = 100 Hz,  $\mu$ -CHCH<sub>2</sub>Tol). Anal. Calcd for WOs<sub>3</sub>C<sub>23</sub>H<sub>15</sub>O<sub>10</sub>Cl: C, 22.54; H, 1.22; Cl, 2.86. Found: C, 22.33; H, 1.19; Cl, 3.12.

Synthesis of CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ -Cl)( $\mu$ -CDCH<sub>2</sub>Tol) (3bd) with BCl<sub>3</sub>/D<sub>2</sub>O. To a dichloromethane (30 mL) solution of 1 (30 mg, 0.0249 mmol) in a 50-mL reaction flask was added 0.25 mL of D<sub>2</sub>O. After a partial vacuum was drawn, the flask was then charged to 1 atm with BCl<sub>3</sub>. After the solution was stirred for 5 min at room temperature, the volatiles were evaporated in vacuo, and the residue was handled as described above, giving deuterium-labeled CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ -Cl)( $\mu$ -CDCH<sub>2</sub>Tol) (19 mg, 0.0153 mmol, 61%) as well as some unreacted starting material. The deuterium atom enrichment, as estimated by <sup>1</sup>H NMR integration, was about 90%.

Synthesis of CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -Cl)( $\mu$ -CHCH<sub>2</sub>Tol) (3c). A toluene solution (25 mL) containing 3b (68 mg, 0.055 mmol) was heated under reflux for 1 h. After evaporation of the solvent, the mixture was purified by preparative TLC (pentane-dichloromethane, 1:1) to provide 3c (48 mg, 0.039 mmol, 71%) as an orange-red viscous oil, which could not be crystallized. <sup>13</sup>CO enriched 3c and 3c-d were prepared analogously; in the latter case there was no loss or scrambling of the label (by <sup>1</sup>H NMR).

3c: FD mass spectrum, m/z 1246 (M<sup>+</sup>), 1208 (M<sup>+</sup> – CO); IR (C<sub>6</sub>H<sub>12</sub>)  $\nu$ (CO), 2090 (s), 2064 (vs), 2030 (vs), 2008 (s), 1997 (s), 1987 (s), 1970 (vw), 1956 (w), 1942 (m) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 18 °C)  $\delta$  7.49 (d) + 7.34 (d) (4 H, <sup>3</sup>J = 7 Hz, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>), 6.81 (1 H, dd, <sup>3</sup>J = 11.3 and 5.7 Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 5.63 (5 H, s, C<sub>5</sub>H<sub>5</sub>), 5.22 ( $\mu$ -CHCH<sub>2</sub>Tol, 1 H, dd, <sup>2</sup>J = 12.9, <sup>3</sup>J = 5.7 Hz), 3.87 (1 H, tr,  $J \approx 12$  Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 2.48 (3 H, s, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 18 °C) Os-CO,  $\delta$  189.0, 187.1, 185.0, 183.6, 183.3, 175.0, 174.9, 173.4, 172.6; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 18 °C)  $\delta$  133.5 (<sup>1</sup>J<sub>C-H</sub> = 140 Hz, <sup>1</sup>J<sub>C-W</sub> = 100 Hz,  $\mu$ -CHCH<sub>2</sub>Tol). Anal. Calcd. for WOs<sub>3</sub>C<sub>23</sub>H<sub>15</sub>O<sub>10</sub>Cl: C, 22.54; H, 1.22. Found: C, 23.14; H, 1.58

Synthesis of  $CpWOs_3(CO)_9(\mu-O)(\mu-Br)(\mu-CHCH_2Tol)$  (4b and 4c). A toluene solution (15 mL) of 1 (20.8 mg, 0.017 mmol) was stirred under 1 atm of HBr gas for 1.5 h, until the color changed to orange. Orange 4b (4.7 mg, 0.0037 mmol, 21%) and the corresponding 4c (2.4 mg, 0.0019 mmol, 11%) were obtained following purification of the reaction mixture residues by preparative TLC. The analytically pure solid of 4b was crystallized from dichloromethane-pentane at room temperature. All attempts to crystallize 4c failed.

**4b**: FD mass spectrum, m/z 1290 (M<sup>+</sup>); IR (C<sub>6</sub>H<sub>12</sub>)  $\nu$ (CO), 2090 (s), 2064 (vs), 2030 (vs), 2005 (s), 1987 (s), 1970 (vw), 1956 (w), 1942 (w) cm<sup>-1</sup>; <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 18 °C)  $\delta$  7.30 (d) + 7.21 (d) (4 H, <sup>3</sup>J = 7 Hz, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>), 6.53 (1 H, tr,  $J \approx 8$  Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 6.05 (5 H, s, C<sub>5</sub>H<sub>5</sub>), 4.47 (1 H, dd, <sup>3</sup>J = 6.8, <sup>2</sup>J<sub>H-H</sub> = 14.8 Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 4.13 (1 H, dd, <sup>3</sup>J = 8.4, <sup>2</sup>J = 14.8 Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 2.37 (3 H, s, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>). Anal. Calcd. for WOs<sub>3</sub>C<sub>23</sub>H<sub>15</sub>O<sub>10</sub>Br: C, 21.48; H, 1.18. Found: C, 21.58; H, 1.24.

4c: FD mass spectrum, m/z 1290 (M<sup>+</sup>), 1262 (M<sup>+</sup> - CO); IR (C<sub>6</sub>H<sub>12</sub>)  $\nu$ (CO), 2090 (s), 2064 (vs), 2030 (vs), 2005 (s), 1987 (s), 1970 (vw), 1956 (w), 1942 (w) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 18 °C)  $\delta$ 7.47 (d) + 7.32 (d) (4 H, J = 7 Hz, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>), 5.56 (5 H, s, C<sub>5</sub>H<sub>5</sub>), 6.77 (1 H, dd, <sup>3</sup>J = 5.6 and 11.3 Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 5.13 (1 H, dd, <sup>3</sup>J = 5.6, <sup>2</sup>J = 12.9 Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 3.96 (1 H, tr,  $J \approx 12$  Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 2.45 (3 H, s, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>).

Synthesis of CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ -SPh)( $\mu$ -CHCH<sub>2</sub>Tol) (5b and 5c). A toluene solution (18 mL) of 1 (44.0 mg, 0.0365 mmol) and excess thiophenol (Aldrich, 30  $\mu$ L, 0.29 mmol) was heated under reflux. Over a period of 15 min, the color of solution slowly turned from red-brown to red-orange. After evaporation of the solvent and excess thiophenol in vacuo, the mixture was separated by preparative TLC (pentane-dichloromethane, 4:3), providing orange-red 5b (28.2 mg, 0.0214 mmol, 59%) and 5c (10.5 mg, 0.0078 mmol, 22%). The crystalline solids of 5b and 5c were obtained from dichloromethane-pentane and dichloromethanemethanol, respectively. The <sup>13</sup>CO-enriched samples were prepared in a similar manner.

**5b**: FD mass spectrum m/z 1320 (M<sup>+</sup>); IR (C<sub>6</sub>H<sub>12</sub>)  $\nu$ (CO), 2081 (s), 2056 (vs), 2026 (vs), 2006 (s), 2000 (m), 1985 (s), 1963 (vw), 1955 (m), 1948 (s) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 18 °C)  $\delta$  7.31 (d) + 7.00 (d) (4 H, J = 7 Hz, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>), 7.00 (m) + 6.70 (d) (5 H, J = 7Hz, SC<sub>6</sub>H<sub>5</sub>), 6.04 (5 H, s, C<sub>5</sub>H<sub>5</sub>), 5.62 (1 H, tr,  $J \approx 7$  Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 4.24 (1 H, dd, <sup>2</sup>J = 14.8, <sup>3</sup>J = 6.9 Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 3.98 (1 H, dd, <sup>2</sup>J = 14.8, <sup>3</sup>J = 7.9 Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 2.34 (3 H, s, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 18 °C) Os-CO,  $\delta$  186.6, 186.1, 186.0, 181.2, 179.6, 179.3, 176.3, 173.1, 172.5; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 18 °C)  $\delta$  133.8 (<sup>1</sup>J<sub>C-H</sub> = 127 Hz, <sup>1</sup>J<sub>C-W</sub> = 96 Hz,  $\mu$ -CHCH<sub>2</sub>Tol). Anal. Calcd. for WOs<sub>3</sub>C<sub>29</sub>H<sub>20</sub>O<sub>10</sub>S: C, 26.49; H, 1.53. Found: C, 26.52; H, 1.54.

5c: FD mass spectrum, m/z 1320 (M<sup>+</sup>), 1292 (M<sup>+</sup> – CO); IR  $(C_6H_{12} \nu(CO), 2081 \text{ (s)}, 2057 \text{ (vs)}, 2026 \text{ (vs)}, 2008 \text{ (s)}, 1999 \text{ (m)},$ 1990 (s), 1968 (vw), 1957 (m), 1940 (s) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 18 °C)  $\delta$  7.34 (d) + 7.15 (d) (4 H, J = 7 Hz, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>), 7.34-7.15 (5 H, m, SC<sub>6</sub>H<sub>5</sub>), 6.63 (1 H, dd,  ${}^{3}J$  = 11.6 and 5.8 Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 5.57 (5 H, s, C<sub>5</sub>H<sub>5</sub>), 4.65 (1 H, dd,  ${}^{2}J$  = 12.8,  ${}^{3}J_{H-H}$  = 5.8 Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 3.65 (1 H, tr,  $J \approx 12$  Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 2.45 (3 H, s, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 18 °C) Os-CO, δ 187.8, 185.6 (2C), 182.7, 180.3, 179.2, 175.7, 173.5, 173.2; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 18 °C)  $\delta$  133.3 (<sup>1</sup>J<sub>C-H</sub> = 138 Hz, <sup>1</sup>J<sub>C-W</sub> = 103 Hz,  $\mu$ -CHCH<sub>2</sub>Tol). Anal. Calcd. for WOs<sub>3</sub>C<sub>29</sub>H<sub>20</sub>O<sub>10</sub>S: C, 26.49; H, 1.53. Found: C, 26.13; H, 1.54.

Reaction of  $CpWOs_3(CO)_9(\mu-O)(\mu-Cl)(\mu-CHCH_2Tol)$  (3b) with PPh<sub>2</sub>Me. A toluene solution (15 mL) of 3b (37 mg, 0.03 mmol) and a large excess of  $PPh_2Me$  (65  $\mu$ L, 0.32 mmol) was heated under reflux for 5 min. After evaporation of the solvent, the mixture was separated by preparative TLC (pentane-dichloromethane, 4:3) to provide  $CpWOs_3(CO)_8(PPh_2Me)(\mu-O)(\mu-O)(\mu-O)$  $Cl)(\mu$ -CHCH<sub>2</sub>Tol) (30.5 mg, 0.022 mmol, 71%) as an orange-red viscous oil. A crystalline solid was obtained from dichloromethane-pentane at room temperature. The <sup>13</sup>CO-enriched sample was prepared analogously.

FAB mass spectrum: m/z 1418 (M<sup>+</sup>). IR (C<sub>6</sub>H<sub>12</sub>):  $\nu$ (CO), 2064 (s), 2030 (vs), 2000 (m), 1983 (vs), 1966 (s), 1941 (w), 1931 (w) cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 18 °C):  $\delta$  7.54 (10 H, s, br, 2PC<sub>6</sub>H<sub>5</sub>), 7.30 (d) + 7.22 (d) (4 H, J = 7 Hz,  $C_6H_4CH_3$ ), 6.04 (5 H, s,  $C_5H_5$ ), 5.95 (1 H, tr,  $J \approx 7$  Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 4.38 (1 H, dd,  ${}^{2}J = 15.0$ ,  ${}^{3}J = 6.7$  Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 4.19 (1 H, dd,  ${}^{2}J = 15.0$ ,  ${}^{3}J = 8.1$  Hz,  $\mu$ -CHCH<sub>2</sub>Tol), 2.39 (3 H, s, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>), 2.09 (3 H, d,  ${}^{2}J_{P-H} = 9.4$  Hz, PCH<sub>3</sub>).  ${}^{13}$ C NMR (CDCl<sub>3</sub>, 18 °C): Os-CO,  $\delta$  1895, 1873, 204 (2007). 184.1, 183.7, 182.9, 179.8, 174.9; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 18 °C) δ 131.8  $({}^{1}J_{C-W} = 94 \text{ Hz}, {}^{1}J_{C-H} = 128 \text{ Hz}, \mu\text{-CHCH}_{2}\text{Tol})$ . Anal. Calcd. for WOs<sub>3</sub>C<sub>35</sub>H<sub>28</sub>O<sub>9</sub>PCl: C, 29.73; H, 2.00; Cl, 2.51. Found: C, 29.47; H, 1.89; Cl, 3.06.

Collection of X-ray Diffraction Data for CpWOs<sub>3</sub>(CO)<sub>9</sub>- $(\mu$ -O) $(\mu$ -Cl) $(\mu$ -CHCH<sub>2</sub>Tol) (3b). A dard red crystal of approximate dimensions  $0.2 \times 0.2 \times 0.4$  mm was sealed in a glass capillary under saturated dichloromethane vapor at low temperature. It was aligned accurately on the Syntex P21 automated diffractometer at SUNY-Buffalo. Subsequent setup operations (determination of accurate unit cell dimensions and orientation matrix) and collection of the intensity data were carried out by the previously described techniques of this laboratory<sup>5</sup>; details appear in Table I. The diffraction symmetry is I and there are no systematic absences. The crystal belongs to the triclinic system; with Z = 2, it was assigned the centrosymmetric space group  $P\overline{1}$  $(C^{12}; No. 2)$ . Successful solution of the structure under this space group proves it to be the correct choice.

All data were corrected for the effects of absorption and for Lorentz and polarization effects, were converted to unscaled  $|F_0|$ values, and were placed on an approximately absolute scale by means of a Wilson plot. Any reflection with I(net) < 0 was assigned the value  $|F_o| = 0$ . No datum was rejected.

Solution and Refinement of the Structure. The structure was solved by using G. M. Sheldrick's SHELX 76 programs on the CDC Cyber 173 computer at SUNY-Buffalo. The positions of the metal atoms were obtained by using the multisolution tangent formula with hand-selected starting phases. A single difference-Fourier synthesis revealed the positions of all remaining non-hydrogen atoms. All subsequent calculations were performed with our locally modified version of the Syntex XTL interactive crystallographic program package. The function minimized during full-matrix least-squares refinement was  $\sum w(|F_0| - |F_c|)^2$ , where 1/w=  $[\sigma(|F_o|)]^2$  +  $[0.015|F_o|]^2$ . Hydrogen atoms were included in calculated positions on the basis of the appropriate idealized geometry, with d(C-H) = 0.95 Å. Refinement of positional and anisotropic thermal parameters for all non-hydrogen atoms led to convergence<sup>6</sup> with  $R_F = 3.7\%$ ,  $R_{wF} = 4.0\%$ , and GOF = 1.78

Table I. Experimental Data for the X-ray Diffraction Study of CpWOs<sub>3</sub>(CO)<sub>9</sub>(µ-O)(µ-Cl)(µ-CHCH<sub>2</sub>Tol)

|                   | (A) Unit                              | t Cell Data                                                                  |
|-------------------|---------------------------------------|------------------------------------------------------------------------------|
| a = 9.2724        | (32) Å                                | crystal system: triclinic                                                    |
| b = 11.313        | 30 (43) Å                             | space group: $P\overline{1}$ ( $C_i^1$ ; No. 2)                              |
| c = 14.004        | 0 (62) Å                              | $\hat{Z} = 2$                                                                |
| $\alpha = 69.790$ | ) (31)°                               | formula: C <sub>23</sub> H <sub>15</sub> O <sub>10</sub> ClOs <sub>3</sub> W |
| $\beta = 77.236$  | 3 (30)°                               | mol wt 1241.27                                                               |
| $\gamma = 83.70$  | ) (29)°                               | $D(calcd) = 3.07 \text{ g cm}^{-3}$                                          |
| V = 1343.         | 6 (9) Å <sup>3</sup>                  | $T = 21 \ ^{\circ}C \ (274 \ \text{K})$                                      |
| (B)               | Collection of X                       | -ray Diffraction Data                                                        |
| diffractometer    | Syntex $P2_1$                         |                                                                              |
| radiation         | Mo K $\alpha$ ( $\bar{\lambda} = 0$   | .710 730 Å)                                                                  |
| monochromator     | highly oriented                       | d (pyrolytic) graphite; equatorial                                           |
|                   | mode with 2                           | $2\theta(m) = 12.160^\circ$ ; assumed to be                                  |
|                   | 50% perfect                           | t/50% ideally mosaic for                                                     |
|                   | polarization                          | correction                                                                   |
| reflctns measd    | $+h$ , $\pm k$ , $\pm l$ for          | $2\theta = 4.5 - 45.0^{\circ}; 3786 \text{ total},$                          |
|                   | merged to 3                           | 526 symmetry-independent data                                                |
|                   | (file name V                          | VOSB-190)                                                                    |
| scan type         | coupled $\theta$ (crys                | $tal)-2\theta(counter)$                                                      |
| scan width        | $[2\theta(\mathrm{K}\alpha_1) - 0.9]$ | $]^{\circ} \rightarrow [2\theta(K\alpha_2) + 0.9]^{\circ}$                   |
| scan speed        | $4.0 \text{ deg min}^{-1}$            | $(in 2\theta)$                                                               |
| std reflctns      | three collected                       | l after each batch of 97                                                     |
|                   | reflections;<br>observed              | no significant fluctuations                                                  |
| abs correctn      | $\mu(Mo K\alpha) = 1$                 | 96.5 cm <sup>-1</sup> ; corrected empirically                                |
|                   | by interpola<br>scans of close        | tion (in $2\theta$ and $\phi$ ) between $\psi$                               |
|                   | 500                                   |                                                                              |

for 343 varibles refined against all 3526 unique data, none rejected. Residuals for those 3283 reflections with  $|F_0| > 3\sigma(|F_0|)$  were  $R_F$ = 3.4%,  $R_{wF}$  = 4.0% and for those 3085 reflections with  $|F_0| >$  $6\sigma(|F_0|), R_F = 3.1\%, R_{wF} = 3.8\%.$ 

Calculated structure factors were based upon the analytical expression for the neutral atoms' form factors; both the real  $(\Delta f')$ and imaginary  $(i\Delta f'')$  components of anomalous dispersion were included for all non-hydrogen atoms.<sup>7</sup> An extinction correction was applied. Analysis of the function  $\sum w(|F_0| - |F_c|)^2$  showed no unusual trends as a function of Miller indices,  $|F_0|$ ,  $(\sin \theta)/\lambda$ , or sequence number. A final difference-Fourier synthesis was featureless. Final positional parameters are collected in Table II.

#### **Results and Discussion**

Synthesis and Identification of the Alkylidene Complexes. Treatment of the oxo-alkylidyne compound 1 with gaseous HCl at ambient temperature produces an oxo-chloro-alkylidene compound  $CpWOs_3(CO)_9(\mu-O)(\mu-O)$ Cl)( $\mu$ -CHCH<sub>2</sub>Tol) (**3b**) isolated in 65–70% yield. The same compound is generated in somewhat higher isolated yield (ca. 90%) from the reaction of 1 with gaseous  $BCl_3$  and then hydrolysis with water. Pyrolysis of 3b in refluxing toluene provides a second chloro-alkylidene compound, 3c. The solution IR spectra in the region of  $\nu(CO)$  absorptions are identical for both 3c and 3b, within the accuracy of the measurement.

The analogous reaction of 1 with HBr, however, provides both isomers of  $CpWOs_3(CO)_9(\mu-O)(\mu-Br)(\mu-CHCH_2Tol)$ (4b and 4c) directly. Again, the IR  $\nu$ (CO) spectra of 4b and 4c are indistinguishable as well as being very close to those of **3b** and **3c**. It is noteworthy that even though the respective sets of isomers have identical IR  $\nu(CO)$  spectra, they are easily separated by thin-layer chromatography. This procedure appears to give reasonably pure compounds, but neither 3c or 4c could be induced to crystallize.

Finally, the reaction of 1 with thiophenol (at 110 °C) also gives two isomers of the phenylthio derivative CpWOs<sub>3</sub>- $(CO)_9(\mu-O)(\mu-SPh)(\mu-CHCH_2Tol)$  (5b and 5c). The IR

<sup>(5)</sup> Churchill, M. R.; Lashewycz, R. A.; Rotella, F. J. Inorg. Chem.

<sup>(</sup>b) Churchill, M. K., Lashewycz, K. A., Rotena, F. S. *Thorg. Chem.*  **1977**, *16*, 265. (6)  $R_{\rm F}(\%) = 100 \sum ||F_0| - |F_c|| / \sum |F_0|; R_{\rm WF} = 100 [\sum w(|F_0| - |F_c|)^2 / \sum w|F_0|^2]^{1/2}$ ; GOF =  $[\sum w(|F_0| - |F_c|)^2 / (NO - NV)]^{1/2}$ , where NO = number of observations and NV = number of variables.

<sup>(7)</sup> International Tables for X-Ray Crystallography; Kynoch: Birmingham, England, 1974; Vol. 4, pp 99-101, 149-150.

Table II. Final Parameters for  $CpWOs_3(CO)_9(\mu-O)(\mu-Cl)(\mu-CHCH_2Tol)$ 

|               | 001003(00    | )g(# 0)(# 01)(# | 002,          |                   |
|---------------|--------------|-----------------|---------------|-------------------|
| atom          | x            | У               | z             | B, Å <sup>2</sup> |
| W             | 0.06839 (4)  | 0.15272 (4)     | 0.30250 (3)   |                   |
| Os(1)         | 0.33001(4)   | 0.27109(4)      | 0.29911(3)    |                   |
| Os(2)         | 0.25451(5)   | 0.23700(5)      | 0.12284(3)    |                   |
| <b>Os</b> (3) | 0.30382(5)   | -0.02490(5)     | 0.24181(4)    |                   |
| Cl            | 0.42595 (31) | 0.04844 (29)    | 0.34943 (23)  |                   |
| O(1)          | 0.10897 (78) | -0.01275 (74)   | 0.35191 (57)  |                   |
| 0(11)         | 0.2092(12)   | 0.5391(10)      | 0.24474(81)   |                   |
| O(12)         | 0.4869 (10)  | 0.2757(10)      | 0.46846 (83)  |                   |
| O(13)         | 0.6020(10)   | 0.3685(11)      | 0.12829 (79)  |                   |
| O(21)         | 0.1469 (12)  | 0.5112(11)      | 0.04414 (87)  |                   |
| O(22)         | 0.5435(11)   | 0.2643(13)      | -0.03550 (80) |                   |
| O(23)         | 0.0791 (13)  | 0.1745(13)      | -0.01040 (82) |                   |
| O(31)         | 0.3545(12)   | -0.3031(10)     | 0.36812(86)   |                   |
| O(32)         | 0.1431(12)   | -0.1039(12)     | 0.11050 (82)  |                   |
| O(33)         | 0.5929(11)   | -0.0158 (11)    | 0.09098 (82)  |                   |
| C(11)         | 0.2519 (14)  | 0.4379 (13)     | 0.26477 (92)  |                   |
| C(12)         | 0.4215(12)   | 0.2801(10)      | 0.40497 (93)  |                   |
| C(13)         | 0.4998 (14)  | 0.3226(13)      | 0.1890 (10)   |                   |
| C(21)         | 0.1949(15)   | 0.4087(16)      | 0.0720(10)    |                   |
| C(22)         | 0.4391(17)   | 0.2548(15)      | 0.0247(10)    |                   |
| C(23)         | 0.1520(15)   | 0.2002(13)      | 0.0387 (10)   |                   |
| C(31)         | 0.3359 (13)  | -0.1999 (16)    | 0.3228(11)    |                   |
| C(32)         | 0.2032(14)   | -0.0694(15)     | 0.1596 (11)   |                   |
| C(33)         | 0.4826(16)   | -0.0145 (13)    | 0.1453(10)    |                   |
| C(1)          | 0.1258(11)   | 0.2096(11)      | 0.41376 (84)  |                   |
| C(2)          | 0.0436(12)   | 0.3008 (12)     | 0.47007 (92)  |                   |
| C(3)          | 0.1189(11)   | 0.3238(11)      | 0.54690 (82)  |                   |
| C(4)          | 0.1946 (13)  | 0.4333(11)      | 0.52103(91)   |                   |
| Č(5)          | 0.2653(14)   | 0.4511(11)      | 0.59258 (92)  |                   |
| C(6)          | 0.2605(12)   | 0.3653(12)      | 0.68841 (94)  |                   |
| C(7)          | 0.1815(17)   | 0.2559(13)      | 0.7161 (10)   |                   |
| C(8)          | 0.1100(15)   | 0.2383(13)      | 0.6451(11)    |                   |
| C(9)          | 0.3324(16)   | 0.3884(14)      | 0.7688(11)    |                   |
| C(51)         | -0.1834 (12) | 0.0975 (13)     | 0.3376 (11)   |                   |
| C(52)         | -0.1386(12)  | 0.1452(14)      | 0.2300 (10)   |                   |
| C(53)         | -0.1129 (13) | 0.2741(14)      | 0.2059 (10)   |                   |
| C(54)         | -0.1313 (13) | 0.3013(14)      | 0.2969 (13)   |                   |
| C(55)         | -0.1779 (13) | 0.1915 (17)     | 0.3796 (11)   |                   |
| H(1)          | 0.1139       | 0.1512          | 0.4823        | 6.0               |
| H(2A)         | -0.0502      | 0.2673          | 0.5063        | 6.0               |
| H(2B)         | 0.0301       | 0.3798          | 0.4187        | 6.0               |
| H(4)          | 0.1981       | 0.4958          | 0.4546        | 6.0               |
| H(5)          | 0.3202       | 0.4834          | 0.6272        | 6.0               |
| H(7)          | 0.1768       | 0.1942          | 0.7829        | 6.0               |
| H(8)          | 0.0537       | 0.1653          | 0.6648        | 6.0               |
| H(9A)         | 0.3171       | 0.3190          | 0.8316        | 6.0               |
| H(9B)         | 0.2893       | 0.4630          | 0.7815        | 6.0               |
| H(9C)         | 0.4355       | 0.3983          | 0.7422        | 6.0               |
| H(51)         | -0.2130      | 0.0138          | 0.3763        | 6.0               |
| H(52)         | -0.1276      | 0.1002          | 0.1825        | 6.0               |
| <b>H</b> (53) | -0.0871      | 0.3328          | 0.1378        | 6.0               |
| H(54)         | -0.1152      | 0.3799          | 0.3025        | 6.0               |
| H(55)         | -0.2014      | 0.1829          | 0.4511        | 6.0               |

 $\nu$ (CO) spectra of **5b** and **5c** are not quite identical but are nevertheless very close as well as very similar to those of compounds **3** and **4**. In this case both isomers have been isolated as crystalline solids.

The field-desorption mass spectra of compounds 3-5 in all cases show multiplets corresponding to the molecular ion. Interestingly, in all cases the spectra for the c isomers show ion multiplets corresponding to  $(M - CO)^+$  as well.

The most characteristic spectroscopic aspect of compounds 3-5 is their respective <sup>1</sup>H NMR spectra, which fully establish them as alkylidene complexes and also provide a clear distinction between the **b** and **c** isomers. Figure 1 shows a typical pair of spectra. In addition to Tol and Cp signals, the spectrum of each isomer exhibits three separate resonances with 1:1:1 relative intensities (AMX pattern) corresponding to the CH and CH<sub>2</sub> hydrogens of the  $\mu$ -alkylidene moiety. These resonances can be assigned on the basis of their H–H coupling constants, the lowest field resonance due to the  $\alpha$ -hydrogen showing vicinal



Figure 1. <sup>1</sup>H NMR spectra of 4b (upper) and 4c (lower) in  $CDCl_2$  at 18 °C.



Figure 2.  $^{13}\mathrm{C}$  NMR spectra of 5b (lower) and 5c (upper) in CDCl\_3 at 18 °C.

couplings to the two benzylic  $\beta$ -hydrogens at higher field. Furthermore, the lowest field signal shows satellites when the alkylidene  $\alpha$ -carbon is enriched by <sup>13</sup>C and greatly diminishes when the sample is deuterium substituted, i.e., in **3b**-d and **3c**-d.

The  $^{13}$ C NMR spectra obtained for  $^{13}$ C-enriched 3b,c and 5b,c show nine signals in the region expected for carbonyls attached to osmium and one alkylidene carbon resonance with tungsten satellites. The spectra for 5b and 5c are displayed in Figure 2, in order to illustrate that the patterns are very similar but nevertheless unique for each isomer.

Crystal Structure of CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ -Cl)( $\mu$ -CHCH<sub>2</sub>Tol) (3b). The crystal contains an ordered racemic arrangement of discrete molecules of CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ -Cl)( $\mu$ -CHCH<sub>2</sub>Tol) which are mutually separated by normal van der Waals' distances; there are no unusually short intermolecular contacts. The overall molecular geometry and the scheme used for labeling atoms are illustrated in Figure 3; a stereoscopic view of the molecule appears at Figure 4. Interatomic distances and angles are



**Figure 3.** ORTEP-II diagram showing the labeling of non-hydrogen atoms and the molecular geometry for CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu$ -Cl)( $\mu$ -CHCH<sub>2</sub>Tol), **3b**. Note that the molecule would have approximate  $C_s$  symmetry save for the inequivalence of the bridging oxo and alkylidene ligands.

#### Table III. Interatomic Distances (Å) and Esd's for CpWOs<sub>3</sub>(CO)<sub>9</sub>(μ-O)(μ-Cl)(μ-CHCH<sub>2</sub>Tol)

| (A) Metal–Metal Distances          |                 |                            |            |  |  |  |  |
|------------------------------------|-----------------|----------------------------|------------|--|--|--|--|
| Os(1)-Os(2)                        | 2.866(1)        | Os(2)-W                    | 2.646(1)   |  |  |  |  |
| Os(2)-Os(3)                        | 2.897(1)        | Os(3)-W                    | 2.987(1)   |  |  |  |  |
| Os(1)-W                            | 2.881 (1)       | Os(1)···Os(3)              | 3.747 (1)  |  |  |  |  |
| (B) Me                             | etal–(Bridging  | Ligand) Distance           | es         |  |  |  |  |
| Os(1)-Cl                           | 2.488 (3)       | W-O(1)                     | 1.786 (9)  |  |  |  |  |
| Os(3)-Cl                           | 2.463 (3)       | W-C(1)                     | 2.064 (11) |  |  |  |  |
| Os(3) - O(1)                       | 2.126 (8)       | Os(1) - C(1)               | 2.196 (11) |  |  |  |  |
| (C) Distar                         | nces within the | μ-CHCH <sub>2</sub> Tol Li | gand       |  |  |  |  |
| C(1) - C(2)                        | 2.546 (18)      | C(6)-C(9)                  | 1.535 (19) |  |  |  |  |
| C(2) - C(3)                        | 1.509 (16)      | C(6) - C(7)                | 1.400 (20) |  |  |  |  |
| C(3) - C(4)                        | 1.389 (17)      | C(7) - C(8)                | 1.388 (20) |  |  |  |  |
| C(4) - C(5)                        | 1.390 (18)      | C(8) - C(3)                | 1.372 (18) |  |  |  |  |
| C(5) - C(6)                        | 1.352 (17)      |                            |            |  |  |  |  |
| (D) (                              | Os-CO and C-    | O Bond Lengths             |            |  |  |  |  |
| Os(1) - C(11)                      | 1.882 (15)      | C(11)-O(11)                | 1.129 (19) |  |  |  |  |
| Os(1) - C(12)                      | 1.899 (12)      | C(12)-O(12)                | 1.167 (16) |  |  |  |  |
| Os(1) - C(13)                      | 1.924 (13)      | C(13)-O(13)                | 1.156 (16) |  |  |  |  |
| Os(2) - C(21)                      | 1.889 (18)      | C(21)-O(21)                | 1.161 (22) |  |  |  |  |
| Os(2) - C(22)                      | 1.925 (15)      | C(22)–O(22)                | 1.122 (18) |  |  |  |  |
| Os(2) - C(23)                      | 1.840 (14)      | C(23)-O(23)                | 1.183 (19) |  |  |  |  |
| Os(3) - C(31)                      | 1.940 (17)      | C(31)-O(31)                | 1.135 (21) |  |  |  |  |
| Os(3) - C(32)                      | 1.851 (15)      | C(32)-O(32)                | 1.157 (19) |  |  |  |  |
| Os(3) - C(33)                      | 1.879 (15)      | C(33)-O(33)                | 1.134 (18) |  |  |  |  |
| (E) Tungsten-Carbon (Cp) Distances |                 |                            |            |  |  |  |  |
| W-C(51)                            | 2.384 (12)      | W-C(54)                    | 2.356 (15) |  |  |  |  |
| W-C(52)                            | 2.383(12)       | W-C(55)                    | 2.365 (14) |  |  |  |  |
| W-C(53)                            | 2.400 (13)      |                            |            |  |  |  |  |

## collected in Tables III and IV.

This molecule has the four atoms of the WOs<sub>3</sub> core arranged in a "butterfly" pattern; atoms W and Os(2) occupy the "hinge" positions with W-Os(2) = 2.646 (1) Å. Other metal-metal bond lengths are W-Os(1) = 2.881 (1) Å, W-Os(3) = 2.987 (1) Å, Os(2)-Os(1) = 2.886 (1) Å, and Os(2)-Os(3) = 2.897 (1) Å. Thus, the osmium-osmium bond lengths are self-consistent and similar to those in the parent carbonyl (Os-Os(av) = 2.877 (3) Å in Os<sub>3</sub>(CO)<sub>12</sub>),<sup>8</sup> while there is a range of ~0.34 Å in the tungsten-osmium distances. The "wing-tip" atoms Os(1) and Os(3) are 3.747 (1) Å apart and are symmetrically bridged by the  $\mu$ -chloro ligand (Os(1)-Cl = 2.488 (3) Å, Os(3)-Cl = 2.463 (3) Å, <Os(1)-Cl-Os(3) = 98.4 (1)°). The butterfly has a slightly obtuse angle between its wings, as evidenced by the angle Os(1)-midpt-Os(3) = 92.67 (1)° (midpt = midpoint of the

#### Table IV. Interatomic Angles (Deg) and Esd's for CpWOs<sub>3</sub>(CO)<sub>9</sub>(µ-O)(µ-Cl)(µ-CHCH<sub>2</sub>Tol)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (A) Interme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tallic Angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Os(1)-W-Os(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62.29 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Os(1-)Os(2)-W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62.87(2)                                                                                                                                                                                                                                                                                                     |
| Os(1)-W-Os(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.34 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Os(1-)Os(2)-Os(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.10 (2)                                                                                                                                                                                                                                                                                                    |
| Os(2)-W-Os(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61.54(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Os(3)-Os(2)-W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65.03 (2)                                                                                                                                                                                                                                                                                                    |
| Os(2)-Os(1)-W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.84 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Os(2) - Os(3) - W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53.42(2)                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00112 (1)                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B) M-M-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO Angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |
| W-Os(1)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97.25 (41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Os(1) - Os(2) - C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 162.16 (44)                                                                                                                                                                                                                                                                                                  |
| W-Os(1)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 133.20 (35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Os(3) - Os(2) - C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 167.64 (47)                                                                                                                                                                                                                                                                                                  |
| W-Os(1)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 129.07 (41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Os(3) - Os(2) - C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96.57 (46)                                                                                                                                                                                                                                                                                                   |
| Os(2) - Os(1) - C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92.37 (41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Os(3) - Os(2) - C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94.06 (44)                                                                                                                                                                                                                                                                                                   |
| Os(2) - Os(1) - C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 167.47 (35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W-Os(3)-C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 126.04 (45)                                                                                                                                                                                                                                                                                                  |
| Os(2) - Os(1) - C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.70 (41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W-Os(3)-C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96.28 (47)                                                                                                                                                                                                                                                                                                   |
| W-Os(2)-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102.85(47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W-Os(3)-C(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 167.42 (45)                                                                                                                                                                                                                                                                                                  |
| W-Os(2)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 157.89 (46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Os(2) - Os(3) - C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 179.41 (45)                                                                                                                                                                                                                                                                                                  |
| W-Os(2)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.48 (44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Os(2) - Os(3) - C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88.45 (47)                                                                                                                                                                                                                                                                                                   |
| Os(1) - Os(2) - C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.24 (47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Os(2) - Os(3) - C(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85.24 (45)                                                                                                                                                                                                                                                                                                   |
| Os(1) - Os(2) - C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103.86 (46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ., ., .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |
| $(\mathbf{C})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Os-C-Oanc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C-Os-C Angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              |
| $O_{S}(1) = C(11) = O(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 177.7(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(11) = Os(1) = C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95.5 (5)                                                                                                                                                                                                                                                                                                     |
| Os(1) - C(12) - O(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173.2 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(11) - Os(1) - C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90.7 (6)                                                                                                                                                                                                                                                                                                     |
| $O_{S}(1) - C(13) - O(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 169.6 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(12) - Os(1) - C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95.5 (5)                                                                                                                                                                                                                                                                                                     |
| Os(2) - C(21) - O(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 174.6 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(21)-Os(2)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94.7 (7)                                                                                                                                                                                                                                                                                                     |
| Os(2) - C(22) - O(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 177.0 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(21)-Os(2)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90.3 (7)                                                                                                                                                                                                                                                                                                     |
| Os(2) - C(23) - O(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 176.0 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(22)-Os(2)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93.7 (6)                                                                                                                                                                                                                                                                                                     |
| Os(3)-C(31)-O(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 178.3 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(31)-Os(3)-C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91.9 (7)                                                                                                                                                                                                                                                                                                     |
| Os(3) - C(32) - O(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 176.3(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(31) - Os(3) - C(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95.2 (6)                                                                                                                                                                                                                                                                                                     |
| Os(3) - C(33) - O(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175.6 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(32) - Os(3) - C(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91.8 (7)                                                                                                                                                                                                                                                                                                     |
| (D) Ang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | les Involving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the Bridging Ligand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                            |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | une Dridenie Digund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                              |
| W-O(1)-Os(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.2(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W - Os(1) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 446(3)                                                                                                                                                                                                                                                                                                       |
| W-O(1)-Os(3)<br>W-Os(3)-O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.2 (4)<br>36 2 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W-Os(1)-C(1)<br>Os(1)-W-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44.6 (3)<br>49.4 (3)                                                                                                                                                                                                                                                                                         |
| W-O(1)-Os(3)<br>W-Os(3)-O(1)<br>Os(3)-W-O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.2 (4)<br>36.2 (2)<br>44.7 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W-Os(1)-C(1)<br>Os(1)-W-C(1)<br>Os(2)-W-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44.6 (3)<br>49.4 (3)<br>111.0 (3)                                                                                                                                                                                                                                                                            |
| W-O(1)-Os(3)<br>W-Os(3)-O(1)<br>Os(3)-W-O(1)<br>Os(2)-W-O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105 7 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W-Os(1)-C(1)<br>Os(1)-W-C(1)<br>Os(2)-W-C(1)<br>Os(1)-Cl-Os(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)                                                                                                                                                                                                                                                                |
| W-O(1)-Os(3) W-Os(3)-O(1) Os(3)-W-O(1) Os(2)-W-O(1) Os(1)-W-O(1) Os(1)-W-O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W-Os(1)-C(1)  Os(1)-W-C(1)  Os(2)-W-C(1)  Os(1)-Cl-Os(3)  Cl-Os(3)-O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)                                                                                                                                                                                                                                                    |
| $ \begin{array}{l} W-O(1)-Os(3) \\ W-Os(3)-O(1) \\ Os(3)-W-O(1) \\ Os(2)-W-O(1) \\ Os(1)-W-O(1) \\ Os(2)-Os(3)-O(1) \\ Os(2)-Os(3)-O(1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{l} W-Os(1)-C(1) \\ Os(1)-W-C(1) \\ Os(2)-W-C(1) \\ Os(1)-Cl-Os(3) \\ Cl-Os(3)-O(1) \\ Cl-Os(1)-C(1) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)                                                                                                                                                                                                                                        |
| $ \begin{array}{l} W-O(1)-Os(3) \\ W-Os(3)-O(1) \\ Os(3)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-Os(3)-O(1) \\ W-C(1)-Os(3)-O(1) \\ W-C(1)-Os(3) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{l} W-Os(1)-C(1) \\ Os(1)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Cl-Os(3)-O(1) \\ Cl-Os(3)-O(1) \\ Cl-Os(1)-C(1) \\ W-Os(1)-C(1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)                                                                                                                                                                                                                            |
| $ \begin{array}{l} W-O(1)-Os(3) \\ W-Os(3)-O(1) \\ Os(3)-W-O(1) \\ Os(2)-W-O(1) \\ Os(1)-W-O(1) \\ Os(2)-Os(3)-O(1) \\ W-C(1)-Os(1) \\ W-C(1)-Cs(1) \\ W-C(1)-C(2) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} W-Os(1)-C(1)\\ Os(1)-W-C(1)\\ Os(2)-W-C(1)\\ Os(1)-Cl-Os(3)\\ Cl-Os(3)-O(1)\\ Cl-Os(3)-O(1)\\ W-Os(1)-C(1)\\ W-Os(1)-Cl\\ W-Os(2)-Cl \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)                                                                                                                                                                                                                |
| $ \begin{array}{l} W-O(1)-Os(3) \\ W-Os(3)-O(1) \\ Os(3)-W-O(1) \\ Os(2)-W-O(1) \\ Os(1)-W-O(1) \\ Os(2)-Os(3)-O(1) \\ W-C(1)-Os(1) \\ W-C(1)-Os(1) \\ W-C(1)-C(2) \\ Os(1)-C(2) \\ Os(1)-C(2) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} W-Os(1)-C(1) \\ Os(1)-W-C(1) \\ Os(2)-W-C(1) \\ Os(1)-Cl-Os(3) \\ Cl-Os(3)-O(1) \\ Cl-Os(1)-C(1) \\ W-Os(1)-Cl \\ W-Os(3)-Cl \\ Os(2)-Os(1) \\ Cl \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>89.2 (1)                                                                                                                                                                                                    |
| $ \begin{array}{l} W-O(1)-Os(3) \\ W-Os(3)-O(1) \\ Os(3)-W-O(1) \\ Os(2)-W-O(1) \\ Os(1)-W-O(1) \\ Os(2)-Os(3)-O(1) \\ W-C(1)-Os(1) \\ W-C(1)-Os(1) \\ W-C(1)-C(2) \\ Os(1)-C(1)-C(2) \\ Os(2)-Os(1)-C(1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} W-Os(1)-C(1) \\ Os(1)-W-C(1) \\ Os(2)-W-C(1) \\ Os(1)-Cl-Os(3) \\ Cl-Os(3)-O(1) \\ Cl-Os(1)-C(1) \\ W-Os(1)-Cl \\ W-Os(3)-Cl \\ Os(2)-Os(1)-Cl \\ Os(2)-Os(2)-Cl \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.2 (1)                                                                                                                                                                                        |
| $\begin{array}{l} W-O(1)-Os(3)\\ W-Os(3)-O(1)\\ Os(3)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-Os(3)-O(1)\\ W-C(1)-Os(1)\\ W-C(1)-Os(1)\\ W-C(1)-C(2)\\ Os(1)-C(1)-C(2)\\ Os(2)-Os(1)-C(1)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 99.2 \ (4) \\ 36.2 \ (2) \\ 44.7 \ (3) \\ 105.7 \ (3) \\ 105.2 \ (3) \\ 89.3 \ (2) \\ 85.0 \ (4) \\ 130.1 \ (8) \\ 118.5 \ (8) \\ 99.8 \ (3) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{l} W-Os(1)-C(1)\\ Os(1)-W-C(1)\\ Os(2)-W-C(1)\\ Os(1)-Cl-Os(3)\\ Cl-Os(3)-O(1)\\ Cl-Os(1)-C(1)\\ W-Os(1)-Cl\\ W-Os(3)-Cl\\ Os(2)-Os(1)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.0 (1)                                                                                                                                                                                        |
| $\begin{array}{l} W-O(1)-Os(3)\\ W-Os(3)-O(1)\\ Os(3)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-Os(3)-O(1)\\ W-C(1)-Os(1)\\ W-C(1)-Os(1)\\ W-C(1)-C(2)\\ Os(1)-C(1)-C(2)\\ Os(2)-Os(1)-C(1)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} W-Os(1)-C(1)\\ Os(1)-W-C(1)\\ Os(2)-W-C(1)\\ Os(1)-Cl-Os(3)\\ Cl-Os(3)-O(1)\\ Cl-Os(1)-C(1)\\ W-Os(1)-Cl\\ W-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ os(2)-Os(3)-Cl\\ rom "Cent"^{a} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.0 (1)                                                                                                                                                                                        |
| $\begin{array}{l} W-O(1)-Os(3)\\ W-Os(3)-O(1)\\ Os(3)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-Os(3)-O(1)\\ W-C(1)-Os(1)\\ W-C(1)-Os(1)\\ W-C(1)-C(2)\\ Os(1)-C(1)-C(2)\\ Os(2)-Os(1)-C(1)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} W-Os(1)-C(1)\\ Os(1)-W-C(1)\\ Os(2)-W-C(1)\\ Os(1)-Cl-Os(3)\\ Cl-Os(3)-O(1)\\ Cl-Os(3)-O(1)\\ W-Os(1)-C(1)\\ W-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Trom "Cent"^a\\ Cent-W-O(1)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)                                                                                                                                                                           |
| $\begin{array}{l} W-O(1)-Os(3)\\ W-Os(3)-O(1)\\ Os(3)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-Os(3)-O(1)\\ W-C(1)-Os(1)\\ W-C(1)-Os(1)\\ W-C(1)-C(2)\\ Os(1)-C(1)-C(2)\\ Os(2)-Os(1)-C(1)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} W-Os(1)-C(1)\\ Os(1)-W-C(1)\\ Os(2)-W-C(1)\\ Os(2)-W-C(1)\\ Cl-Os(3)-O(1)\\ Cl-Os(3)-O(1)\\ Cl-Os(1)-C(1)\\ W-Os(1)-Cl\\ W-Os(3)-Cl\\ Os(2)-Os(1)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ rom "Cent"^{a}\\ Cent-W-O(1)\\ Cent-W-C(1)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)                                                                                                                                                              |
| $\begin{array}{l} W-O(1)-Os(3)\\ W-Os(3)-O(1)\\ Os(3)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-Os(3)-O(1)\\ W-C(1)-Os(1)\\ W-C(1)-Os(1)\\ W-C(1)-C(2)\\ Os(1)-C(1)-C(2)\\ Os(2)-Os(1)-C(1)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} W-Os(1)-C(1)\\ Os(1)-W-C(1)\\ Os(2)-W-C(1)\\ Os(2)-W-C(1)\\ Os(1)-Cl-Os(3)\\ Cl-Os(3)-O(1)\\ Cl-Os(1)-C(1)\\ W-Os(1)-Cl\\ W-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ rom "Cent"^a\\ Cent-W-O(1)\\ Cent-W-C(1)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)                                                                                                                                                              |
| $ \begin{array}{l} W-O(1)-Os(3) \\ W-Os(3)-O(1) \\ Os(3)-W-O(1) \\ Os(2)-W-O(1) \\ Os(1)-W-O(1) \\ Os(2)-Os(3)-O(1) \\ W-C(1)-Os(3)-O(1) \\ W-C(1)-Os(1) \\ W-C(1)-C(2) \\ Os(1)-C(1)-C(2) \\ Os(2)-Os(1)-C(1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} W-Os(1)-C(1) \\ Os(1)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Cl-Os(3)-O(1) \\ Cl-Os(3)-O(1) \\ Cl-Os(1)-C(1) \\ W-Os(1)-C(1) \\ W-Os(3)-C(1) \\ Os(2)-Os(3)-C(1) \\ Os(2)-Os(3)-C(1) \\ Os(2)-Os(3)-C(1) \\ Os(2)-Os(3)-C(1) \\ Cent-W-O(1) \\ Cent-W-O(1) \\ Cent-W-C(1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)                                                                                                                                                              |
| $ \begin{array}{c} W-O(1)-Os(3) \\ W-Os(3)-O(1) \\ Os(3)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-Os(3)-O(1) \\ W-C(1)-Os(3)-O(1) \\ W-C(1)-Os(1) \\ W-C(1)-C(2) \\ Os(1)-C(1)-C(2) \\ Os(2)-Os(1)-C(1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)<br>les within the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{l} W-Os(1)-C(1) \\ Os(1)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Cl-Os(3)-Cl \\ Os(1)-Cl \\ W-Os(1)-Cl \\ W-Os(3)-Cl \\ Os(2)-Os(3)-Cl \\ Os(2)-Os(3)-Cl \\ Os(2)-Os(3)-Cl \\ Os(2)-Os(3)-Cl \\ rom "Cent"^{a} \\ Cent-W-O(1) \\ Cent-W-O(1) \\ Cent-W-C(1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)                                                                                                                                                              |
| $ \begin{array}{c} W-O(1)-Os(3) \\ W-Os(3)-O(1) \\ Os(3)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-Os(3)-O(1) \\ W-C(1)-Os(3) \\ W-C(1)-Os(1) \\ W-C(1)-C(2) \\ Os(1)-C(1)-C(2) \\ Os(2)-Os(1)-C(1) \\ \hline \\ Cent-W-Os(1) \\ Cent-W-Os(2) \\ Cent-W-Os(3) \\ \hline \\ (F) Angl \\ C(1)-C(2)-C(3) \\ C(2)-C(4) \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)<br>les within the<br>116.4 (10)<br>120.2 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{l} W-Os(1)-C(1)\\ Os(1)-W-C(1)\\ Os(2)-W-C(1)\\ Os(2)-W-C(1)\\ Os(2)-W-C(1)\\ Cl-Os(3)-Cl\\ Os(3)-Cl\\ U-Os(1)-Cl\\ W-Os(1)-Cl\\ W-Os(3)-Cl\\ Os(2)-Os(1)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ rom "Cent"^a\\ Cent-W-O(1)\\ Cent-W-O(1)\\ Cent-W-C(1)\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)<br>d<br>118.9 (12)                                                                                                                                           |
| $ \begin{array}{c} W-O(1)-Os(3) \\ W-Os(3)-O(1) \\ Os(3)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-Os(3)-O(1) \\ W-C(1)-Os(1) \\ W-C(1)-Os(1) \\ W-C(1)-C(2) \\ Os(1)-C(1)-C(2) \\ Os(2)-Os(1)-C(1) \\ \hline \\ Cent-W-Os(1) \\ Cent-W-Os(2) \\ Cent-W-Os(3) \\ \hline \\ (F) Angl \\ C(1)-C(2)-C(3) \\ C(2)-C(3)-C(4) \\ C(2)-C(3)-C(4) \\ C(2)-C(3)-C(4) \\ \hline \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)<br>les within the<br>116.4 (10)<br>120.9 (11)<br>110.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{l} W-Os(1)-C(1)\\ Os(1)-W-C(1)\\ Os(2)-W-C(1)\\ Os(2)-W-C(1)\\ Os(2)-W-C(1)\\ Os(2)-W-C(1)\\ Os(2)-Os(3)-C(1)\\ Cl-Os(3)-C(1)\\ W-Os(3)-C(1)\\ W-Os(3)-C(1)\\ Os(2)-Os(3)-C(1)\\ Os($                                                           | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)<br>d<br>118.9 (12)<br>119.5 (12)                                                                                                                             |
| $ \begin{array}{c} W-O(1)-Os(3) \\ W-Os(3)-O(1) \\ Os(3)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-Os(3)-O(1) \\ W-C(1)-Os(1) \\ W-C(1)-Os(1) \\ W-C(1)-C(2) \\ Os(1)-C(1)-C(2) \\ Os(2)-Os(1)-C(1) \\ Cent-W-Os(2) \\ Cent-W-Os(3) \\ \\ \hline \\ C(1)-C(2)-C(3) \\ C(2)-C(3)-C(4) \\ C(3)-C(4)-C(5) \\ O(4) \\ O(5) \\ O(2) \\ O(5) $ | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)<br>les within the<br>116.4 (10)<br>120.9 (11)<br>119.8 (11)<br>121.9 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{l} W-Os(1)-C(1) \\ Os(1)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-C(1) \\ W-Os(3)-C(1) \\ W-Os(3)-C(1) \\ W-Os(3)-C(1) \\ Os(2)-Os(3)-C(1) \\ Os(2)-Os($                                                                 | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)<br>d<br>118.9 (12)<br>119.5 (12)<br>119.4 (13)                                                                                                               |
| $ \begin{array}{c} W-O(1)-Os(3) \\ W-Os(3)-O(1) \\ Os(3)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-Os(3)-O(1) \\ W-C(1)-Os(1) \\ W-C(1)-Os(1) \\ W-C(1)-C(2) \\ Os(1)-C(1)-C(2) \\ Os(2)-Os(1)-C(1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles fi<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)<br>les within the<br>116.4 (10)<br>120.9 (11)<br>119.8 (11)<br>121.8 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c} W-Os(1)-C(1) \\ Os(1)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Cl-Os(3)-Cl \\ Os(2)-Os(1)-Cl \\ W-Os(3)-Cl \\ Os(2)-Os(3)-Cl \\ Os(2)-Cl \\ Os(2)-$                                   | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)<br>111.4 (-)<br>119.5 (12)<br>119.5 (12)<br>119.4 (13)<br>121.5 (13)                                                                             |
| $\begin{array}{c} W-O(1)-Os(3)\\ W-Os(3)-O(1)\\ Os(3)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-Os(3)-O(1)\\ W-C(1)-Os(1)\\ W-C(1)-Os(1)\\ W-C(1)-C(2)\\ Os(1)-C(1)-C(2)\\ Os(2)-Os(1)-C(1)\\ \hline \\ Cent-W-Os(2)\\ Cent-W-Os(3)\\ \hline \\ (F) Angl\\ C(1)-C(2)-C(3)\\ C(2)-C(3)-C(4)\\ C(3)-C(4)-C(5)\\ C(4)-C(5)-C(6)\\ C(5)-C(6)-C(9)\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)<br>les within the<br>116.4 (10)<br>120.9 (11)<br>119.8 (11)<br>121.8 (12)<br>121.5 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} W-Os(1)-C(1) \\ Os(1)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Cl-Os(3)-Cl \\ Os(2)-Os(3)-Cl \\ W-Os(3)-Cl \\ Os(2)-Os(3)-Cl \\ Os(2)-Cl \\ Os(2)-Os(3)-Cl \\ Os(2)-$                                                     | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)<br>119.5 (12)<br>119.5 (12)<br>119.4 (13)<br>121.5 (13)<br>120.5 (11)                                                                            |
| $\begin{array}{c} W-O(1)-Os(3)\\ W-Os(3)-O(1)\\ Os(3)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-Os(3)-O(1)\\ W-C(1)-Os(1)\\ W-C(1)-Os(1)\\ W-C(1)-C(2)\\ Os(1)-C(1)-C(2)\\ Os(2)-Os(1)-C(1)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)<br>les within the<br>116.4 (10)<br>120.9 (11)<br>119.8 (11)<br>121.8 (12)<br>121.5 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{l} W-Os(1)-C(1)\\ Os(1)-W-C(1)\\ Os(2)-W-C(1)\\ Os(2)-W-C(1)\\ Os(1)-Cl-Os(3)\\ Cl-Os(3)-O(1)\\ Cl-Os(3)-O(1)\\ W-Os(3)-Cl\\ W-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Cos(2)-Os(3)-Cl\\ Cos(2)-Os(3)-Cl\\ Cos(2)-Os(3)-Cl\\ Cos(2)-Os(3)-Cl\\ Cos(2)-Os(3)-Cl\\ Cos(2)-Os(3)-Cl\\ Cos(2)-Os(3)-Cl\\ Cos(3)-Cl\\ C(3)-C(3)-C(3)\\ C(3)-C(3)-C(2)\\ C(3)-C(4)\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)<br>d<br>118.9 (12)<br>119.5 (12)<br>119.5 (12)<br>119.4 (13)<br>121.5 (13)<br>120.5 (11)<br>118.6 (11)                                           |
| $ \begin{array}{c} W-O(1)-Os(3) \\ W-Os(3)-O(1) \\ Os(3)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-W-O(1) \\ Os(2)-Os(3)-O(1) \\ W-C(1)-Os(1) \\ W-C(1)-C(2) \\ Os(1)-C(1)-C(2) \\ Os(1)-C(1)-C(2) \\ Os(2)-Os(1)-C(1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)<br>les within the<br>116.4 (10)<br>120.9 (11)<br>119.8 (11)<br>121.8 (12)<br>121.5 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{l} W-Os(1)-C(1) \\ Os(1)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Cl-Os(3)-Cl \\ Os(2)-Os(3)-Cl \\ W-Os(3)-Cl \\ Os(2)-Os(3)-Cl \\ Os(2)-C(3)-C(3) \\ C(3)-C(3)-C(2) \\ C(3)-C(3)-C(4) \\ Os(2)-Os(3)-Cl \\$                                                     | $\begin{array}{c} 44.6 (3) \\ 49.4 (3) \\ 111.0 (3) \\ 98.4 (1) \\ 84.1 (2) \\ 88.9 (3) \\ 81.6 (1) \\ 79.8 (1) \\ 88.2 (1) \\ 88.2 (1) \\ 88.0 (1) \\ 115.1 (-) \\ 111.4 (-) \\ 111.4 (-) \\ 119.5 (12) \\ 119.5 (12) \\ 119.5 (12) \\ 119.4 (13) \\ 121.5 (13) \\ 120.5 (11) \\ 118.6 (11) \\ \end{array}$ |
| $ \begin{array}{c} W-O(1)-Os(3)\\ W-Os(3)-O(1)\\ Os(3)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-Os(3)-O(1)\\ W-C(1)-Os(1)\\ W-C(1)-Os(1)\\ W-C(1)-C(2)\\ Os(1)-C(1)-C(2)\\ Os(2)-Os(1)-C(1)\\ \hline \\ Cent-W-Os(1)\\ Cent-W-Os(2)\\ Cent-W-Os(3)\\ \hline \\ (F) Angl\\ C(1)-C(2)-C(3)\\ C(2)-C(3)-C(4)\\ C(3)-C(4)-C(5)\\ C(4)-C(5)-C(6)\\ C(5)-C(6)-C(9)\\ \hline \\ \end{array} \right. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)<br>les within the<br>116.4 (10)<br>120.9 (11)<br>119.8 (11)<br>121.8 (12)<br>121.5 (12)<br>(c) Angles with<br>106.0 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{l} W-Os(1)-C(1) \\ Os(1)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ W-Os(3)-Cl \\ Os(2)-Os(3)-Cl \\ W-Os(3)-Cl \\ Os(2)-Os(3)-Cl \\ Os(2)-C(3)-Cl \\ Os(3)-Cl \\ Os(3)-$ | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)<br>119.5 (12)<br>119.4 (13)<br>120.5 (11)<br>118.6 (11)                                                                                                      |
| $ \begin{array}{c} W-O(1)-Os(3)\\ W-Os(3)-O(1)\\ Os(3)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-Os(3)-O(1)\\ W-C(1)-Os(1)\\ W-C(1)-Os(1)\\ W-C(1)-C(2)\\ Os(1)-C(1)-C(2)\\ Os(2)-Os(1)-C(1)\\ \hline \\ Cent-W-Os(2)\\ Cent-W-Os(3)\\ \hline \\ C(1)-C(2)-C(3)\\ C(2)-C(3)-C(4)\\ C(3)-C(4)-C(5)\\ C(4)-C(5)-C(6)\\ C(5)-C(6)-C(9)\\ \hline \\ \end{array} \right. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)<br>les within the<br>116.4 (10)<br>120.9 (11)<br>119.8 (11)<br>121.8 (12)<br>121.5 (12)<br>(Angles with<br>106.0 (12)<br>109.3 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{l} W-Os(1)-C(1) \\ Os(1)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-W-C(1) \\ Os(2)-C(1) \\ W-Os(3)-C(1) \\ W-Os(3)-C(1) \\ W-Os(3)-C(1) \\ W-Os(3)-C(1) \\ Os(2)-Os(3)-C(1) \\ Os(2)-Os(3)-C(1) \\ Os(2)-Os(3)-C(1) \\ Os(2)-Os(3)-C(1) \\ Os(2)-Os(3)-C(1) \\ Cent-W-O(1) \\ Cent-W-O(1) \\ Cent-W-O(1) \\ Cent-W-C(1) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)<br>111.4 (-)<br>119.5 (12)<br>119.4 (13)<br>120.5 (11)<br>118.6 (11)<br>107.6 (13)<br>109.5 (13)                                                 |
| $ \begin{array}{c} W-O(1)-Os(3)\\ W-Os(3)-O(1)\\ Os(3)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-W-O(1)\\ Os(2)-Os(3)-O(1)\\ W-C(1)-Os(1)\\ W-C(1)-Os(1)\\ W-C(1)-C(2)\\ Os(1)-C(1)-C(2)\\ Os(2)-Os(1)-C(1)\\ Cent-W-Os(2)\\ Cent-W-Os(3)\\ (F) AnglC(1)-C(2)-C(3)\\ C(2)-C(3)-C(4)\\ C(3)-C(4)-C(5)\\ C(4)-C(5)-C(6)\\ C(5)-C(6)-C(9)\\ \end{array} \right. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99.2 (4)<br>36.2 (2)<br>44.7 (3)<br>105.7 (3)<br>105.2 (3)<br>89.3 (2)<br>85.0 (4)<br>130.1 (8)<br>118.5 (8)<br>99.8 (3)<br>(E) Angles f<br>138.5 (-)<br>112.7 (-)<br>137.5 (-)<br>les within the<br>116.4 (10)<br>120.9 (11)<br>119.8 (11)<br>121.8 (12)<br>121.5 (12)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(14)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>( | $ \begin{array}{l} W-Os(1)-C(1)\\ Os(1)-W-C(1)\\ Os(2)-W-C(1)\\ Os(2)-W-C(1)\\ Os(1)-Cl-Os(3)\\ Cl-Os(3)-O(1)\\ Cl-Os(3)-O(1)\\ W-Os(1)-Cl\\ W-Os(3)-Cl\\ Os(2)-Os(3)-Cl\\ Os(2)-C(3)-C(3)\\ C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)\\ Os(3)-C(3)-C(3)-C(3)\\ Os(3)-C(3)-C(3)-C($                                                                          | 44.6 (3)<br>49.4 (3)<br>111.0 (3)<br>98.4 (1)<br>84.1 (2)<br>88.9 (3)<br>81.6 (1)<br>79.8 (1)<br>88.2 (1)<br>88.2 (1)<br>88.0 (1)<br>115.1 (-)<br>111.4 (-)<br>111.4 (-)<br>119.5 (12)<br>119.4 (13)<br>121.5 (13)<br>120.5 (11)<br>118.6 (11)<br>107.6 (13)<br>109.5 (13)                                   |

<sup>a</sup>Cent is the centroid of the Cp ring.

W-Os(2) bond) and the dihedral angle of  $87.31^{\circ}$  or  $92.69^{\circ9}$  between the two planes defined by W-Os(2)-Os(1) and W-Os(2)-Os(3). Each of the four metal atoms is in a different chemical environment, and the cluster as a whole is chiral; in addition, atom C(1) behaves as an isolated chiral center. The cluster as a whole has the 62 outer valence electrons expected for a butterfly, 5M-M, arrangement.

The W( $\mu$ -O)Os system is characterized by the short tungsten-oxygen bond length of W-O(1) = 1.786 (9) Å and the comparatively long osmium-oxygen bond length of

<sup>(9)</sup> The usual method of calculating interplanar angles gives possible answers of  $\phi^{\circ}$  and  $180-\phi^{\circ}$ ; it is not always possible to determine instantly which of these represents the angle of interest.



Figure 4. Stereoscopic view of the 3b molecule projected onto the W–Os(1)–Os(2) plane; Os(3) lies below. The hydrogen atoms on C(1) and C(2) of the  $\mu$ --CHCH<sub>2</sub>Tol group are included to emphasize the chiral center at C(1).

| Table v. Dimensions in $w(\mu - 0)05$ bystems of $w 050$ cluster | Table | v. | Dimensions | in | $W(\mu - O)Os$ | Systems | of | WOs, | Cluster |
|------------------------------------------------------------------|-------|----|------------|----|----------------|---------|----|------|---------|
|------------------------------------------------------------------|-------|----|------------|----|----------------|---------|----|------|---------|

| complex                                            | d(W=0), Å  | d(Os-O), Å | d(W—Os), Å | (W—O—Os, deg |
|----------------------------------------------------|------------|------------|------------|--------------|
| $CpWOs_3(CO)_9(\mu-O)[\mu_3-CCH_2Tol]$             | 1.812 (7)  | 2.169 (8)  | 2.663 (1)  | 83.5 (3)     |
| $CpWOs_3(CO)_9(\mu-O)(\mu-Cl)[\mu-CHCH_2Tol]$      | 1.786 (9)  | 2.126 (8)  | 2.987(1)   | 99.2 (4)     |
| $CpWOs_3(CO)_9(\mu-O)(\mu-H)[\mu-CHCH_2Tol]$       | 1.737 (17) | 2.167(16)  | 2.916 (1)  | 96.0 (7)     |
| $CpWOs_3(CO)_9(\mu-O)(\mu-H)[\mu-C=CHTol]$         | 1.791 (23) | 2.131(21)  | 2.868(2)   | 93.6 (9)     |
| $CpWOs_3(CO)_8(\mu-O)(\mu-H)[\mu_3-\eta^2-C_2H_2]$ | 1.761 (8)  | 2.200 (8)  | 2.885(1)   | 92.8 (4)     |

Os(3)-O(1) = 2.126 (8) Å; the angle W-O(1)-Os(3) is 99.2 (4)°. These data are compatible with the presence of a W=O:→Os system (in which the neutral µ-O ligand is a four-electron donor) as has been found previously in such related species as CpWOs<sub>3</sub>(CO)<sub>9</sub>(µ-O)(µ<sub>3</sub>-CCH<sub>2</sub>Tol),<sup>1,10</sup> CpWOs<sub>3</sub>(CO)<sub>9</sub>(µ-O)(µ-H)(µ-CHCH<sub>2</sub>Tol) (2a),<sup>2</sup> CpWOs<sub>3</sub>-(CO)<sub>9</sub>(µ-O)(µ-H)(µ-C=CHTol),<sup>11</sup> and CpWOs<sub>3</sub>(CO)<sub>8</sub>(µ-O)(µ-H)(µ<sub>3</sub>- $\eta^2$ -C<sub>2</sub>H<sub>2</sub>).<sup>12</sup> Parameters for the W(µ-O)Os portions of these five species are compared in Table V. The µ-alkylidene ligand bridges the W-Os(1) bond, with W-C(1) = 2.064 (11) Å, Os(1)-C(1) = 2.196 (11) Å, and <W-C(1)-Os(1) = 85.0 (4)°. This pattern of W-C < Os—C bond length also occurs in the closely related µalkylidene species 2a<sup>2</sup> (W-C = 2.068 (26) Å and Os-C = 2.281 (26) Å) as well as the µ-vinylidene species CpWOs<sub>3</sub>(CO)<sub>9</sub>(µ-O)(µ-H)(µ-C=CHTol)<sup>11</sup> (W-C = 2.082

(40) Å and Os—C = 2.148 (39) Å). The configuration of C(1) is such that the C(1)–C(2) vector is oriented toward the face defined by W, Os(1), and Os(2) (see Figure 4). This configuration positions the CH<sub>2</sub>Tol moiety anti to the WOs<sub>2</sub> face that is edge-bridged by the oxo group and the  $\mu$ -alkylidene ligand, as well as the chloro ligand; an analogous configuration is displayed in the hydrido–alkylidene species 2a.<sup>2</sup> The specific conformation adopted by the  $\mu$ -alkylidene ligand (<C(3)–C(2)–C(1)–W = 178.9°) places the bulky CpW and Tol moieties in a trans relationship.

Other distances within the molecule are both internally consistent and within the normally accepted ranges (viz., Os-CO = 1.840 (14)-1.940 (17) Å, C-O = 1.122 (18)-1.183 (19) Å, W-C(Cp) = 2.356 (15)-2.400 (13) Å, C-C(aliphatic) = 1.509 (16)-1.535 (19) Å, and C-C(benzenoid) = 1.352 (17)-1.400 (20) Å).

Structural and Chemical Relationships between Isomers b and c. The structure of 3b shows the  $-CH_2Tol$ 

substituent on the alkylidene carbon to be oriented anti with respect to the  $WOs_2$  face associated with the three edge-bridging groups. Since the spectroscopic properties of **3c** are very similar, its structure is assumed to be the corresponding syn configuration, with the  $-CH_2$ Tol substituent oriented toward this triply edge-bridged face. Analogous anti/syn diastereomers are assigned to represent the structures of the other **b/c** pairs of compounds as well.

The anti configuration of **3b** places the hydrogen atom on the bridging alkylidene carbon in the position where this carbon was bonded to an osmium atom in 1, i.e., an Os-C bond has been transformed into an H-C bond with retention of configuration at the carbon center (see eq 1). The formation of  $CpWOs_3(\mu-O)(\mu-Cl)(\mu-CDCH_2Tol)$  in the reaction of 1 with  $BCl_3/D_2O$  shows that the hydrogen is actually delivered to this carbon. Protonolysis of the Os-C bond followed by chloride coordination is the probable reaction pathway for forming 3b directly from HCl, but the reaction with BCl<sub>3</sub> is likely more complex, since the reaction time is shorter and the yield is higher.<sup>13</sup> The formation of both 4b and 4c in the reaction of 1 with HBr may imply acid catalysis of the 4b to 4c rearrangement; this point is being investigated further. Interpreting the formation of both 5b and 5c in the reaction of 1 with HSPh is likewise complicated by the possibility that the temperature required by the reaction (110 °C) is in itself sufficient to cause rearrangement.



The thermal rearrangement  $3b \rightarrow 3c$  has been observed directly, but we cannot yet fully define the mechanism.

<sup>(10)</sup> Churchill, M. R.; Ziller, J. W.; Beanan, L. R. J. Organomet. Chem. 1985, 287, 235.

 <sup>(11)</sup> Churchill, M. R.; Li, Y. J. J. Organomet. Chem. 1985, 294, 367.
 (12) Churchill, M. R.; Bueno, C.; Park, J. T.; Shapley, J. R. Inorg. Chem. 1984, 23, 1017.

<sup>(13)</sup> Ongoing studies of this reaction have shown that the initial product with  $BCl_3$  in the absence of deliberate hydrolysis is a  $BCl_3$  adduct of **3b**. Chi, Y.; Wilson, S. R.; Shapley, J. R., in preparation.



Figure 5. <sup>13</sup>C NMR spectra of (a) 3b after brief treatment with <sup>13</sup>CO at 105 °C (see text), (b) **3b** prepared from <sup>13</sup>C-enriched precursors, and (c) enriched **3b** + PPh<sub>2</sub>Me, i.e.,  $CpWOs_3(CO)_8$ - $(PPhMe_2)(\mu-O)(\mu-Cl)(\mu-CHCH_2Tol).$ 

Limiting features are (1) that a deuterium atom attached to the  $\alpha$ -carbon of the alkylidene ligand is not scrambled with the hydrogen atoms on the  $\beta$ -carbon and (2) that a carbon monoxide atmosphere completely inhibits the rearrangement. The two most obvious pathways are (1) conversion to a terminal alkylidene bonded to the tungsten center, followed by rotation about the W=C bond and rebridging,<sup>14</sup> or (2) oxidative addition to form a hydridoalkylidyne species, in which hydride mobility allows reformation of the C( $\alpha$ )-H bond from the opposite side.<sup>15</sup> The observed CO inhibition is consistent with the latter pathway, but, of course, does not confirm it.

Stereoselective Carbonyl Substitution in Compound 3b. Brief (5 min) treatment of 3b with excess PPh<sub>2</sub>Me in refluxing toluene provides the monosubstitution product  $CpWOs_3(CO)_8(PPh_2Me)(\mu-O)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)(\mu-Cl)$ CHCH<sub>2</sub>Tol) in high yield. The <sup>13</sup>C NMR of this compound (Figure 5c) shows evidence for only one set of eight carbonyl signals, that is, only one stereoisomer is formed. By comparing the spectrum of the phosphine derivative with that of **3b** (Figure 5b), a correlation can be developed in which two sets of three resonances are shifted only 1-2 ppm to lower field upon substitution, whereas the remaining set loses one resonance and has the other two shifted 6-8 ppm to lower field. The former sets are assigned to the unsubstituted  $Os(CO)_3$  centers and the latter

set to the osmium center undergoing substitution; the differential effect of substitution is similar to that seen for  $H_2Os_3(CO_9L (L = CO, PPh_2Et)^{16}$  and in related triosmium derivatives.17

Further evidence in support of selective substitution in 3b comes from study of its exchange with <sup>13</sup>CO. Samples of **3b** in toluene- $d_8$  were exposed to 1 atm of <sup>13</sup>CO (99%) at 105 °C for 10 min, after which the solvent was evaporated and the residue was redissolved in  $CD_2Cl_2$ . The <sup>13</sup>C NMR spectrum of this sample is shown in Figure 5a, where by comparison with the spectrum of the completely enriched 3b, it can be seen that selective <sup>13</sup>CO enrichment does occur. The CO resonances can be grouped into three sets by virtue of their relative intensities, corresponding to the three  $Os(CO)_3$  units. The resonances of highest relative intensity, at  $\delta$  173.1, 175.1, and 175.7, can be assigned to the CO's on the osmium atom undergoing exchange, and this is clearly the same center which is substituted by the phosphine ligand.

The specific site of substitution in 3b cannot be determined unequivocally from our spectroscopic data. However, the Os-O=W system in 3b can be considered analogous to the Ru-O=C(R) system studied by Kaesz and co-workers.<sup>18</sup> They found that substitution reactions in the acyl complexes  $Ru_3(\mu$ -X,  $\mu$ -O=CR)(CO)<sub>10</sub> (R = Me, X = H; R = Et, X = Cl, Br, I) occur on the ruthenium atom to which the acyl oxygen is bonded; the substitution is site specific for  $PPh_3$  and  $P(OMe)_3$  and at least highly selective for <sup>13</sup>CO. Furthermore, the site for phosphorus ligand coordination was specifically cis to both bridging groups, yet the bridging halide compounds reacted much more quickly and completely than the bridging hydride compound. These results can be rationalized by Brown's cis-labilization effect,<sup>19</sup> which predicts that substitution will occur preferentially at the site cis to labilizing  $\pi$ -donor ligands. In terms of our system, since there is just one carbonyl (C(31)–O(31), Figure 2) in 3b that is cis to both the bridging oxo and the bridging chloro ligands, it is likely that this is the preferred site for substitution. In comparison, the corresponding hydride complex 2b does not undergo observable substitution with PPh<sub>2</sub>Me under conditions even more severe than those necessary for complete substitution in 3b.4

Acknowledgment. This research was supported by NSF Grant CHE 84-07233 to J.R.S. and CHE 80-23448 to M.R.C. Instruments supported in part by Grant GM-27029 were utilized for mass spectra at the University of Illinois. Y.C. acknowledges the School of Chemical Sciences of the University of Illinois for a fellowship.

Supplementary Material Available: A table of anisotropic thermal parameters (1 page); a listing of observed and caluculated structure factors (17 pages). Ordering information is given on any current masthead page.

<sup>(14)</sup> For recent examples involving bridge-terminal alkylidene move-ment, see: (a) Messerle, L.; Curtis, M. D. J. Am. Chem. Soc. 1982, 104, 889. (b) Dyke, A. K.; Knox, S. A. R.; Mead, K. A.; Woodward, P. J. Chem. Soc., Chem. Comm. 1981, 861. (c) Kroswagn, R.; Alt, R.; Septh, D.; Soc., Chem. Comm. 1981, 861. (c) Kroswagn, K.; Alt, K.; Septin, D.;
 Zeigler, M. L. Angew. Chem. 1981, 93, 1073. (d) Casey, C. P.; Fagan, P. J.;
 Miles W. H. J. Am. Chem. Soc. 1982, 104, 1134. Theopold, K. H.;
 Bergman, R. G. J. Am. Chem. Soc. 1983, 105, 464. (f) Holmgren, J. R.;
 Shapley, J. R. Organometallics 1985, 4, 793.

<sup>(15)</sup> In both mechanisms microscopic reversibility demands that the rearrangement proceed in both directions, but the equilibrium apparently favors 3c strongly.

<sup>(16)</sup> Brown, S. C.; Evans, J. J. Chem. Soc., Dalton Trans. 1982, 1049.

 <sup>(17)</sup> Bryan, E. G.; Alison, F.; Johnson, B. F. G.; Lewis, J.; Matheson,
 T. W. J. Chem. Soc., Dalton Trans. 1978, 196.
 (18) (a) Mayr, A.; Lin, Y. C.; Boag, N. M.; Kampe, C. E.; Knobler, C.
 B.; Kaesz, H. D. Inorg. Chem. 1984, 23, 4640. (b) Kampe, C. E.; Kaesz, H. D. Inorg. Chem. 1984, 23, 4646.

<sup>(19)</sup> Lichtenberger, D. L.; Brown, T. L. J. Am. Chem. Soc. 1978, 100, 366 and references therein.