carbon-carbon bond insertion or carbon skeleton rearrangement occurring.

MC5H6+ reacts readily as shown in reactions **50** and **51.**

$$
Organometallis 1
$$
\n
$$
Organometallis 1
$$
\n
$$
carbon-carbon bond insertion or carbon skeleton rearrangement occurring.
$$
\n
$$
MC_5H_6^+
$$
\n
$$
+ \bigcap
$$
\n
$$
MC_6H_6^{} + \bigcap
$$

The two product ions probably have structures corresponding to dicyclopentadiene and metallocene complexes, respectively. Although Sc⁺-benzene and Y⁺-benzene ions react further to give dibenzene metal ions, $7,10$ this secondary reaction was not observed in their lanthanum counterpart, consistent with the general pattern that secondary reactions are slower **as** one goes down the group **3** metals.

The $LaC₅H₆⁺$ ion structure was confirmed through isotope exchange and CID experiments. No H/D exchange with C_2D_4 was observed, suggesting a lanthanum cyclopentadiene structure, instead of a lanthanum cyclopentadienyl hydride structure. CID at 38 eV gives a predominant $LaC_5H_4^+$ ion as well as two small peaks corresponding to La⁺ and LaC₃H₂⁺. This result is consistent with the cyclopentadiene structure, **as** opposed to an acyclic structure where CID would produce a great variety of cleavage fragments.

The $LaC_6H_6^+$ CID gives a predominant peak corresponding to the loss of the whole ligand and two minor peaks with the formulae LaC_2^+ and $LaC_6H_4^+$, consistent with a lanthanum-benzene structure.

Conclusion

The reactions of $La⁺$ with alkanes are very similar to that of its first- and second-row congeners, Sc+ and **Y+.** Their similarity in reactivity toward alkanes well demonstrates their **similar** electronic structures. In analogy with $Sc⁺$ and $Y⁺$, La⁺ exhibits very high reactivity toward alkanes. While multiple dehydrogenation is the predominant process for Y⁺ and La⁺ with small alkanes, abundant carbon-carbon bond and dehydrogenation product ions are formed for acyclic alkanes larger than C_3 . Particularly interesting is the formation of dialkyl ions. Only ringcleaved product ions are formed for Y^+ and La⁺ reacting

with cyclopropane, while dehydrogenation is predominant for larger cyclic alkanes. Second-row transition-metal ions such **as** Rh+,2 Y+, and Nb+ **32** display enhanced ability to dehydrogenate, and La+ seems to further this trend as compared to $Sc⁺$ and $Y⁺$. This suggests a possible generalization that down the periodic table of d-block elements, gas-phase monovalent positive ions tend to exhibit a greater ability to dehydrogenate alkanes. Also interesting is the apparent formation of two distinct $\text{YC}_4\text{H}_6{}^+$ and LaC4H6+ ions, one believed **to** have the butadiene structure generated from n-butane and the other having the trimethylenemethane structure generated from isobutane or neopentane.

Another interesting trend is the decreased tendency for primary product ions to participate in secondary reactions down the group. While secondary reactions are facile for Sc+ and **Y+** reactions with alkanes, with the latter being usually slower, only three C_3-C_5 cyclic alkanes react with their lanthanum primary product ions rapidly enough to give secondary product ions observable under our experimental conditions.

Finally, this work has provided preliminary information on a number of reaction mechanisms. Further detailed studies are underway in our laboratory to test the conclusions drawn in this study.

Acknowledgment is made to the Division of Chemical Sciences in the Office of Basic Energy Sciences in the United States Department of Energy (DE-AC02- 80ER10689) for supporting this research and to the National Science Foundation (CHE-8310039) for continued support of the FTMS. H.Y. wants to thank the Chinese Government for **1** year of CGP (Chemistry Graduate Program) fellowship support.

Registry No. La+-CH2, **105039-61-0;** Sc', **14336-93-7; Y+, 14782-34-4;** La', **14175-57-6;** CH,, **74-82-8;** C2Hs, **74-84-0;** C3HB, **7498-6;** n-C4Hlo, **106-97-8;** n-pentane, **109-66-0;** n-hexane, **110-54-3;** n-heptane, **142-82-5;** n-dodecane, **112-40-3;** isobutane, **75-28-5;** neopentane, **463-82-1;** cyclopropane, **75194,** cyclobutane, **287-23-0;** cyclopentane, **287-92-3;** cyclohexane, **110-82-7;** n-octane, **111-65-9;** n-nonane, **111-84-2;** n-decane, **124-18-5.**

(32) Buckner, S.; MacMahan, T.; Freiser, B. S., unpublished results.

Theoretical Study of the Hydrogenation of Metal-Ligand *7r* **Bonds: Reaction of Ci,TICH, with H, To Form Ci,TiHCH,**

A. K. Rapp6

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Received June 25, 1986

Correlated ab initio theoretical calculations at the valence double ζ plus polarization level are used to study the addition of dihydrogen across a titanium-carbon π bond. We find the reaction occurs with a small activation energy ($\Delta H^*_{300\text{K}} = 10.5$ kcal/mol) from a weakly bound H₂ adduct complex ($\Delta H_{300\text{K}} =$ small activation energy ($\Delta H^*_{300\mathrm{K}} = 10.5$ kcal/mol) from a weakly bound H_2 adduct complex ($\Delta H_{300\mathrm{K}} = 3.8$ kcal/mol). The reaction is also fairly exothermic ($\Delta H_{300\mathrm{K}} = 21.5$ kcal/mol). The explanation small barrier is precisely the same as for previously studied four-center **2** + **2** reactions. The geometry of the transition state for this reaction (and related four-center $2 + 2$ reactions) is quite similar to related organic radical plus bond reactions.

There are few documented examples of the hydrogenstion of metal-ligand multiple bonds (eq $1a-c$),^{$1-a$} despite

(1) **Schrock,** R. **R.** *Science (Washington, D.C.)* **1983,** *219,* **13-18.**

Introduction the analogy to other more common metal-ligand fourthe analogy to other more common metal-ligand four-
center $2 + 2$ reactions. This paucity is due to either
 $M=CR_2 + H_2 \rightarrow M(H)(CHR_2)$ (1a)

- (la) M=CR₂ + H₂ \rightarrow M(H)(CHR₂)
M=NX + H₂ \rightarrow M(H)(NHX)
	- $(1b)$ $M = NX + H_2 \rightarrow M(H)(NHX)$
 $M = O + H_2 \rightarrow M(H)(OH)$
	- **(IC)**

Figure 1. The reaction energy diagram for addition of H_2 across the π bond of Cl₂TiCH₂. The energies are $\Delta \Delta H_{300K}$ obtained from the CI calculations and computed vibrational frequencies and moments of inertia.

prohibitively high activation energetics or an inherent endothermicity for these reactions. Theoretical study will help clarify the energetics of this reaction type as well as provide data for transition-state geometric and energetic comparisons with the other subsets of the general class of metal-ligand four-center $2 + 2$ reactions (eq 2a-d). An a for transition-state geometric and energetic
a for transition-state geometric and energetic
s with the other subsets of the general class of
ind four-center $2 + 2$ reactions (eq 2a-d). An
 $M = L + x = Y \longrightarrow M - L$ (2a)

$$
M = L + X = Y \longrightarrow M - L
$$
\n
$$
\downarrow
$$
\n
$$
M - L + X = Y \longrightarrow M - X - Y - L
$$
\n
$$
M - L + X = Y \longrightarrow M - X + L - Y
$$
\n(2b)\n
$$
M - L + X - Y \longrightarrow M - X + L - Y
$$
\n(2c)\n
$$
M - L + X \longrightarrow Y \longrightarrow M - X + L - Y
$$
\n(2d)

H $X = Y \longrightarrow M - X - Y - L$ (2b)

$$
M = L + X \longrightarrow W - LY
$$
 (2d)
\n
$$
\downarrow
$$

example of the first reaction $(2a)$ is olefin metathesis.⁴ The second (2b) is exemplified by olefin insertion and polymerization.⁵ The third $(2c)$ is less common, but, recently, alkane exchange involving *Sc* and Lu complexes has been reported.⁶ The fourth member has only recently been documented.⁷⁻⁹ Casey and Neumann⁷ have observed that low-valent carbenes can be reduced by dihydrogen, though this reaction might occur through the prior oxidative addition of H_2 (eq 3). Schrock and Wengrovius

up the prior axis, we addition of H₂ (eq 3). Schrock and Wengrovius
$$
{}^{C_6H_5}
$$
 + H₂ → CH₂(C₆H₅)₂ + W(CO)₆ (3)

have demonstrated the addition of H_2 across a high-valent alkylidyne π bond (eq 4), and Rothwell and co-workers⁹ have described the intramolecular addition of C-H bonds across metal-carbon π bonds (eq 5). The reverse α abstraction or elimination reaction is more common.¹⁰

(3) Sheldon, R. A,; Kochi, J. K. *Metal-Catalyzed Oxidations of Or-*

ganic Compounds; Academic: New York, 1981.
(4) Grubbs, R. H. *Prog. Inorg. Chem.*, 1978, 24, 1–50. Calderon, N.;
Lawrence, J. P.; Ofstead, E. A. *Adv. Organomet. Chem.* 1979, 17, 449–492.
Ivin, *Olefin, Metathesis*; Academ

(5) Pino, P.; Mulhaupt, R. *Angew.* Chem., *Int. Ed. Engl.* **1980, 19, 857-875.**

001–0101.
L. J. Chem. Soc., Chem. Commun. 1983, 276–277. Watson, P. L. J. Am.
L. J. Chem. Soc., Chem. Commun. 1983, 276–277. Watson, P. L. J. Am.
Chem. Soc. 1983, 105, 6491–6493. Thompson, M. E.; Bercaw, J. E. Pure *Appl. Chem.* **1984,56,1-11.** Watson, P. L.; Parshall, G. W. *Acc. Chem.* Res. **1985, 18, 51-56.** Bercaw, **J. E.;** Davies, D. L.; Wolczanski, P. T. *Organometallics* **1986, 5, 443-450.**

(7) Casey, C. P.; Neumann, S. M. J. *Am. Chem.* **SOC. 1977, 99, 1651-1652.**

(8) Wengrovius, **J.** H.; Schrock, R. R.; Churchill, M. R.; Wasserman, H. J. *J. Am. Chem.* SOC. **1982,104, 1739-1740.**

(9) Chamberlain, **L.** R.; Rothwell, I. P.; Huffman, J. C. J. *Am. Chem.* SOC. **1982,104,7338-7340.** Chamberlain, L. **R.;** Rothwell, A. P.; Rothwell, I. P. *Ibid.* **1984, 106, 1847-1848.** Chamberlain, L. R.; Rothwell, I. P.; Huffman, J. C. *Zbid.* **1986, 108, 1502-1509.**

Results **and** Discussion

In this paper we present a study on the hydrogenation of a titanium-carbon π bond (reaction 6). The dichloro ligand set was used to retain maximal consistency with previous theoretical work.¹¹⁻¹⁴ The methodology used is described in the theoretical details section below.

CI₂Ti =CH₂ **+** H₂ - CI₂Ti CH₃ (6) described in the theoretical details section below.

$$
Cl_2Ti = CH_2 + H_2 \longrightarrow Cl_2Ti \xrightarrow{V^*} H
$$
 (6)

The barrier for reaction 6 in the forward direction is small, ΔH^*_{300K} = 6.7 kcal/mol relative to free H₂ and 10.5 kcal/mol relative to complexed H_2 (see Figure 1). This

is similar to the previously calculated barriers'l-l3 (eq 7-9). **CIpTi=CH2 t CHp=CHp** - **ClpTi"' ,cH2,CH2 .Ea** = **6** kcal/rnol **(7) .CH2** <,,,

$$
Cl2Ti-H+ + D2 \rightarrow Cl2Ti-D+ + HD Ea = 2 kcal/mol
$$
\n(8)

$$
Cl_2Ti-CH_3^+ + CH=CH_2 \rightarrow Cl_2Ti-C_3H_7^+ \quad E_a = 10 \text{ kcal/mol} \quad (9)
$$

For reaction 6, we also find a small binding energy for H_2 to the Lewis acidic Cl₂Ti=CH₂ fragment $(AH_{300K} = 3.\bar{8})$ kcal/mol). This interaction is simply Lewis acid-base in nature and is substantially weaker than that found for reaction of ethylene with this fragment.¹¹ In fact, when entropy is considered,¹⁵ the equilibrium favors dissociated H_2 (ΔG_{300K} = +3.6 kcal/mol). This can be contrasted to

(14) Koga, **N.;** Obara, S.; Kitaura, K.; Morokuma, K. J. *Am. Chem.* **SOC. 1985,107, 7109-7116.**

(15) The calculated moments of inertia, vibrational frequencies, and symmetry factors are used **to** determine the temperature dependence of the ΔH and S for each of the species along the reaction coordinate. The dominant entropic difference between free H₂ and the complexed form is the loss of translational degrees of freedom.

⁽²⁾ Nugent, W. A.; Haymore, B. L. *Coord. Chem. Rev.* **1980, 31, 123-175.** Dehnicke, K.; Strahle, J. *Angew. Chem., Znt. Ed. Engl.* **1981, 20,413-486.**

⁽¹⁰⁾ Pu, L. S.; Yamamoto, A. J. *Chem.* SOC., *Chem. Commun.* **1974,** 9–10. Cooper, N. J.; Green, M. L. H. *Ibid.* 761–762. Schrock, R. R. J.
Am. Chem. Soc. 1975, 97, 6577–6578. Schrock, R. R.; Sharp, P. R. *Ibid.*
1978, 100, 2389–2399. Malatesta, V.; Ingold, K. U.; Schrock, R. R. J.
Orga

Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 3210-3222. Cooper, N. J.;
Green, M. L. H. J. Chem. Soc., Dalton Trans. 1979, 1121-1127.
(11) Rappé, A. K.; Upton, T. H. Organometallics 1984, 3, 1440-1442.
Upton, T. H.; Rappé, A

⁽¹³⁾ Steigerwald, M. L.; Goddard 111, W. A. J. *Am. Chem.* **SOC. 1984, 106,308-311;** Rabd, H.; Saillard, J.-Y.; Haffmann, R. J. *Am. Chem.* SOC. **1986.108.4327-4333.**

Figure 2. Contour plots of the **GVB** orbitals defining the reactive space for the addition of H_2 across the π bond of Cl₂TiCH₂ along the reaction coordinate. The plotting plane contains titanium, carbon, and both hydrogens that originate from $H₂$. The first column represents the π complex, the second column the transition state, and the final column the product methyl hydride. The first two rows are the one-electron orbitals for the H_2 bond pair, which turns into a C-H bond pair. The third row starts **as** the p orbital on carbon π bonded to titanium and ends up as an s orbital on hydrogen. The final row is paired to the third row, initially as a Ti-C *K* bond, ultimately as a Ti-H *u* bond.

the recently observed group $6-8$ H_2 adduct complexes where the bound H_2 unit is stable.¹⁶ For these systems the metal can participate in back-bonding to the σ^* orbital of the H₂^{16b} though the interaction is dominantly σ donor.

The small barrier for reaction 6 is due to the ease with which the Ti $d\pi$ orbital originally bonded to methylene can rehybridize. Because this d orbital can change its shape during the reaction, it can retain overlap with the methylene p orbital **as** it moves from carbon to Ha. This orbital motion along the reaction coordinate is indicated in 1.

$$
\begin{array}{c}\nH^a \longrightarrow H^b \\
\hline\nT i \longrightarrow CH_2 \\
1\n\end{array}
$$

The GVB orbital contour plots demonstrating this orbital motion are shown in Figure **2.** The d orbital involved in

Figure 3. Relevant geometric coordinates for the transition states of three examples of analogous transition-metal-containing four-center reactions and organic three-center reactions.

covalent π bonding to the p orbital of the methylene ligand (row **4** of Figure **2)** rehybridizes along the reaction coordinate permitting it to retain substantial overlap with the p orbital (row **3** of Figure **2)** which moves from the methylidene carbon to H^a . The Ti-C π bond is transformed into a Ti-H^a σ bond. This orbital motion and rehybridization occur in response to the delocalization of the H_2 σ bond pair from the H^a-H^b bonding region to the C-H^b bonding region where a σ bond is formed between carbon and Hb in the product methyl hydride (rows 1 and **2** of Figure **2).**

The same orbital motion was observed to occur for 2^{11} and 413 and is not inconsistent with the published description of 3^{12} As previously discussed¹¹ for 2, the π bond

between C^a and C^b is converted into a σ bond between C^b and C^c . In response to this, the π bond between Ti and C^c transforms into a σ bond between Ti and C^a . For 3, Fujimoto and co-workers used paired interacting orbitals 12 to indicate that the π bond between C^a and C^b does become a σ bond between C^b and C^c and the σ bond between Ti and C^c does change into a σ bond between Ti and C^a . For 4, Steigerwald and Goddard^{13a} showed that the σ bond between H^a and H^b turns into a σ bond between H^b and H^c. In response to this, the σ bond between Ti and H^c rearranges into a σ bond between Ti and H^a. In each case, the orbital originally on center C necessarily builds in the orthogonality constraints to the bond pair moving from between centers **A** and B to be between centers B and C. Thus, all four subsets of four-center metal containing **2** + **2** reactions occur with small barriers for precisely the same electronic reasons.

Comparison of the geometries of the transition states for all four subsets of this class of reaction with the transition states for the analogous radical plus bond reactions¹⁷⁻¹⁹ (see Figure 3) leads us²⁰ to the following observation: addition of the metal orbital and the fourth electron provides only a modest perturbation to the transition state for the analogous three-electron radical plus bond reaction. The major feature ascribed to the metal

⁽¹⁶⁾ (a) Kubas, G. J.; **Ryan, R. R.; Swanson, B.** I.; **Vergamini, P. J.;** Wasserman, H. J. Am. Chem. Soc. 1984, 106, 451-452. (b) Hay, P. J.
Chem. Phys. Lett. 1984, 103, 466-469. (c) Morris, R. H.; Sawyer, J. F.; Shiralian, M.; Zubkowski, J. D. *J. Am. Chem. Soc.* 1985, 107, 5581-5582. **(d) Crabtree, R. H.; Lavin,** *M. J. Chem. Soc., Chem. Commun.* **1985,** 794-795.

⁽¹⁷⁾ Amaud, R.; Barone, V.; Olivella, *S.;* **Sole, A.** *Chem. Phys. Lett.* **1985,** *118,* **573-579.**

⁽¹⁸⁾ Walch, *S.* **P.** *J. Chem. Phys.* **1980, 72, 4932-4940.**

⁽¹⁹⁾ Liu, B. *J. Chem. Phys.* **1984,** *80,* **581.**

⁽²⁰⁾ Upton, T. **H.; Rapp6, A. K., unpublished results.**

is the capacity for its participating orbital (the fourth orbital in the $2 + 2$ reaction) to rehybridize through the participation of an additional, empty d orbital, retaining overlap with the third or radical orbital of the bond plus radical reaction.

Summary

We have found the addition of dihydrogen across a titanium-carbon π bond occurs with a small activation energy. The explanation for this small barrier is precisely the same as for previously studied four-center $2 + 2$ reactions.¹¹⁻¹⁴ The geometry of the transition state for this reaction (and related $2 + 2$ reactions) is observed to be quite similar to related organic radical plus bond reactions. Reaction 6 is decidedly exothermic.

Calculational Details

A. Basis Sets and Effective Potentials. All of the calculations reported here were carried out by using Cartesian Gaussian basis sets. For both Cl²¹ and Ti,¹¹ an effective potential was used to replace the core electrons allowing self-consistent orbital optimization to be carried out only for the valence electrons. For geometry optimization, a $(7s,4p/3s,2p)$ basis was used for carbon,²² and a $(5s/2s)$ basis, scaled by 1.2, was used for the hydrogens.²³ The carbon basis was augmented with a single set of d Gaussians ($\zeta = 0.75$) for a final set of calculations at the optimum geometries. The H_2 hydrogen basis was augmented with a single set of p Gaussians ($\zeta = 0.425$) for the final set of calculations at the optimum geometries. For chlorine a valence minimum basis $(3s,3p/1s,1p)^{21}$ was used. For Ti, a valence double- ζ (3s,2p,4d/2s,2p,2d) basis²⁴ was used.

B. Wave Functions. The geometries of the reactant, transition state, and product were each determined by using $GVB(2/4)$ wave functions and analytic gradients (discussed below). For the reactant and transition state, the Ti-C π and H-H σ bonds were explicitly correlated. For the product, the Ti-H and Ti-C σ bonds were correlated. **For** the final optimized geometries, GVB(3/6) wave functions were obtained and CI calculations were performed consisting of RCI quandruples plus all single and double excitations from the GVB orbitals to the entire virtual space. For the reactant and transition state, the Ti–C σ and π H–H σ bonds were explicitly correlated. For the product, the Ti-H, Ti-C, and one of the C-H σ bonds were correlated.

C. Geometry Optimizations. As mentioned above, the geometries of the reactant, transition state, and product were determined by using analytic derivatives of the form

$$
d_h = \partial E(\Psi_{\rm GVB})/\partial q_i
$$

for all Cartesian coordinates *q* of each atom *i* in the molecule, using the numerical procedure of Dupuis and King25 and the expression for the energy derivative of a GVB "perfect pairing" wave function defined by Morikuma et al.²⁶ Second derivatives $k_{\mu,mj}$ were estimated by using Badger's rules²⁷ and updated with finite difference of the first derivatives at each geometry by using a procedure

Table I. Molecular Coordinates and C1 Total Energies"

atom	x	y	2
(a) $Cl_2Ti=CH_2 CI$ Total Energy = -1806.064573			
Ti	0.0	0.0	0.0
Cl ₁	-2.1897338	0.0	-0.8323704
C12	2.1897338	0.0	-0.8323704
C	0.0	0.0	1.935
Η1	-0.9104060	0.0	2.521 1883
H ₂	0.910 406 0	0.0	2.521 1883
(b) $Cl_2Ti=CH_2·H_2 CI$ Total Energy = -1807.233 537			
Ti	0.0	0.0	0.0
C11	-2.1632410	-0.3450702	-0.8352085
Cl ₂	2.1632410	$-0.345\,070\,2$	-0.8352085
C.	0.0	0.0	1.93282
H1	-0.9109801	-0.0075780	2.5188249
H ₂	0.9109801	-0.0075780	2.5188249
H3	0.0	2.428 060 3	-0.3377592
Η4	0.0	2.384 273 4	0.3992515
(c) $Cl_2Ti=CH_2·H_2$ Transition-State CI Total Energy = -1807.209767			
Ti	0.0	0.0	0.0
Cl1	-2.1496468	-0.5126693	-0.7915453
C12	2.1496468	-0.5126693	-0.7915453
C	0.0	0.0	1.9623
H1	-0.9042461	-0.0886447	2.5459809
H ₂	-0.9043461	-0.0886447	2.5459809
H_3	0.0	2.025 767 5	0.635 578 7
H4	0.0	1.3614859	1.4547781
(d) $Cl2TiHCH3 CI Total Energy = -1807.258375$			
Ti	0.0	0.0	0.0
Cl ₁	-2.1149280	-0.6959665	-0.6667953
C12	2.1149280	-0.6959665	-0.6667953
\mathbf{C}	0.0	0.0	2.1126
H1	-0.9031052	-0.5008694	2.430 422 3
$_{\rm H2}$	0.903 105 2	-0.5008694	2.430 422 3
H3	0.0	1.694 475 2	-0.2350495
H4	0.0	1.052 523 5	2.3723442

Coordinates are in angstroms and energies in hartrees.

implemented by Upton and Rappé. 20 With the assumption of the **total** potential near the minimum to be of the form V(r) = *Vo* + *dr* + *f/,kr2*

$$
V(r) = V_0 + dr + \frac{1}{2}kr^2
$$

the global minimum in the potential was found by using successive Newton-Raphson steps,²⁸ $\Delta r = -d/k$ to define new test geometries. To locate the transition state, the lagrange multiplier technique of Simons and co-workers²⁹ was used. At the optimized transition-state structure, steps were taken along the reaction coordinate with the above described CI wave function to obtain the final transitionstate geometry (the CI geometry only differed by 0.0497 **A** from the GVB-PP geometry). The final geometries and CI total energies are collected in Table I.

Acknowledgment. The author thanks Drs. T. H. Upton and C. J. Casewit for many helpful discussions. This work is supported by NSF Grant CHE-8405399. Acknowledgement is made to the donors of The Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. Acknowledgement is made to the CSU Supercomputing Project for partial support of this research.

Note Added in Proof. Bercaw and co-workers have reported the addition of dihydrogen across the metalnitrogen π bond in the complex C_{P2}*ScNHPh.³⁰

Registry No. Cl₂TiCH₂, 79899-81-3; Cl₂TiHCH₃, 105930-82-3.

⁽²¹⁾ Rapp6, A. K.; Smedley, T. A.; Goddard 111, W. A. J. *Phys. Chem.* 1981, 85, 1662-1666.

⁽²²⁾ Rapp6, A. K.; Goddard 111, W. A., unpublished results. (23) Huzinaga, S. *J.* Chem. Phys. 1965,42, 1293-1302. (24) Rapp€, A. K.; Smedley, T. A.; Goddard 111, W. A. J. Phys. *Chem.*

^{1981,85, 2607-2611.}

⁽²⁵⁾ Dupuis, M.; and King, H. F. J. Chem. *Phys.* 1978,68,3998-4004. (26) Kato, *S.;* Morokuma, K. Chem. *Phys.* Lett. 1979, *65,* 19-25. Goddard, J. D.; Handy, N. C.; Schaefer 111, H. F. *J.* Chem. Phys. 1979, *71,* 1525-1530.

⁽²⁷⁾ Badger, R. M. *J.* Chem. *Phys.* 1934,2,128-131; 1935,3,710-714.

⁽²⁸⁾ Schlegel, H. B. *J. Comput.* Chem. 1982, 3, 214-218.

⁽²⁹⁾ Simons, J.; Jorgensen, P.; taylor, H.; Ozment, J. J. Phys. Chem. 1983,87, 2745-2753.

⁽³⁰⁾ Bercaw, J. E.: Davies, D. L.; Wolczanski, P. T. Organometallics 1986, **5,** 443-450.