7). Thus, the photochemical reaction of $cis[R_2Co(bpy)_2]^+$ with R'Br produces R', $[RCo(bpy)_2]^+$, and RBr (eq 7).⁴³ The benzyl and allyl radicals give mainly the coupling products (1,2-diphenylethane and 1,5-hexadiene, respectively) together with small amounts of byproducts derived from the hydrogen abstraction from a solvent (toluene and propene, respectively) as shown in Table II. The carbanion ligand in $[RCo(bpy)_2]^+$ may react readily with R'Br to produce the more stable carbanion ligand, and [R'Co- $(bpy)_2$ ⁺ thus formed may undergo the coupling reaction with R'Br to yield R'-R' and $[Co(bpy)_2Br]^+$. [RCo-(bpy)₂Br]⁺ may also participate in a cross-coupling reaction with R'Br, which is shown by the broken line in Scheme II, yielding R-R' as a minor byproduct (ethylbenzene, propylbenzene, 1-butene, and 1-pentene for the cis- $[Me_2Co(bpy)_2]^+$ -PhCH₂Br, *cis*- $[Et_2Co(bpy)_2]^+$ -PhCH₂Br, $cis-[Me_2Co(bpy)_2]^+-C_3H_5Br$, and cis-[Et₂Co- $(bpy)_2]^+-C_3H_5Br$ systems, respectively). According to Scheme II, the stoichiometry of the photoredox reaction of cis-[R₂Co(bpy)₂]⁺ with R'Br is 1:3 (eq 5), in contrast with the case in Scheme I.

The photoredox reaction of cis-[(PhCH₂)₂Co(bpy)₂]⁺ with allyl bromide (Scheme III) is the most complicated case, where the photocleavage reaction occurs to give [PhCH₂Co(bpy)₂]⁺, which can undergo the exchange, coupling, and cross-coupling reactions with comparable rates, because of similar stabilities between the benzyl and allyl anions to yield 1,2-diphenylethane and 1,5-hexadiene as the homocoupling products as well as 4-phenyl-1-butene as the cross-coupling product (Table II). According to Scheme III, the stoichiometry is 1:1 as the case of Scheme I.

In conclusion, the photocleavage of the cobalt-carbon bond of *cis*-dialkylcobalt(III) complexes produces monoalkylcobalt(II) complexes as reactive intermediates in which the alkyl group has carbanion character, inducing the facile reduction of benzyl and allyl bromides to yield coupling and cross-coupling products depending on the stabilities of the carbanion ligands.

Low-Temperature Photochemistry of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$: Establishment of $(\eta^5-C_5Me_5)Fe(CO)(CH_2SiMe_2)H$ as the Intermediate in the Rearrangement of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ to $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$

Claudia Lewis Randolph and Mark S. Wrighton*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received June 3, 1986

Near-UV (355-nm) photolysis of (η^5 -C₅Me₅)Fe(CO)₂CH₂SiMe₂H in alkane solution under 1 atm of CO or saturated with PPh₃ results in the nearly quantitative formation of (η^5 -C₅Me₅)Fe(CO)(L)SiMe₃ (L = CO, PPh₃). The intermediate in this rearrangement is shown to be (η^5 -C₅Me₅)Fe(CO)(CH₂SiMe₂)H by low-temperature IR, UV-vis, and NMR studies. Near-UV irradiation of (η^5 -C₅Me₅)Fe(CO)₂CH₂SiMe₂H at 77 K in a 1-pentene or 2-methyltetrahydrofuran matrix results in loss of CO as evidenced by the growth of an IR absorption due to free CO at 2132 cm⁻¹. A 16e (η^5 -C₅Me₅)Fe(CO)CH₂SiMe₂H cannot be trapped by the donor matrices, nor can it be detected under any conditions used. Rather, even at 77 K the β -H is transferred from the Si to the Fe as evidenced by the decline of the IR absorption at 2101 cm⁻¹ associated with the Si-H bond. Although β -H transfer is the major photoprocess in alkane matrices at 77 K, the direct rearrangement of approximately 20% of the (η^5 -C₅Me₅)Fe(CO)₂CH₂SiMe₂H to (η^5 -C₅Me₅)Fe(CO)(CH₂SiMe₂)H resulting from β -H transfer is inert up to 225 K. The ¹H NMR of (η^5 -C₅Me₅)Fe(CO)(CH₂SiMe₂)H indicates that the complex is not fluxional even at the highest temperature at which it is chemically inert. This finding is consistent with the formulation of the M(CH₂SiMe₂) unit as a metallasilacyclopropane. Irradiation of (η^5 -C₅Me₅)Fe(CO)(CH₂SiMe₂)H. Warming of (η^5 -C₅Me₅)Fe(CO)(CH₂SiMe₂)H to 225 K in the presence of 1 atm of CO or PEt₃ results in the formation of (η^5 -C₅Me₅)Fe(CO)(CH₂SiMe₂)H. Warming of (η^5 -C₅Me₅)Fe(CO)(L)SiMe₃ (L = CO, PEt₃). The results confirm that M(CH₂SiMe₂)(H) complexes are intermediates in the conversion of M-CH₂SiMe₂H complexes to M-SiMe₃ complexes.

We would like to report the establishment of $(\eta^5-C_5Me_5)Fe(CO)(CH_2SiMe_2)H$ as the intermediate in the

rearrangement of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ to $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ (eq 1 and 2). A similar intermediate

⁽⁴³⁾ In the initial photochemical step in eq 7, the β -elimination pathway may also give the same species as the homolytic pathway by the facile reaction with R'Br in the presence of water, since the β -elimination pathway may be regarded as β -hydrogen transfer between the geminate radical pair following the homolytic cleavage of the cobalt-carbon bond; see: Tsou, T. T.; Loots, M.; Halpern, J. J. Am. Chem. Soc. 1982, 104, 623. However, the detailed mechanism is not clear at present.

Registry No. cis-[Me₂Co(bpy)₂]⁺, 71697-34-2; cis-[Et₂Co-(bpy)₂]⁺, 71697-32-0; cis-[(PhCH₂)₂Co(bpy)₂]⁺, 104013-21-0; trans-[Me₂Co(DpnH)], 105900-07-0; [MeCo(DH)₂py], 23642-14-0; [EtCo(DH)₂py], 25360-57-0; PhCH₂Br, 100-39-0; C₃H₅Br, 106-95-6; PhC₂H₄Ph, 103-29-7; C₆H₁₀, 592-42-7; PhC₄H₇, 768-56-9; PhCH₃, 107-35-7.

$$(\eta^{5}-C_{5}Me_{5})Fe(CO)(CH_{2}SiMe_{2})H \xrightarrow[CO]{CO} (\eta^{5}-C_{5}Me_{5})Fe(CO)_{2}SiMe_{3}$$
 (2)

has been proposed in the rearrangement of $(\eta^5-C_5H_5)$ Fe-(CO)₂CH₂SiMe₂H to $(\eta^5-C_5H_5)$ Fe(CO)₂SiMe₃.¹ The lability of other M-CH₂SiMe₂H complexes² has also been attributed to the presence of a reactive Si-H bond in the β -position.³

The reaction intermediates in photochemically induced β -H elimination from $(\eta^5$ -C₅R₅)W(CO)₃(alkyl) complexes have been characterized by low-temperature matrix-isolation techniques⁴ and by monitoring of the thermal chemistry which occurs upon warming of the matrix. These reaction intermediates include 16e $(\eta^5-C_5R_5)W$ - $(CO)_2(alkyl)$ complexes formed via loss of CO at 77 K and, for alkyls containing β -H's, trans- $(\eta^5-C_5R_5)W(CO)_2(al$ kene)H formed upon warming of the matrix to 196 K.4a More recently $cis-(\eta^5-C_5R_5)W(CO)_2(alkene)H$ has been detected from irradiation of the parent tricarbonyls at 12 K.⁴ We have employed similar matrix-isolation techniques to study photoinduced β -H transfer from M-CH₂SiMe₂H⁵ complexes with the aim of characterizing a metal silaethylene complex. Preliminary results have been published including the characterization of $cis-(\eta^5-C_5R_5)W(CO)_2$ - $(CH_2SiMe_2)H$ (R = H, Me).⁵ The W(CH_2SiMe_2) unit was characterized as a metallasilacyclopropane (I) without Si-C

multiple-bond character. We now report the establishment of $(\eta^5-C_5Me_5)Fe(CO)(CH_2SiMe_2)H$ as the intermediate in the photochemical rearrangement of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ to $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ (eq 1 and 2). It is important to note that analogous $(\eta^5-C_5Me_5)Fe(CO)(alkene)H$ complexes have been postulated as reaction intermediates but have not been fully characterized.⁶ As in the $cis-(\eta^5-C_5R_5)W(CO)_2(CH_2SiMe_2)H$ complexes,⁵ the bonding of the Fe(CH_2SiMe_2) fragment is proposed to be a metallasilacyclopropane (II).

(b) Lewis, C.; Wrighton, M. S. J. Am. Chem. Soc. 1983, 105, 7768.
(6) (a) Kazlauskas, R. J.; Wrighton, M. S. Organometallics 1982, 1, 602.
(b) Mahmoud, K. A.; Rest, A. J.; Alt, H. G. J. Chem. Soc., Dalton Trans. 1985, 1365.
(c) Randolph, C. L.; Wrighton, M. S., unpublished results.

Experimental Section

Materials. Tetrahydrofuran (THF, reagent grade, MCB) and hexanes (HPLC grade, Baker) were freshly distilled under N₂ from CaH₂. Methylcyclohexane (MCH, Photorex grade, Baker) and 2-methyltetrahydrofuran (2-MeTHF, reagent grade, Aldrich) were freshly distilled from Na under Ar. ClCH₂SiMe₂Cl (Petrarch) and BrSiMe₃ (Petrarch) were distilled under Ar prior to use. PPh₃ (Aldrich) was recrystallized from absolute EtOH prior to use. $[(\eta^5-C_5Me_5)Fe(CO)_2]_2$ (Pressure Chemical) and toluene- d_8 (99.5%, Crescent) were used as received.

Instrumentation. IR spectra were recorded by using either a Nicolet 7199 or a Nicolet 60SX Fourier transform spectrometer. All IR band positions are ± 1 cm⁻¹; spectra were recorded at 2-cm⁻¹ resolution. NMR spectra were recorded on either a Bruker 250or Bruker 270-MHz Fourier transform spectrometer. UV-vis spectra were recorded on either a Cary 17 or Hewlett-Packard Model 8451 A diode array spectrometer.

Irradiations. Irradiations of IR spectroscopy samples were performed by using a Bausch and Lomb SP 200W high-pressure Hg lamp equipped with a Pyrex filter and a 10-cm water filter to suppress IR and short wavelength UV emissions. A Hanovia 550-W medium-pressure Hg lamp was used for the irradiation of NMR samples. Quantum yields at 366 nm were measured by using a merry-go-round⁷ with a Hanovia 550-W medium-pressure Hg lamp equipped with Corning glass filters to isolate the 366-nm Hg emission. Ferrioxalate actinometry⁸ was used to determine light intensity, typically ~10⁻⁷ einstein/min incident on the 13 × 100 mm Pyrex ampules containing 3.0 mL of the sample.

Low-Temperature Spectra. Low-temperature IR and UV-vis spectra were obtained by using a Precision Cell, Inc., Model P/N 2100 variable-temperature cell with CaF_2 windows. Liquid N_2 or dry ice/acetone were used as coolants. NMR samples were prepared by irradiating the sample in an NMR tube immersed in dry ice/acetone bath contained in a quartz Dewar. The samples were removed from the dry ice/acetone bath and immediately transferred to the cooled probe of the NMR spectrometer.

Syntheses. All manipulations of organometallic complexes were carried out under Ar by using a Vacuum Atmospheres drybox or conventional Schlenk line techniques. ClCH₂SiHMe₂ was prepared by a modification of the published synthesis of ClC-H₂SiH₃.⁹ THF solutions of Na⁺[(η^5 -C₅Me₅)Fe(CO)₂]⁻ were prepared by stirring THF solutions of [(η^5 -C₅Me₅)Fe(CO)₂]² over fresh Na for 24 h. Suspended Na was removed from the solution by filtration.

 $(\eta^5-C_5Me_5)Fe(CO)_2)CH_2SiMe_2H$ was synthesized by adding a twofold excess of ClCH₂SiMe₂H to a 100 mL of THF solution of ~0.01 M Na⁺[$(\eta^5$ -C₅Me₅)Fe(CO)₂]⁻ and stirring at room temperature for no more than 30 min. Longer reaction times resulted in the rearrangement of the product to $(\eta^{\circ}-C_5Me_5)Fe(CO)_2SiMe_3$. THF was removed by vacuum and the brown residue extracted with hexanes. The extract was filtered and concentrated. The resulting (n⁵-C₅Me₅)Fe(CO)₂CH₂SiMe₂H was purified by passing it through a short Al_2O_3 column (no longer than 3 in.). The yellow product band was eluted with hexanes. Solid $(\eta^5-C_5Me_5Fe (CO)_2CH_2SiMe_2H$ was isolated by removal of the solvent under vacuum. An NMR of the solid dissolved in toluene- d_8 showed the compound to have some organic impurities. Further purification of the compound by sublimation resulted in removal of organic impurities, but partial ($\sim 5\%$) rearrangement of the $(\eta^5 - C_5 Me_5)Fe(CO)_2 CH_2 SiMe_2 H$ to $(\eta^5 - C_5 Me_5)Fe(CO)_2 SiMe_3$ also

^{(1) (}a) Pannell, K. H. J. Organomet. Chem. 1970, 21, 17. (b) Bulkowski, J. E.; Miro, N. D.; Sepelak, D.; Van Dyke, C. H. J. Organomet. Chem. 1975, 101, 267.

⁽²⁾ For a review of the chemistry of MSiMe₃ and MCH₂SiMe₂H complexes see: Cundy, C. S.; Kingston, B. M.; Lappert, M. F. Adv. Organomet. Chem. **1973**, No. 2, 253.

⁽³⁾ Cundy, C. S.; Lappert, M. F.; Pearce, R. J. Organomet. Chem. 1973, 59, 161.

^{(4) (}a) Wrighton, M. S.; Kazlauskas, R. J. J. Am. Chem. Soc. 1982, 104, 6005; 1980, 102, 1727. (b) Alt, H. G.; Eichner, M. E. Angew. Chem., Int. Ed. Engl. 1982, 21, 78. (c) Mahmoud, K. A.; Narayanaswamy, R.; Rest, A. J. J. Organomet. Chem. 1981, 222, C9. (e) Klein, B.; Kazalauskas, R. J.; Wrighton, M. S. Organometallics 1982, 1, 1338. (f) Mahmoud, K. A.; Rest, A. J.; Alt, H. G.; Eichner, M. E.; Jansen, B. M. J. Chem. Soc., Dalton Trans. 1984, 175. (g) Hooker, R. H.; Rest, A. J. J. Chem. Soc., Dalton Trans. 1984, 761. (h) Mahmoud, K. A. Rest, A. J.; Alt, H. G.; Cichner, M. E.; Jansen, B. M. J. Chem. Soc., Dalton Trans. 1984, 761. (h) Mahmoud, K. A. Rest, A. J., Alt, H. G. J. Chem. Soc., Dalton Trans. 1984, 761. (h) Mahmoud, K. A. Rest, A. J., Alt, H. G. J. Chem. Soc., Dalton Trans. 1984, 187. (i) Alt, H. G.; Mahmoud, K. A.; Rest, A. S. J. Organomet. Chem. 1983, 246, C37. (5) Lewis, C.; Wrighton, M. S. J. Am. Chem. Soc. 1983, 105, 7768.

⁽⁷⁾ Moses, F. G.; Liu, R. S. H.; Monroe, B. M. Mol. Photochem. 1969, 1, 245.

⁽⁸⁾ Hatchard, C. G.; Parker, C. A. Proc. R. Soc. London, Ser. A 1956, 235.

⁽⁹⁾ Kaesz, H. D.; Stone, F. G. A. J. Chem. Soc. 1957, 1433.

complex (₇ ⁵ -C ₅ Me ₅)Fe(CO) ₂ CH ₂ SiMe ₂ H			$\nu(CO), cm^{-1}$ (4 M ⁻¹ cm ⁻¹ or rel abs)		UV–vis, nm
	solv	<u> </u>	(0, 11 0)		$(\epsilon, \mathbf{M}^{-1} \mathbf{cm}^{-1})$
	MCH	298		2100 (300)	365 (970)
				1991 (5700)	240 (4400)
				1938 (6300)	250 (sh) (~9100)
		196	ν (Si–H)	2102	
				1990	
				1937	
		77	ν (Si–H)	2103 (360)	363
				1988 (6500)	363
				1934 (7600)	
	2-MeTHF	198	ν (Si–H)	2097	
				1985 (0.9)	
				1930 (1.0)	
		77	ν (Si–H)	2092	
				19 77	
				1919	
	1-pentene	298	ν (Si–H)	2101	
				1991 (0.9)	
				1938 (1.0)	
		77	ν (Si–H)	2101	
				1985	
				1929	
$(\eta^5 - C_5 Me_5) Fe(CO)(CH_2 SiMe_2) H$	MCH	77		1922	405, 325 (sh)
		196		1925	
	2-MeTHF	77		1907	
	1-pentene	77		1917	
(η ⁵ -C ₅ Me ₅)Fe(CO) ₂ SiMe ₃	MCH	298		1980 (6500)	250 (sh) (\sim 9400)
				1927 (7900)	285 (5000)
					333 (1900)
		77		1978 (0.8)	
				1921 (1.0)	
	1-pentene	298		1979	
				1925	
$(\eta^5 - C_5 Me_5) Fe(CO)(PPh_3) SiMe_3$	MCH	298		1895	
$(\eta^5-C_5Me_5)Fe(CO)(PEt_3)SiMe_3$	MCH	298		1892	
$[(\eta^{5} - \mathring{C}_{5} M \mathring{e}_{5}) Fe(CO)_{2}]_{2}$	MCH	298		1929 (14700)	533 (1500)
				1962 (8150)	420 (3000)
					362 (10100)

Table I. IR and UV-Vis Spectral Data for Relevant Complexes

Table II. NMR Data for Relevant Complexes^a

complex	temp, K	¹ Η, ^b δ	¹³ C, ^{b,c} δ
(η ⁵ -C ₅ Me ₅)Fe(CO) ₂ CH ₂ SiMe ₂ H	$\begin{array}{ccc} -C_5 Me_5) Fe(CO)_2 CH_2 Si Me_2 H & 298 & C_5 Me_5, \ 1.41 \\ Si Me_2, \ 0.37 \\ CH_2, \ -0.65 \ (\\ Si H, \ 4.48 \ (1, \\ \end{array})$		CO, 219.5 C_5 , 95.1 Me_5 , 9.1 $SiMe_2$, 0.1 CL
	200	C_5Me_5 , 1.26 (15, s) ^d SiMe ₂ , 0.54 (6, d) CH ₂ , -0.58 (2, d) SiH, 4.72 (1, m)	CH_{2} , -10.3 CO, 220.0 C_{5} , 95.0 Me_{5} , 9.1 $SiMe_{2}$, 0.6 CH_{2} , -16.8
$(\eta^5$ -C ₅ Me ₅)Fe(CO) ₂ SiMe ₃	298	C_5Me_5 , 1.54 (15, s) SiMe ₃ , 0.53 (9, s)	CO, 217.8 C ₅ , 94.6 Me_5 , 9.8 SiMe ₂ , 6.7
	200	C_5Me_5 , 1.39 (15, s) SiMe ₃ , 0.66 (9, s)	CO, 218.1 C ₅ , 94.4 Me ₅ , 9.7 SiMe ₂ , 6.7
$(\eta^5$ -C ₅ Me ₅)Fe(CO)(CH ₂ SiMe ₂)H	200	C_5Me_5 , 1.55 (s, 15) SiMe ₂ , 0.21 (s); 0.18 (s) ^d CH ₂ ~0.20, ^e ~0.62 (1, d, J = 10 Hz) FeH ~160 (s, 1)	CO, 220.2 C_5 , 90.1 SiMe ₂ , -1.4, -4.89 CH ₂ -20.39
$(\eta^5 - C_5 Me_5) Fe(CO)(PPh_3) Si Me_3^f$	298	C_5Me_5 , 1.42 (s, 15) SiMe ₃ , -0.05 (s, 9)	2000

^aAll data are for toluene- d_8 solutions unless noted otherwise. ^bChemical shifts vs. Si(CH₃)₄; relative integration, peak multiplicity, and coupling constants are given in parentheses for ¹H NMR. ^cSamples contain ~10 mg of Cr(acac)₃ as a relaxation agent. Spectra are ¹H-decoupled. ^dTotal relative integration for this area of the spectrum is seven protons. Decoupling experiments indicate that the resonance for one of the methylene protons is under one of the two inequivalent methyl groups. ^eThe resonance for this proton is under that of the resonances for the SiMe₂ protons. Decoupling experiments indicate this proton is coupled to the other methylene proton. ^fCyclohexane- d_{12} solution.

occurs. IR and UV-vis spectral data for $(\eta^5-C_5Me_5)$ Fe-(CO)₂CH₂SiMe₂H are given in Table I. NMR data are given in Table II.

 $(\eta^5-C_5Me_6)Fe(CO)_2SiMe_3$ was synthesized in the same manner as $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ by using a twofold excess of BrSiMe₃ instead of ClCH₂SiMe₂ in the reaction with Na⁺[$(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2$ in the reactin with Na⁺[$(\eta^5-C_5Me_5)Fe(CO)_$

Figure 1. Top: IR difference spectral changes accompanying near-UV irradiation of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$. Negative peaks show the disappearance of the $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ including the loss of the Si-H stretch (~2100 cm⁻¹). Positive peaks are due to free CO (2132 cm⁻¹), $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ (1978, 1922 cm⁻¹), and $(\eta^5-C_5Me_5)Fe(CO)(CH_2SiMe_2)H$ (1922 cm⁻¹). The ratio of the amount of $(\eta^5-C_5Me_5)Fe(CO)(2H_2SiMe_2)H$ formed to the amount of $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ formed is ~4:1. Bottom: IR difference spectral changes accompanying near-UV irradiation of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ in 1-pentene at 77 K. Negative peaks show the disappearance of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ in cluding the loss of the Si-H stretch (~2100 cm⁻¹). Positive peaks indicate the appearance of free CO (2132 cm⁻¹) and $(\eta^5-C_5Me_5)Fe(CO)(CH_2SiMe_2)H$ (1917 cm⁻¹). Note the absence of direct formation of $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$.

 $C_5Me_5)Fe(CO)_2]^-$. The resulting compound was purified by sublimation at 40 °C under vacuum. The elemental analysis is satisfactory (Schwarzkopf Microanalytical Laboratory). Anal. Calcd: C, 56.23; H, 7.55. Found: C, 56.22; H, 7.60. IR and UV-vis spectral data for $(\pi^5-C_5Me_5)Fe(CO)_2SiMe_3$ are given in Table I. NMR data are given in Table II.

Results and Discussion

Low-Temperature Irradiation of $(\eta^5 \cdot C_5 Me_5)$ Fe-(CO)₂CH₂SiMe₂H. Near-UV irradiation of ~10⁻³ M $(\eta^5 \cdot C_5 Me_5)$ Fe(CO)₂CH₂SiMe₂H in a 1-pentene matrix at 77 K results in the IR spectral changes shown in the bottom of Figure 1. Table I gives other relevant spectral data. Disappearance of the spectral bands in the CO stretching region of the starting dicarbonyl is rapid and is associated with the dissociative loss of carbon monoxide as evidenced by the growth of absorption at 2132 cm⁻¹ due to uncomplexed CO. An absorbance at 1917 cm⁻¹ appears upon irradiation of the dicarbonyl. Comparison of the absorbance changes of the band at 2132 cm⁻¹ with the absorbance changes of the bands of the starting dicarbonyl shows that for every molecule of starting material consumed one molecule of CO¹⁰ is produced. The band at

Figure 2. UV-vis spectral changes accompanying near-UV irradiation of $(\eta^5$ -C₅Me₆)Fe(CO)₂CH₂SiMe₂H at 77 K in methylcyclohexane. Trace 0 is a spectrum prior to irradiation. Trace 2 is a spectrum after 20 min of irradiation with a Pyrex-filtered high-pressure Hg lamp to give ~50% conversion to $(\eta^5$ -C₅Me₅)Fe(CO)(CH₂SiMe₂)H.

1917 cm⁻¹ can then be attributed to a monocarbonyl product. It is important to note that the absorption at \sim 2100 cm⁻¹ associated with the Si-H bond of the starting complex also declines and no new absorbance attributable to a Si-H bond appears. Quantitatively, the absorption associated with Si-H declines in a manner consistent with loss of one Si-H bond per CO released. Irradiation of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ at 77 K in 2-MeTHF results in almost the same spectral changes as those in a 1-pentene matrix. Even though 1-pentene and 2-MeTHF are 2e donor ligands, apparently neither can trap the presumed 16e intermediate formed upon loss of CO. The loss of the Si-H absorption concomitant with CO appearance in the matrix is consistent with transfer of the β -H to the Fe. Unfortunately, no absorption characteristic of the Fe-H could be seen, perhaps because it is too weak or because the transfer is incomplete. Attempts to locate the Fe-H stretch of the product by starting with $(\eta^5$ - $C_5Me_5)Fe(CO)_2CH_2SiMe_2D$ have not been successful.

The spectral changes that are seen upon irradiation of $(\eta^5 - C_5 Me_5) Fe(CO)_2 CH_2 Si Me_2 H$ at 77 K in a methylcyclohexane matrix are shown in the top portion of Figure 1. As in 1-pentene and 2-MeTHF matrices, the consumption of the starting dicarbonyl is associated with the loss of CO as evidenced by the growth of an absorption at 2132 cm⁻¹ due to uncomplexed CO. A monocarbonyl product band, analogous to that seen in 1-pentene and 2-MeTHF, appears at 1922 cm⁻¹. Interestingly, in addition to the 1922 cm⁻¹ band attributed to the monocarbonyl a band at 1978 cm⁻¹ which is associated with $(\eta^5$ -C₅M₅)Fe(CO)₂SiMe₃ appears. The second band of $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$, which is at 1921 cm⁻¹, is masked by the absorption of the monocarbonyl product at 1922 cm⁻¹. Comparison of the absorbance changes of the bands at 2132 and 1978 cm⁻¹ with the absorbance changes of the bands of the starting dicarbonyl show that for every molecule of starting material consumed either one molecule of CO¹⁰ or one molecule of $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ is produced. The ratio of CO loss to rearrangement is about 4:1.

UV-vis spectral changes accompanying the near-UV irradiation of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ in methylcyclohexane are shown in Figure 2. The spectrum found after photolysis is not that of $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ (Table I) and must be attributed, in part, to the mono-

⁽¹⁰⁾ Pope, K. R.; Wrighton, M. S. Inorg. Chem. 1985, 24, 2792.

carbonyl photoproduct. No low-energy visible absorption is detected. The failure to detect a substantially redshifted absorption suggests that the product monocarbonyl is not coordinatively unsaturated.^{4,11} Generally, photogenerated 16e species absorb at much lower energy than their 18e parents, owing to the stabilization of the lowest unoccupied molecular orbital upon loss of a 2e donor ligand. The disappearance of the band at $\sim 2100 \text{ cm}^{-1}$ associated with the Si-H bond; the similar (except for small "solvent" shifts) IR spectra of the monocarbonyl photoproduct in a methylcyclohexane, a 1-pentene, and a 2-MeTHF matrix; and the lack of a low-energy visible absorption band for the monocarbonyl product indicate that photoinduced β -H transfer occurs at 77 K resulting in the monocarbonyl product $(\eta^5 - C_5 Me_5) Fe(CO)(CH_2 SiMe_2) H$. This photochemistry parallels the photochemistry of $(\eta^5-C_5R_5)W(CO)_3CH_2SiMe_2H$ complexes (R = H, Me) which also undergo photoinduced loss of CO and β -H transfer at 77 K to form $cis_{-}(\eta^{5}-C_{5}R_{5})W(CO)_{2}H_{-}$ (CH₂SiMe₂).⁵ The relatively small UV-vis spectral changes that accompany photoreaction of $(\eta^5-C_5Me_5)Fe$ -(CO)₂CH₂SiMe₂H indicate that secondary photoreaction may be a problem. For this reason IR-monitored photoreactions have been measured at very low extent conversions (<5%) to avoid such difficulty. There is no evidence for problems in interpretation of primary events from irradiation of the initial photoproducts as deduced from IR spectral changes as a function of irradiation time.

The photochemistry of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ at 77 K is in contrast to the photochemistry of certain other $(\eta^5-C_5R_5)$ Fe(CO)₂alkyl complexes.⁶ For example, $(\eta^5-C_5R_5)$ Fe(CO)₂Me complexes typically show no productive photochemistry at 77 K in alkane matrices, apparently due to the reversibility of CO loss within the matrix cage. However, with a PVC matrix, where a coordinatively unsaturated species may be "stabilized" by interaction with the matrix, there is evidence of light-induced CO loss from $(\eta^5 - C_5 H_5) Fe(CO)_2 Me^{.12}$ The β -Si-H bond of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ acts as an intramolecular trap for the 16e $(\eta^5 - C_5 Me_5) Fe(CO) CH_2 Si Me_2 H$. The notion of intramolecular trapping of photogenerated 16e species from $(\eta^5-C_5R_5)Fe(CO)_2(\eta^1-CH_2C_6H_5)^{13}$ and $(\eta^5-C_5H_5)Fe(CO)_2(\eta^1-C_5H_5)^{14}$ in alkane matrices also accounts for their low-temperature photochemistry (eq 3 and 4). The η^1 -CH₂C₆H₅ and η^1 -C₅H₅ ligands, which are able

$$(\eta^{5}-C_{5}R_{5})Fe(CO)_{2}(\eta^{1}-CH_{2}C_{6}H_{5}) \xrightarrow[-CO]{-CO} (\eta^{5}-C_{5}R_{5})Fe(CO)(\eta^{3}-CH_{2}C_{6}H_{5}) (3)$$

$$(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}(\eta^{1}-C_{5}H_{5})\xrightarrow[-CO]{-CO}(\eta^{5}-C_{5}H_{5})Fe(CO)(\eta^{3}-C_{5}H_{5})$$
(4)

to bind in an η^3 -fashion upon CO loss, also serve as an intramolecular trap for the 16e intermediate derived upon prompt loss of CO from the parent dicarbonyl.

It is interesting that photochemical rearrangement of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ to $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ occurs in a methylcyclohexane matrix but not in the softer 1-pentene and 2-MeTHF matrices. Presumably, in the softer matrices CO escape is more efficient, allowing CO loss chemistry via the 16e fragment to dominate. In the harder methylcyclohexane matrix net CO loss is less efficient and a relatively inefficient rearrangement, presumably through metal-carbon bond cleavage and radical rearrangement (eq 5-7) emerges as competitive. The point

$$\begin{array}{c} (\eta^{5} \cdot C_{5} M e_{5}) Fe(CO)_{2} CH_{2} Si M e_{2} H \xrightarrow{n\nu} \\ [(\eta^{5} \cdot C_{5} M e_{5}) Fe(CO)_{2^{\bullet}} + \cdot CH_{2} Si M e_{2} H] \end{array} (5)$$

$$(\eta^{5} \cdot C_{5} M e_{5}) Fe(CO)_{2^{\bullet}} + \cdot CH_{2} Si M e_{2} H] \rightarrow [(\eta^{5} \cdot C_{5} M e_{5}) Fe(CO)_{2^{\bullet}} + \cdot Si M e_{3}] (6)$$

$$[(\eta^{5} \cdot C_{5}Me_{5})Fe(CO)_{2} \cdot + \cdot SiMe_{3}] \rightarrow (\eta^{5} \cdot C_{5}Me_{5})Fe(CO)_{2}SiMe_{3} (7)$$

is that the approximate 4:1 ratio of CO to $(\eta^5-C_5Me_5)Fe_5$ (CO)₂SiMe₃ likely does not illustrate the real primary ratio of CO loss to homolysis of the Fe-CH₂SiMe₂H bond. Indeed, at 196 K where methylcyclohexane is fluid, irradiation of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ does not give significant yield of any product other than $(\eta^5-C_5Me_5)Fe$ -(CO)(CH₂SiMe₂)(H) (vide infra). Light-induced homolysis of the Fe-alkyl bond has been established to be inefficient (compared to CO loss)¹³ in fluid solutions, but photochemical homolysis of the Fe-CH₃ bond can account¹³ for the photochemistry of $(\eta^5 - C_5 H_5) Fe(CO)_2 Me$ in a CO matrix.¹⁵ The rationale for homolysis of the Fe-CH₃ bond has been elaborated elsewhere.¹³ It should be noted that irradiation of $(\eta^5 - C_5 H_5)$ Fe(CO)₂CH₂SiMe₃ in the presence of nitrosodurene gives rise to strong EPR signals assigned to nitrosodurene adducts from $\cdot CH_2SiMe_3$ and $(\eta^5 - C_5H_5)$ -Fe(CO)2 radicals,¹⁶ providing support for the radical formation shown in eq 5.

Thermal Chemistry of $(\eta^5 - C_5 R_5) Fe(CO)$ -(CH₂SiMe₂)H. Warming of a methylcyclohexane matrix containing photogenerated $(\eta^5-C_5Me_5)Fe(CO)(CH_2SiMe_2)H$ to 196 K results in no significant IR spectral changes. Irradiation of $(\eta^5 - C_5 Me_5)Fe(CO)_2 CH_2 SiMe_2 H$ in a methylcyclohexane solution at 196 K also results in the clean formation of $(\eta^5-C_5Me_5)Fe(CO)(CH_2SiMe_2)H$ (Figure 3). The stability of $(\eta^5 - C_5 Me_5)Fe(CO)(CH_2SiMe_2)H$ at 196 K allows its characterization by ¹H and ¹³C NMR spectroscopies (Table II). The ¹H NMR spectrum (Figure 4) shows the (CH₂SiMe₂) fragment to have two inequivalent Si-Me groups and two inequivalent C-H protons. The C-H protons are coupled to each other, J = 10 Hz. The ¹Hdecoupled ¹³C NMR spectrum shows the CH₂SiMe₂ fragment to have three inequivalent carbons in the high-field region (0 to -30 ppm) of the spectrum. These three carbons cannot be unequivocally assigned since the long acquisition time has precluded the determination of the ¹H-coupled ¹³C NMR spectrum, but it seems reasonable to assign the highest field ¹³C NMR signal to the methylene carbon bound to both Si and Fe. Both the ¹H and ¹³C NMR are similar to spectra obtained for cis_{7} -C₅R₅)W-(CO)₂(CH₂SiMe₂)H complexes.⁵ The CH₂SiMe₂ group of the W complexes also shows two inequivalent methylene protons in the +1.0 to -1.0 ppm region of the ¹H NMR spectra and shows three inequivalent carbons in the 0 to -30 ppm region of the ¹³C NMR spectra. The coupling constants of the methylene protons of the Fe complex and of both of the W complexes are about the same, $J \approx 10$ Hz.

Warming of $(\eta^5$ -C₅Me₅)Fe(CO)(CH₂SiMe₂)H to 225 K results in no change in the ¹H NMR spectrum of the

⁽¹¹⁾ Geoffroy, G. O.; Wrighton, M. S. Organometallic Photochemistry; Academic: New York, 1979.

⁽¹²⁾ Hooker, R. H.; Rest, A. J.; Whitwell, I. J. Organomet. Chem. 1984, 266, C27.

 ⁽¹³⁾ Blaha, J. P.; Wrighton, M. S. J. Am. Chem. Soc. 1985, 107, 2694.
 (14) Belmont, J. A.; Wrighton, M. S. Organometallics 1986, 5, 1421.

⁽¹⁵⁾ Fettes, D. J.; Narayanaswamy, R.; Rest, A. J. J. Chem. Soc., (16) Fettes, D. 9., Valayanawany, R., Rest, R. 9. 9. Chem. Soc., Dalton Trans. 1981, 2311.
 (16) Randolph, C. L.; Wrighton, M. S. J. Am. Chem. Soc. 1986, 108,

^{3366.}

Figure 3. Top: IR difference spectral changes accompanying near-UV irradiation of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ in methylcyclohexane at 196 K showing the formation of $(\eta^5-C_5Me_5)$ -Fe(CO)(CH₂SiMe₂)H (1925 cm⁻¹) as the only product. Bottom: Warmup to 298 K yields $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ (1979, 1927 cm⁻¹) as the major product and $[(\eta^5-C_5Me_5)Fe(CO)_2]_2$ (1929, 1761 cm⁻¹) as a minor product.

Figure 4. ¹H NMR spectrum at 200 K of $(\eta^5-C_5Me_5)Fe(CO)-(CH_2SiMe_2)H$ formed by irradiation of $(\eta^5-C_5Me_5)Fe-(CO)_2CH_2SiMe_2H$ in toluene- d_8 at 196 K. Resonances at 1.39 and 0.66 ppm are due to a small amount of $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ in solution. For assignments of $(\eta^5-C_5Me_5)Fe(CO)(CH_2SiMe_2)H$ see Table II.

compound. At 225 K the $(\eta^5-C_5Me_5)Fe(CO)(CH_2SiMe_2)H$ slowly reacts to form $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ (eq 8). The

$$(\eta^{5}-C_{5}Me_{5})Fe(CO)(CH_{2}SiMe_{2})H \xrightarrow{+CO} (\eta^{5}-C_{5}Me_{5})Fe(CO)SiMe_{3} \xrightarrow{+CO} (\eta^{5}-C_{5}Me_{5})Fe(CO)_{2}SiMe_{3} (8)$$

lack of ¹H NMR detected fluxionality in the CH₂SiMe₂

Figure 5. IR difference spectrum associated with the photochemical rearrangement of $5 \text{ mM} (\eta^5 \text{-} C_5 \text{Me}_5) \text{Fe}(\text{CO})_2 \text{CH}_2 \text{SiMe}_2 \text{H}$ under 1 atm of CO at 298 K to $(\eta^5 \text{-} C_5 \text{Me}_5) \text{Fe}(\text{CO}_2) \text{SiMe}_3$ in methylcyclohexane.

fragment up to the highest temperature at which the compound is inert indicates that the $Fe(CH_2SiMe_2)$ bonding, like that of the $cis-(\eta^5-C_5R_5)W(CO)_2$ - $(CH_2SiMe_2)H$,⁵ is best described as a metallasilacyclopropane. The W-(alkene) complexes formed by β -H transfer from $(\eta^5-C_5R_5)W(CO)_3(alkyl)$ complexes and by olefin substitution of $(\eta^5 - C_5 R_5) W(CO)_3 X$ complexes¹⁷ have been shown to have large rotational barriers and are formulated as having metallacyclopropane character. Warming of $(\eta^5 - C_5 Me_5) Fe(CO)(CH_5 SiMe_2)(H)$ generated at 196-298 K results in formation of $(\eta^5-C_5Me_5)Fe$ - $(CO)_2SiMe_3$ and a small amount (<5%) of $[(\eta^5-C_5Me_5) Fe(CO)]_2$ (Figure 3). ¹H NMR spectroscopy shows the only organic product to be Si₂Me₆. Relative integrations show that for every molecule of dimer produced one molecule of Si_2Me_6 is produced.

It is important to note that in the reaction of $(\eta^5-C_5Me_5)Fe(CO)(CH_2SiMe_2)H$ with CO at 225 K the only product formed is $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$. No back-reaction to form $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ can be detected. Thus the Fe–H reductively eliminates to form a more stable C–H bond rather than a less stable Si–H bond. This reaction is analogous to the reductive elimination of alkanes upon photoinduced oxidative addition of R₃SiH to $(\eta^5-C_5R_5)Fe(CO)_2(alkyl)$ complexes.¹⁶

Room-Temperature Photochemistry of $(\eta^5-C_5Me_5)$ - $Fe(CO)_2CH_2SiMe_2H.$ The photochemistry of $(\eta^5$ - $C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ at room temperature is similar to that of its η^5 -C₅H₅ analogue. Photolysis of $(\eta^5$ - $C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ in either methylcyclohexane or toluene- d_8 at 298 K results in the formation of $(\eta^5$ - $C_5Me_5)Fe(CO)_2SiMe_3$ and a small amount (<5%) [(η^5 - C_5Me_5)Fe(CO)₂]₂. The disappearance quantum yield at 366 nm for 298 K photoreaction in methylcyclohexane is $0.6 \pm 0.1 \text{ mol/einstein}$. The formation of $[(\eta^5 - C_5 Me_5)Fe$ - $(CO)_{2}_{2}$ can be suppressed by carrying out the photo-chemistry under 1 atm of CO (Figure 5). The only product of irradiation of $(\eta^5 - C_5 Me_5)Fe(CO)_2CH_2SiMe_2H$ under high pressure, 2 atm, of CO is $(\eta^5 - C_5 Me_5) Fe(CO)_2 SiMe_3$. The suppression of $[(\eta^5-C_5Me_5)Fe(CO)_2]_2$ formation and the lack of formation of an $(\eta^4-C_5Me_5R)Fe(CO)_3$ complex in the presence of CO indicate that Fe-CH₂SiMe₂H bond cleavage to form CH₂SiMe₂H is not a significant process in the photochemistry of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$

^{(17) (}a) Alt, H. G.; Schwarzel, J. A.; Kreiter, C. G. J. Organomet. Chem. 1978, 153, C7. (b) Kreiter, C. G.; Nist, K.; Alt, H. G. Chem. Rev. 1981, 114, 1845.

Figure 6. Top: Irradiation of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ in a PPh₃-saturated methylcyclohexane solution at 298 K to form $(\eta^5-C_5Me_5)Fe(CO)(PPh_3)SiMe_3$ (1895 cm⁻¹) as the only detectable product. Bottom: irradiation of a PPh_3-saturated methylcyclohexane solution of $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ to yield $(\eta^5-C_5Me_5)Fe(CO)(PPh_3)SiMe_3$ (1895 cm⁻¹).

at 298 K.¹³ Inefficient recombination of CO with the 16e-rearranged CO loss product $(\eta^5-C_5Me_5)Fe(CO)SiMe_3$ is probably responsible for formation of $[(\eta^5-C_5Me_5)Fe(CO)_2]_2$. The process leading to $[(\eta^5-C_5Me_5)Fe(CO)_2]_2$ is presently being investigated in detail.

The relatively clean formation of $(\eta^5-C_5Me_5)$ Fe-(CO)₂SiMe₃ is in contrast to the chemistry of $(\eta^5-C_5R_5)$ W-(CO)₃CH₂SiMe₂H complexes.⁵ In the W system the principal products of irradiation at 298 K of $(\eta^5-C_5R_5)$ W-(CO)₃CH₂SiMe₂H are $[(\eta^5-C_5R_5)W(CO)_3]_2$ and $(\eta^5-C_5R_5)$ W-(CO)₃H. The rearranged $(\eta^5-C_5H_5)W(CO)_3$ SiMe₃ is only formed by irradiation of $(\eta^5-C_5H_5)W(CO)_3$ CH₂SiMe₂H under high pressure of CO. This difference is probably a consequence of the thermal (and photochemical) instability of $(\eta^5-C_5R_5)W(CO)_3$ SiMe₃ complexes.^{6c}

Irradiation of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ at 298 K in the presence of ligands (L = PPh₃, PEt₃, CO) results in the clean formation of $(\eta^5-C_5Me_5)Fe(CO)(L)SiMe_3$ by IR and ¹H NMR spectroscopies. Figure 6 illustrates the IR spectral changes resulting from irradiation of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ in the presence of PPh₃; the product is the same as that from irradiation of $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ in the presence of PPh₃, $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$ in the presence of PPh₃, $(\eta^5-C_5Me_5)Fe(CO)(PPh_3)SiMe_3$. The disappearance quantum yield for $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ in a 0.08 M solution of PPh₃ (eq 9) is 0.7 ± 0.1 mol/einstein. This is

$$(\eta^{5} - C_{5}Me_{5})Fe(CO)_{2}CH_{2}SiMe_{2}H \xrightarrow{\text{PPh}_{3}} (\eta^{5} - C_{5}Me_{5})Fe(CO)(PPh_{3})SiMe_{3} (9)$$

consistent with the quantum yield for CO loss from other $(\eta^5-C_5R_5)Fe(CO)_2(alkyl)$ complexes.^{6,13} Irradiation of $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$ at 196 K in an alkane solution which is 1 M in PEt₃ results in the formation of $(\eta^5-C_5Me_5)Fe(CO)(CH_2SiMe_2)H$ as the only product detectable by IR. Warming of the solution to 225 K, the temperature at which $(\eta^5 - C_5 Me_5) Fe(CO)(CH_2 SiMe_2)H$ has been shown to react to form $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$, results in the formation of $(\eta^5 - C_5 Me_5) Fe(CO)(PEt_3) SiMe_3$. Interestingly, no $(\eta^5 - C_5 Me_5)Fe(CO)(PEt_3)CH_2SiMe_2H$ can be detected even at high (1 M) PEt₃ concentration. The inability to detect $(\eta^5 - \overline{C_5}Me_5)Fe(CO)(PEt_3)CH_2SiMe_2H$ at high PEt, concentration is consistent with the irradiation carried out in pure 2-MeTHF or 1-pentene at low temperature where the presumed 16e $(\eta^5-C_5Me_5)Fe(CO)$ -CH₂SiMe₂H could not be intercepted.

Conclusion

Our findings confirm the mechanism presented in eq 1 and 2 for the rearrangement of Fe–CH₂SiMe₂H species to Fe(SiMe₃) species. We have found that the –CH₂SiMe₂H group like the η^1 -CH₂C₆H₅ or η^1 -C₅H₅ groups^{13,14} can "trap" the 16e species formed by CO loss from (η^5 -C₅Me₅)Fe(CO)₂R species. The resulting (η^5 -C₅Me₅)Fe(CO)-(CH₂SiMe₂)H complex is inert up to 225 K, unlike analogous (η^5 -C₅Me₅)Fe(CO)(alkene)H⁶ complexes, and can be characterized by NMR spectroscopy. The bonding of the Fe(CH₂SiMe₂) fragment is a metallasilacyclopropane like that of the analogous W complex.⁵ (η^5 -C₅Me₅)Fe(CO)-(CH₂SiMe₂)H undergoes reductive elimination of C–H upon warming in the presence of ligands to form (η^5 -C₅Me₅)Fe(CO)(L)SiMe₃ complexes.

There are two other rearrangements reported in the literature that can also be postulated to involve similar $Fe(CH_2SiR_2)$ intermediates. These are the thermal rearrangement of $(\eta^5-C_5H_5)Fe(CO)_2SiMe_nCl_{2-n}CH_2Cl (n = 2, 1)$ to $(\eta^5-C_5H_5)Fe(CO)_2CH_2SiMe_nCl_{3-n}^{18}$ and the photochemical rearrangement of $(\eta^5-C_5H_5)Fe(CO)_2CH_2SiMe_2SiMe_3$ to $(\eta^5-C_5H_5)Fe(CO)_2SiMe_2CH_2SiMe_3$.¹⁹ These reactions are of particular interest because they involve β -transfer of groups other than H. β -Transfer of an $-SiMe_3$ group has been detected¹⁶ subsequent to photoinduced CO loss from $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_3$, and elaboration of this finding is currently in progress.

Acknowledgment. We thank the National Science Foundation for support of this research.

Registry No. II, 106063-04-1; $(\eta^5-C_5Me_5)Fe(CO)_2CH_2SiMe_2H$, 101493-95-2; $(\eta^5-C_5Me_5)Fe(CO)_2SiMe_3$, 101493-92-9; Na⁺[$(\eta^5-C_5Me_5)Fe(CO)_2$]⁻, 52409-74-2; $(\eta^5-C_5Me_5)Fe(CO)(PPh_3)SiMe_3$, 101494-05-7; $(\eta^5-C_5Me_5)Fe(CO)(PEt_3)SiMe_3$, 106040-42-0; ClCH₂SiMe₂H, 3144-74-9; BrSiMe₃, 2857-97-8.

 ^{(18) (}a) Windus, C.; Sujishi, S.; Giering, W. P. J. Am. Chem. Soc. 1974, 96, 1951. (b) J. Organomet. Chem. 1975, 101, 279.

⁽¹⁹⁾ Pannell, K. H.; Rice, J. R. J. Organomet. Chem. 1974, 78, C35.