The most important feature of this reaction is then that the reductive elimination of the benzyl group in the Pd(IV)intermediate comprises attack of the benzyl carbon atom on the aromatic carbon atom of the dmba and not, as predicted, on the benzylic carbon atom of the dmat-Si. Very likely, the isolation of 9 as an ammonium salt resulted from a subsequent reaction of the initially formed crosscoupled product with an excess of benzyl bromide.

Registry No. 1, 93184-81-7; 2, 93184-81-7; 3, 106799-29-5; 4, 93184-75-9; 5, 93184-76-0; 6a, 106861-78-3; 6b, 106782-04-1; 7, 106782-01-8; 8, 106782-02-9; 9, 106782-03-0; Pd(SEt₂)₂Cl₂, 14873-91-7; $[Pd(dmba)(\mu \cdot Cl)]_2$, 18987-59-2; $[Pd(8-mg)(\mu \cdot Cl)]_2$, 28377-73-3; [Pd((S)-dmba)(µ-Cl)]₂, 34424-15-2; benzyl bromide, 100-39-0.

Supplementary Material Available: Listings of positional parameters for hydrogen atoms, thermal parameters, and leastsquares planes (Table VI) for 6b and a table reporting selected structural data in various palladabicyclic compounds (Table VII) (7 pages); a listing of structure factors for 6b (11 pages). Ordering information is given on any current masthead page.

Preferential Activation of a *tert*-Butyl Group over a Cyclopropyl Group in the Intramolecular Reaction of *trans*-Dichlorobis(di-*tert*-butylcyclopropylphosphine)platinum(II) To Form a Platinaphosphacyclobutane. Synthesis and Structure of $PtCl_2[P(t-Bu)_2CHCH_2CH_2]_2$ and Its Derivatives

Barbara L. Simms,[†] Maoyu Shang,[‡] Jiaxi Lu,[‡] Wiley J. Youngs,[†] and James A. Ibers*[†]

Department of Chemistry, Northwestern University, Evanston, Illinois 60201, and Institute for the Study of the Structure of Matter, Fuzhou, Fujian, China

Received August 18, 1986

The complex $PtCl[P(t-Bu)(CMe_2CH_2)(CHCH_2CH_2)](P(t-Bu)_2CHCH_2CH_2)$ (2) has been obtained by the elution of $trans-PtCl_2(P(t-Bu)_2CHCH_2CH_2)_2$ (1) on silica or Florisil supports and by the reaction of 1 with thallium(I) acetate. The complex trans-PtHCl($P(t-Bu)_2CHCH_2CH_2)_2$ (3) is a byproduct of the Florisilassisted reaction. Complex 3 has also been synthesized by reduction of 1 with hydrazine hydrate. The dimer $[PtCl(P(t-Bu)_2CHCH_2CH_2)]_2(\mu-Cl)_2$ (4) forms from 1 in dioxane or toluene/acetic acid solvent. Complexes 1-3 have been characterized by means of elemental analysis and IR and NMR spectroscopy. The structures of 1–4 have been determined by X-ray methods.

Introduction

Sterically assisted intramolecular activation that leads to metallacycles has been observed for numerous transition-metal complexes.¹ A common reaction sequence is shown in Scheme I where E can be almost any donor group and the metallacyclic ring may contain as few as three or as many as six atoms. Systems where $E(CR_2H)$ is a bulky tertiary phosphine ligand have been extensively investigated.1b-e

Although electronic factors become important with ligands of like steric bulk,^{1d} certain steric factors, such as large phosphorus cone angle, halide ion (I > Br > Cl), and ring size (5 > 4 > 6), optimize conditions.^{1b,d,f} The phosphine $P(t-Bu)_3$ forms four-membered metallacycles in its complexes with Pt(II) much more easily than does $P(t-Bu)_2Ph$ because of the larger contribution of t-Bu relative to Ph to the phosphorus cone angle.^{1f} The less sterically congested complex $PtCl_2(P(t-Bu)Ph_2)_2$ undergoes very little ortho-metalation after prolonged periods at reflux in 2methoxyethanol, but with the addition of LiBr to the reaction mixture the internally metalated complex PtBr(P- $(t-Bu)C_6H_4Ph)(P(t-Bu)Ph_2)$ is formed after 48 h at reflux. The complex trans- $PtCl_2(P(t-Bu)_2(o-Tol))_2$ (Tol = tolyl) undergoes internal metalation more readily than the cor-

responding $P(t-Bu)_2Ph$ complexes since the resulting metallacycle contains five atoms. Still, Pt(II) complexes of the extremely bulky $P(t-Bu)_3$ ligand are more reactive with respect to internal metalation than are those of P- $(t-Bu)_2(o-Tol).$

In complexes exhibiting similar steric congestion, aromatic substituents on phosphorus are metalated more easily than are aliphatic ones despite larger aryl C-H bond energies. The π -electron cloud of the aryl group is more readily attacked by an electrophilic metal atom.² Cyclopropane should be similarly more reactive, as electron density located in relatively high s-character orbitals away

[†]Northwestern University.

[†]Institute for the Study of the Structure of Matter.

^{(1) (}a) Collman, J. P.; Hegedus, L. J. Principles and Applications of (1) (a) Collman, J. P.; Hegedus, L. J. Principles and Applications of Organo-transition Metal Chemistry; University Science Books: Mill Valley, CA, 1980. (b) Shaw, B. L. J. Organomet. Chem. 1980, 200, 307 and references therein. (c) Goel, R. G.; Montemayor, R. G. Inorg. Chem. 1977, 16, 2183. (d) Cheney, A. J.; Mann, B. E; Shaw, B. L.; Slade, R. M. J. Chem. Soc. A 1971, 3833. (e) Werner, H.; Kraus, H. J. J. Organomet. Chem. 1981, 204, 415. (f) Tolman, C. A. Chem. Rev. 1977, 77, 313.
(2) A notable exception is [PdCH₂CMe₂P(t-Bu)Ph]₂(µ-Cl)₂ prepared by reaction of PdCl₂P(t-Bu)₂Ph with AgOAc. See ref 1e.

Table I.	Spectroscopic Data f	'or Complexes <i>tra</i>	ans-PtCl ₂ (P(t-B	$u_{2}CHCH_{2}CH_{2}(1),$
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······		
PtCl[P(t-Bu)(CMe ₂ C	$(CHCH_2CH_2)](P(t$	-Bu) ₂ CHCH ₂ CH ₂	(2), and trans-P	$tHCl(P(t-Bu)_2CHCH_2CH_2)_2$ (3) ^a

complex		NMR						
	IR	¹ H	¹³ C	³¹ P				
1	332 (v _{Cl})	1.53 (t, CCH_3 , $J(P-H) = 6.4$), 0.72-1.02 (m, $CHCH_2CH_2$)		12.6 (s, $J(Pt-P = 2563.3)$				
2	230 (v _{Cl})	1.44 (d of d, t-Bu (18 H), ${}^{3}J(P-H) =$ 12.0, ${}^{5}J(P-H) =$ 1.6), 1.38 (d, t-Bu (9 H), $J(P-H) =$ 13.8), 1.36 (d, Me (3 H), $J(P-H) =$ 13.6), 1.11 (d, Me (3 H), $J(P-H) =$ 13.7), complex cyclopropyl region	-3.82 (d, $J(C-P) = 28.9$, $J(C-Pt) = 81.0$), complex cyclopropyl and methyl regions (4.10–6.22; 27.8–31.2), 35.39 (d of d, ¹ $J(C-P) = 17.4$, ³ $J(C-P) = 5.8$), 37.91 (d, J(C-P) = 18.52), 50.08 (d of d, ¹ $J(C-P) = 31.3$, ³ $J(C-P) = 4.6$)	-14.08 (d, $J(P-P) = 402.3$, $J(Pt-P) = 2212.6$), 38.24 ($J(P-P) = 402.3$, $J(Pt-P) = 2816.2$)				
3	2250 (v _H), 278 (v _{Cl})	1.43 (t, CCH ₃ , J (P-H) = 6.6), -19.58 (t, J (P-H) = 10.1, J (Pt-H) =		64.96 (J(Pt-P) = 3028.0)				

576.4)^aChemical shifts in ppm. Coupling constants in Hz.

from the internuclear C-C bond axis is more accessible than electron density on acyclic or less strained alicyclic substrates.³

We now report, contrary to this expectation, isolation $PtCl[P(t-Bu)(CMe_2CH_2)(CHCH_2CH_2)](P(t-t-t))$ of $Bu_{2}CHCH_{2}CH_{2}$ (2), a platinaphosphacyclobutane formed by the preferential metallation of a *tert*-butyl group over a cyclopropyl group in trans-PtCl₂(P(t-Bu)₂CHCH₂CH₂)₂ (1).

Experimental Section

General Remarks. All reactions were carried out under an atmosphere of prepurified dinitrogen with the use of standard Schlenk-line techniques. Chromatographic separations were performed in air. K₂PtCl₄ was used as received from Johnson-Matthey, Inc. Solvents were purified by standard methods.

Elemental analyses were performed by Micro-Tech Laboratories, Skokie, IL. Infrared spectra were obtained with a Perkin-Elmer 283 spectrometer from samples prepared as KBr pellets or as mulls in Nujol pressed between CsBr windows. ¹H, ¹³C, and ³¹P NMR spectra were recorded on a JEOL FX90Q or JNM-FX 270 FT-NMR spectrometer or on a Varian FX400 FT-NMR spectrometer. $^{31}{\rm P}$ positive chemical shifts are downfield from 85% H_3PO_4 . Table I summarizes the spectral data for each complex excluding complex 4.

X-ray data were collected on an Enraf-Nonius CAD4 diffractometer, and all calculations were performed on a Harris 1000 computer by methods and programs standard in this laboratory.⁴ Lattice constants were obtained from least-squares analysis of 25 automatically centered reflections. Data reduction and refinement details are summarized in Table II.

Positional parameters for methyl hydrogen atoms were obtained from difference electron density maps, and these parameters were then idealized. Methylene and methyne hydrogen atom positions were idealized. In these calculations a C-H bond length of 0.95 Å was assumed and a given H atom was assigned an isotropic thermal parameter 1 Å² greater than the equivalent isotropic thermal parameter of the C atom to which it is attached. Parameters for the H atoms were held fixed during subsequent refinements. Analysis of F_0^2 as a function of F_0^2 , $\lambda^{-1} \sin \theta$, and Miller indices for structures of 1-4 showed no unusual trends.

Final atomic coordinates are given in Table III. Table IV^5 presents the anisotropic thermal parameters, Table V^5 the hydrogen atom positions, and Table VI⁵ listings of $10|F_0|$ vs. $10|F_c|$.

Preparation of Di-*tert*-butylcyclopropylphosphine. A solution of cyclopropyllithium (prepared from 8.00 g of cyclopropyl bromide and 1.00 g of Li metal in 50 mL of ether) was added over 10 min to 10 g (55.4 mmol) of di-tert-butylchlorophosphine⁶ in

25 mL of ether. The reaction mixture was stirred at room temperature for 12 h. Phosphine and ether were removed from the reaction flask under vacuum (1 mm). The phosphine was redistilled at reduced pressure: bp 50 °C (15 mm).

Owing to the pyrophoric nature of the phosphine, its hydrogen bromide adduct (prepared by bubbling HBr gas through an ether solution of $P(t-Bu)_2CHCH_2CH_2$ is more readily analyzed. Anal. Calcd for $C_{11}H_{23}P$ ·HBr: C, 49.95; H, 9.05; P, 11.59; Br, 29.90. Found: C, 48.35; H, 8.83; P, 10.00; Br, 30.15. IR: 3080 cm⁻¹. ¹H NMR: δ 1.14 (d, J = 10.5 Hz), 0.49 (m), 0.40 (m). ³¹P NMR δ 31.5

Synthesis of trans-Dichlorobis(di-tert-butylcyclopropylphosphine)platimun(II), $trans - PtCl_2(P(t -$ Bu)2CHCH2CH2)2 (1). K2PtCl4 (0.28 g, 0.67 mmol) and ditert-butylcyclopropylphosphine (0.25 g, 1.34 mmol) were stirred in a mixture of 30 mL of acetone or ethanol and 10 mL of distilled water for 24 h. The yellow product (0.41 g, 95%) was recrystallized from hexane. Anal. Calcd for $C_{22}H_{46}Cl_2P_2Pt$: C, 41.38; H, 7.26; Cl, 11.10; P, 9.70. Found: C, 41.58; H, 7.23; Cl, 11.56; P, 9.87.

Synthesis of the Derivative Compounds. Compound 1 was eluted with toluene on a column of 100-200 mesh Florisil. Typically two bands were eluted that upon removal of solvent yielded yellow and white powders, respectively. Recrystallization of the yellow powder from dioxane or acetic acid/toluene afforded

1 with some crystals of $[PtCl(P(t-Bu)_2CHCH_2CH_2)]_2(\mu-Cl)_2$ (4). Complex 4 was identified by X-ray diffraction methods. (Quantities obtained were insufficient for characterization by NMR and IR spectroscopic techniques.) Recrystallization of the

white powder from toluene yielded $PtCl[P(t-Bu)(CMe_2CH_2)-$ (CHCH₂CH₂)](P(t-Bu)₂CHCH₂CH₂) (2) and trans-PtHCl(P(t-

Bu)₂ $\dot{C}HCH_2\dot{C}H_2$ (3). No hydride product 3 was isolated if Florisil was heated to 200 °C for 1 h prior to its use as the support. The complexes 1, 2, and 3 were identified by their characteristic NMR and IR spectra (Table I) and by single crystal x-ray diffraction methods.

Alternative Synthesis of PtCl[P(t-Bu)(CMe₂CH₂)- $(CHCH_2CH_2)](P(t-Bu)_2CHCH_2CH_2)$ (2). When 1 was eluted with toluene on a silica gel (on glass) TLC plate, mean pore diameter 60 Å, 2 was isolated in approximately 60% yield. Complex 2 also formed when 1 was combined with 1 equiv of thallium(I) acetate in anhydrous ethanol and heated at reflux for 2 h. Anal. Calcd for C₂₂H₄₅ClP₂Pt: C, 43.89; H, 7.53; P, 10.29; Cl, 5.89. Obsd: C, 43.14; H, 7.23; P, 10.05; Cl, 6.55 Alternative Synthesis trans-PtHCl(P(tof

 $Bu_2CHCH_2CH_2)_2$ (3). The hydride was synthesized in nearly quantitative yield by reduction by hydrazine hydrate of the dichloro complex 1 in absolute ethanol. Anal. Calcd for $C_{22}H_{47}ClP_2Pt$: C, 43.74; H, 7.84; P, 10.25; Cl, 5.88. Obsd: C, 43.24;

Bishop, K. C., III Chem. Rev. 1976, 76, 461 and references therein.
 Waters, J. M. ibers, J. A. Inorg. Chem. 1977, 16, 3273.
 Supplementary material.

⁽⁶⁾ Di-tert-butylchlorophosphine was used as obtained from Alfa Chemicals without further purification.

Details	
Refinement	and the second sec
and I	
Collection	
Data	
Table II.	

		c	e	
		7	0	4
compd	trans-PtCl ₂ (P(t -Bu) ₂ -	PtCl[P(t-Bu) ₂ (CMe ₂ CH ₂)-	trans-PtHCl(P(t -Bu) ₂ -	$[PtCl(P(t-Bu)_{z})]$
	CHCH ₂ CH ₂) ₂	(CHCH ₂ CH ₂)]-	CHCH ₂ CH ₂) ₂	$CHCH_2CH_2)]_2(\mu-CI)_2$
		(P(t-Bu),CHCH,CH,)		
formula	C ₂₂ H46Cl ₂ P2Pt	C22H46CIP2Pt	C ₂₂ H47CIP2Pt	$\mathbf{C}_{22}\mathbf{H_46}\mathbf{Cl}_4\mathbf{P}_2\mathbf{Pt}_2$
mol wt, amu	638.56	602.09	604.11	904.55
space group	$C_{4h}^4 - P4_2/n$	D_{2h}^{1b} — $Pbca$	D_{2h}^{16} — $Pnam^{a}$	$C_{2h}^6 - P2_1/n$
a, Å	17.770 (10)	12.651 (5)	16.344 (10)	8.099 (11)
b, Å	17.770 ^b	14.576 (3)	11.124 (7)	15.221 (21)
с, А	8.229 (4)	27.552 (15)	14.371 (9)	12.389 (18)
ß, deg	06	06	06	106.24 (6)
V, Å ³	2598.6	5080.7	2612.8	1466.3
Z	4	8	4	2
t of data collectn, °C	-160	-160	-160	-108°
cryst color	yellow	pale yellow	colorless	orange
cryst dimens, mm	$0.20 \times 0.16 \times 0.43$	$0.05 \times 0.28 \times 0.32$	$0.13 \times 0.14 \times 0.34$	$0.10 \times 0.11 \times 0.36$
cryst vol, mm ³	0.0124	0.00476	0.005 83	0.004 04
$ ho_{\rm callcd}$, g/cm ³	1.632	1.574	1.536	2.048
radiatn		graphite-monochromated M	$\mathbf{\Sigma} \mathbf{K} \boldsymbol{\alpha} \left(\lambda (\mathbf{K} \boldsymbol{\alpha}_1) = 0.7093 \text{ Å} \right)$	
linear abs coeff, cm ⁻¹	57.90	58.15	56.54	101.14
transmissn factors	$0.342 - 0.411^d$	0.223 - 0.738	0.433 - 0.582	0.311 - 0.459
takeoff angle, deg	2.5	3.0	3.0	3.0
receiving aperture, mm (17.3 cm from crystal)	2.0×2.0	3.0×2.0	3.0×2.0	3.0×2.0
scan range, deg (in ω)	0.5 below $K\alpha_1$ to 0.5	0.65 below $K\alpha_1$ to	0.55 below $K\alpha_2$ to 0.55	0.45 below $K\alpha_1$ to 0.45
	above $K\alpha_2$	0.65 above $K\alpha_2$	above $K\alpha_2$	above $K\alpha_2$
bkgd counts		extension of $1/4$ scan	range on each side	
scan speed, deg/min	2.75	2.00 ($2^{\circ} \le \theta \le 20^{\circ}$),	2.75	2.75 ($2^{\circ} \leq \theta \leq 20^{\circ}$),
		$1.65 \ (\theta > 20^{\circ})$		$2.00 \ (\theta > 20^{\circ})$
rescan condition	$I \leq 3\sigma(I)$	$I \leq 4\sigma(I)$	$I \leq 4\sigma(I)$	$I \leq 5\sigma(I)$
20 limits, deg	4-60	4-50	4-50	460
data collected	+h,+k,+l	+ <i>h</i> ,+ <i>k</i> ,+ <i>l</i>	+h,+k,±l	$+h,+k,\pm l$
unique data	3584	4490	3742	4384
unique data with $F_o^2 > 3\sigma(F_o^2)$	2063	2484	2394	3342
p factor for $\sigma(F_0^2)$	0.04	0.04	0.04	0.04
final no. of variables	125	235	131	137
$R(F^2)$ (including $F_0^2 < 0$)	0.049	0.100	0.068	0.067
$R_{w}(F^{2})$ (including $F_{o}^{2} < 0$)	0.101	0.131	0.107	0.095
$R(F)$ for $F^2 > 3\sigma(F_o^2)$	0.035	0.050	0.042	0.038
error in observn of unit wt, e^2	1.21	1.19	1.20	1.16
^a Refinement of 3 as an ordered structure in space gro	oup $Pna2_1$ was not successful	I. Moreover, F_0^2 (<i>hkl</i>) and F_0^2 (<i>hk</i>	\overline{l}), after correction for absorp	otion, agree as expected for space

group *Pnam*, which was therefore assumed. ⁶Cell parameters were refined under constraints a = b or $\alpha = \gamma = 90^{\circ}$ or $\alpha = \beta = 90^{\circ}$ as appropriate. ^c The low-temperature system is based on a design by Prof. J. J. Bonnet and S. Askenazy and is commercially available from Soterem, Z. T. deVic, 31320, Castanet-Tolosan, France. ^a Analytical method (Meulenaer, J. de; Tompa, H. Acta Crystallogr. 1965, 19, 1014).

Synthesis of PtCl₂[P(t-Bu)₂CHCH₂CH₂]₂

H, 7.89; P, 10.12; Cl, 5.78. When 1 was refluxed for 8 h in acetic acid or in a mixture of 10% acetic acid in dimethylformamide, both the metallated *tert*-butyl complex 2 and the hydride 3 formed. These products were identified by their characteristic ³¹P chemical shifts.

Results

trans-PtCl₂(P(t-Bu)₂CHCH₂CH₂)₂ (1). K₂PtCl₄ reacts with di-tert-butylcyclopropylphosphine in aqueous ethanol or acetone to afford 1 as the sole product. The trans configuration, which is expected owing to the extreme bulk of the coordinated phosphine ligands, is confirmed by NMR spectra of the crude product.^{1b} A single resonance (J(Pt-P) = 2563 Hz) is observed in the ³¹P NMR spectrum. The second-order proton spectrum shows a virtual triplet for the tert-butyl protons. The resonances from the cyclopropyl groups apparently overlap; only one broad multiplet appears in the cyclopropyl region of the proton spectrum.

Reactions of 1. When 1 is refluxed for 50 h in 2methoxyethanol, no metalation of the phosphine ligands Rather, the hydride trans-PtHCl(P(toccurs. $Bu_2CHCH_2CH_2_2$ (3) is formed in approximately 65% yield. Complexes of the type trans-PtHCl(PR₃)₂, such as 3, are generally prepared by reduction of the parent dichloro compound by hydrazine hydrate.⁷ Boiling 2-methoxyethanol,^{1d} ethyl and isopropyl alcohols (in conjunction with hydroxide ion),⁷ and hot formic acid (with some H_2O present)⁷ may also act as reducing agents. Indeed, compound 3 may be synthesized by reduction of 1 with hydrazine hydrate in refluxing ethanol. Spectra for complex 3 are typical of $trans-PtHCl(PR_3)_2$ complexes (Table I). As for 1, a pseudotriplet pattern in the proton NMR spectrum arises from the t-Bu protons on the phosphine ligands. There is the distinctive upfield triplet resonance (-19.58 ppm) in the proton spectrum from the hydride ligand. In the ³¹P spectrum, the single resonance from the equivalent phosphine ligands appears at 64.96 ppm. These features are characteristic of the trans configuration.7b

When 1 is eluted with toluene on a Florisil column or heated at reflux for two hours in acetic acid, a mixture of metalated complex $PtCl[P(t-Bu)(CMe_2CH_2)$ the $(\dot{C}HCH_2\dot{C}H_2](P(t-Bu)_2\dot{C}HCH_2\dot{C}H_2)$ (2) and 3 is obtained. small amount of the dimer [PtCl(P(t-A $Bu_2CHCH_2CH_2]_2(\mu-Cl)_2$ (4) is also obtained when 1 is recrystallized from dioxane or acetic acid/toluene. When 1 is eluted with toluene on silica gel, only the metalated complex 2 is obtained. Similarly, when equimolar quantities of 1 and TlOAc are heated at reflux in anhydrous ethanol, compound 2 is obtained in almost quantitative yield with only minute quantities of 3 being visible in the ³¹P NMR spectrum. When 1 is eluted on silica gel pretreated with triethylamine, only pure 1 is recovered.

The NMR spectra (Table I) of the metalated complex 2 clearly show that a t-Bu methyl group rather than a cyclopropyl group on phosphorus has been activated to form the four-membered metallacycle.8 The large upfield shift of the resonance of the chelating phosphine in the 12-line ³¹P spectrum relative to that of the nonchelating phosphine is typical of phosphorus in a four-member ring.^{8b} The proton spectrum shows four resonances that correspond to methyl protons with relative integrations 6:3:1:1.

Figure 1. Structure and numbering scheme for trans-PtCl₂(P- $(t-Bu)_2\dot{C}HCH_2\dot{C}H_2)_2$ (1). H atoms have been omitted for the sake of clarity.

Figure 2. Numbering scheme for atoms of PtCl[P(t-Bu)- $(CMe_2\dot{C}H_2)(\dot{C}HCH_2\dot{C}H_2)](P(t-Bu)_2\dot{C}HCH_2\dot{C}H_2)$ (2).

Figure 3. Molecular structure and numbering scheme for trans-PtHCl(P(t-Bu)₂CHCH₂CH₂)₂ (3) showing the disorder in the chloro ligand. Here and in subsequent figures thermal ellipsoids at the 50% probability level are given.

Figure 4. Molecular structure and numbering scheme for $[PtCl(P(t-Bu)_2CHCH_2CH_2)]_2(\mu-Cl)_2 (4).$

The 3:1:1 pattern of doublets results from substituents on the chelating phosphorus ligand. The large doublet is from the tert-butyl $(P-C(CH_3)_3)$ protons while the two smaller doublets are from the dimethyl $(P-C(CH_3)_2CH_2Pt)$ protons. The latter methyl groups are nonequivalent because they reside on a ring that contains a chiral center (on phosphorus).^{1e,9} The remaining resonance is from the

^{(7) (}a) Chatt, J.; Shaw, B. L. J. Chem. Soc. 1962, 5075. (b) Chatt, J.; Chini, P. J. Chem. Soc. A 1970, 1538.
(8) Garrou, P. E. Chem. Rev. 1981, 81, 229.

⁽⁹⁾ Lambert, J. B.; Shurvell, H. F.; Verbit, L.; Cooks, R. G.; Stout, G. H. Organic Structure Analysis; Macmillan: New York, 1976; p 56.

Table III. Atomic Coordinates for Structures 1-4

atom	x	У	z	atom	x	У	z		
trans $PtCl (P(t P_{tt}), CUCU CU) (1)$									
		t	rans-PtCl ₂ (P(t-Bu) ₂)	CHCH ₂ CI	$(1_2)_2$ (1)	/			
\mathbf{Pt}	1/2	1/2	0	C(5)	0.60136 (36)	0.59858 (32)	0.33515 (68)		
Cl	0.515094 (74)	0.618107 (74)	-0.10982 (20)	C(6)	0.71387 (33)	0.51676 (39)	0.37602(75)		
Р	0.627697 (67)	0.500113 (69)	0.08445 (16)	C(7)	0.58604(34)	0.46533(31)	0.40816 (71)		
C(1)	0.69482 (31)	0.56895 (29)	0.00716 (63)	C(8)	0.68043 (29)	0.41124 (30)	0.02588 (61)		
C(2)	0.68719 (33)	0.65164(34)	-0.02752(64)	C(9)	0.76602(30)	0.42208 (33)	0.01170 (64)		
Č(3)	0.69886 (33)	0.59855 (31)	-0.16665 (76)	C(10)	0.66757(31)	0.34490 (20)	0.14082 (76)		
C(4)	0.63365(28)	0.52005 (29)	0.30958 (64)	C(11)	0.65144(31)	0.39094 (32)	-0.14672 (68)		
0(1)	0.00000 (20)			,			, ,		
$PtCl[P(t-Bu)(CMe_2CH_2)(CHCH_2C)_2](P(t-Bu)_2CHCH_2CH_2) (2)$									
\mathbf{Pt}	0.486610(31)	0.147916 (30)	0.134152(17)	C(10)	0.1783(12)	0.2181(13)	0.10955(72)		
Cl	0.33331(27)	0.07043 (28)	0.16599 (15)	C(11)	0.2287 (15)	0.2927 (14)	0.14107 (70)		
P(1)	0.39960 (26)	0.24318(24)	0.07855 (13)	C(12)	0.5969 (12)	-0.05007 (94)	0.19859 (53)		
P(2)	0.60455(26)	0.07254(23)	0.18096(13)	C(13)	0.5202 (15)	-0.0572 (10)	0.24002(60)		
cđí	0.4596(12)	0.36173(93)	0.07337 (59)	C(14)	0.5568(12)	-0.10883 (96)	0.15580 (58)		
$\tilde{C}(2)$	0.4844(15)	0.3965(10)	0 12378 (68)	C(15)	0.7071 (13)	-0.0850 (11)	0.21424 (75)		
C(3)	0.3828(14)	0.4323(12)	0.05174(67)	C(16)	0.6340 (11)	0.12945 (92)	0.23682(48)		
C(4)	0.5612(11)	0.36486 (96)	0.00114 (01)	C(17)	0.5430(11)	0.1658(11)	0.26733(55)		
C(5)	0.0012(11)	0.1965 (10)	0.04303 (50)	C(18)	0.6161(12)	0.22999 (98)	0.24204 (56)		
C(0)	0.0544 (11) 0.2505 (11)	0.1000(10)	0.01764(00) 0.00212(51)	C(19)	0.70968 (91)	0 10433 (95)	0 13830 (56)		
C(0)	0.3003 (11)	0.2403 (12) 0.1510 (11)	-0.02313(31)	C(20)	0.7237(11)	0.03270 (95)	0.09796 (52)		
C(7)	0.0029 (13)	0.1019(11)	0.00332(49)	C(21)	0.81607 (96)	0.05270(00) 0.1947(11)	0.15707 (52)		
	0.3207(13)	0.1034(11)	0.02409 (61)	C(22)	0.6383 (10)	0.18410 (86)	0.10757 (50)		
C(9)	0.26467 (95)	0.2782 (10)	0.09009 (51)	O(22)	0.0000 (10)	0.10410 (00)	0.11037 (30)		
		tr	ans-PtHCl(P(t-Bu)2	снсн₂сн	$(\mathbf{I}_2)_2 \ (3)^a$				
Pt	0.362670(19)	-0.045887 (30)	1/4	C(6)	0.4987 (12)	0.3130(10)	0.1352(13)		
P(1)	0.41704(14)	0.14488(21)	1/4	C(7)	0.17569 (77)	-0.1876(11)	1/4		
$\mathbf{P}(2)$	0.28317(15)	-0.21629(22)	1/4	C(8)	0.13600 (54)	-0.08788 (97)	0.1990 (16)		
C(1)	0.33736(61)	0.25920 (97)	1/4	C(9)	0.29657 (58)	-0.30990 (74)	0.14289(61)		
C(2)	0.00100 (01)	0.24876 (72)	0 10818 (56)	C(10)	0.28757(64)	-0.22654 (98)	0.06025 (65)		
C(2)	0.20000 (44)	0.24010 (12)	0.13010 (00)	C(11)	0.38032(92)	-0.3666 (18)	0.1393(10)		
C(3)	0.47000 (47)	0.10205 (00)	0.14120(02) 0.19400(71)	C(12)	0.2312(11)	-0.4073(10)	0.13260 (93)		
O(4)	0.00229 (00)	0.1112(12) 0.1499(12)	0.13409(71)		0.48676(20)	-0.14845(31)	0.10200 (00)		
U(5)	0.42421(71)	0.1482 (16)	0.09969 (69)	01(1)	0.40010 (20)	0.14040 (01)	0.20130 (20)		
		[]	tCl(P(t-Bu)2CHCH	$[2^{\rm CH_2}]_2(\mu$ -	Cl) ₂ (4)				
\mathbf{Pt}	0.331497(31)	0.418771 (14)	0.455903 (20)	C(5)	-0.01638 (87)	0.44569 (41)	0.23436 (61)		
CI(1)	0.52082(22)	0.48250 (10)	0.62608 (13)	C(6)	-0.1307(11)	0.41693 (47)	0.11710 (68)		
Cl(2)	0.21945(23)	0.33691(10)	0.57235(14)	C(7)	0.0535 (10)	0.53912 (45)	0.22547 (80)		
D D	0.21040 (20)	0.364689 (96)	0.00200 (14)	C(8)	-0.1270(11)	0.44992(54)	0.31620 (85)		
$\dot{\Gamma}(1)$	0.10310 (21)	0.3094032 (30)	0.20000 (10)	C(9)	0.03943 (87)	0.26393(39)	0.29361(56)		
C(1)	0.20000 (50)	0.00240 (42)	0.13104 (00)	C(10)	-0.0514(10)	0.23060 (46)	0.37582(61)		
C(2)	0.40247 (97)	0.20907 (49)	0.20000 (72)	C(11)	0.1064(12)	0.18476(45)	0.36650 (68)		
	0.3270 (12)	0.41018 (01)	0.12070 (70)	0(11)	0.1004 (12)	0.10110 (10)	0.00000 (00)		
U(4)	0.1932 (11)	0.26331 (50)	0.10577 (64)						

^a The position of the disordered hydride ligand was not determined.

Figure 5. Stereoview of $PtCl_2(P(t-Bu)_2CHCH_2CH_2)_2$ (1).

methyl protons on the nonchelating phosphine ligand. In the ¹³C spectrum, resonances corresponding to the three different quaternary carbon centers appear. A DEPT¹⁰ pulse-sequence experiment revealed that the upfield resonance that exhibits platinum sidebands results from a methylene carbon center.

X-ray Crystal Structures of 1-4. Subtle steric and electronic effects appear to dictate the range of products obtained from 1. To gain insight into these effects, we turned to a crystallographic study of the complexes. The molecular structures and labeling schemes for complexes

1, 2, 3, and 4 are illustrated in Figures 1, 2, 3, and 4, respectively. Stereoviews for complexes 1 and 2 are shown in Figures 5 and 6, respectively.

trans-PtCl₂(P(t-Bu)₂(CHCH₂CH₂))₂ (1). The crystal structure of 1 consists of discrete molecules (Figure 5), each with crystallographically imposed symmetry $\overline{1}$ (Figure 1). The shortest intermolecular non-hydrogen separation (3.552 (6)Å) is between atoms Cl and C(6).

Bond distances and angles are in Table VII. Owing to the imposed crystallographic symmetry the PtP_2Cl_2 unit is planar. The two Cl-Pt-P angles are 90.16 (4) and 89.84 (4)°. Each Cl atom leans slightly toward atom C(2) of the cyclopropane ring (Cl-C(2) = 3.188 (6) Å) and relatively away from the terminal methyl groups of the *tert*-butyl carbon atoms (shortest Cl-Me distances Cl-C(10) = 3.322

^{(10) (}a) Bendall, M. R.; Doddrell, D. M.; Pegg, D. T. J. Am. Chem. Soc. 1981, 103, 4603. (b) Doddrell, D. M.; Pegg, D. T.; Bendall, M. R. J. Magn. Reson. 1982, 48, 323.

		Table VII. Sel	ected Bond D	istances (Å) and	Angles (deg)	······	
		trar	us-PtCl ₂ (P(t-B	u)2CHCH2CH2)2 (1	.)		
			Bond D	listances			
Pt-Cl Pt-P P-C(1)	2.301 (1) 2.373 (1) 1.823 (5)	C(2)-C(3) C(4)-C(5) C(4)-C(6)	1.498 (8) 1.524 (7) 1.528 (7)	P-C(8) C(1)-C(2) C(1)-C(3)	1.899 (5) 1.503 (8) 1.526 (7)	C(8)-C(9) C(8)-C(10) C(8)-C(11)	1.537 (7) 1.529 (7) 1.553 (7)
P-C(4)	1.889 (6)	C(4)-C(7)	1.523 (7)				
			Bond	Angles			
Cl-Pt-PPt-P-C(1)Pt-P-C(4)Pt-P-C(8)C(1)-P-C(4)	90.16 (4) 121.6 (2) 109.9 (2) 113.4 (2) 100.3 (2)	$\begin{array}{c} P-C(4)-C(7) \\ C(5)-C(4)-C(6) \\ C(5)-C(4)-C(7) \\ C(6)-C(4)-C(7) \\ P-C(8)-C(9) \end{array}$	111.8 (4) 109.7 (5) 107.6 (4) 107.7 (5) 113.8 (4)	$\begin{array}{c} P-C(1)-C(3) \\ C(2)-C(1)-C(3) \\ C(1)-C(2)-C(3) \\ C(1)-C(3)-C(2) \\ P-C(4)-C(5) \end{array}$	$\begin{array}{c} 126.1 \ (4) \\ 59.3 \ (3) \\ 61.1 \ (4) \\ 59.6 \ (4) \\ 106.6 \ (4) \end{array}$	C(9)-C(8)-C(11) C(10)-C(8)-C(11) C(9)-C(8)-C(10)	106.7 (4) 109.7 (4) 106.9 (4)
C(1)-P-C(8) C(4)-P-C(8)	98.4 (2) 112.2 (2)	P-C(8)-C(10) P-C(8)-C(11)	114.2 (4) 105.2 (4)	P-C(4)-C(6)	113.3 (4)		
0(4) 1 0(0)	11212 (2)	PtCl[P(t-Bu)(CN		$\overline{H_2CH_2}](P(t-Bu)_2C)$	HCH_2CH_2 (2)		
			Bond I	Distances			
Pt-Cl Pt-P(1) Pt-P(2) Pt-C(22) P(1)-C(1)	2.410 (4) 2.342 (4) 2.258 (4) 2.048 (13) 1 893 (14)	C(5)-C(7) C(5)-C(8) C(9)-C(10) C(9)-C(11) C(10)-C(11)	1.516 (18) 1.540 (19) 1.500 (21) 1.491 (22) 1.531 (27)	$\begin{array}{c} P(2)-C(12) \\ P(2)-C(16) \\ P(2)-C(19) \\ C(1)-C(2) \\ C(1)-C(3) \end{array}$	$\begin{array}{c} 1.855 \ (14) \\ 1.787 \ (13) \\ 1.835 \ (14) \\ 1.511 \ (21) \\ 1.535 \ (20) \end{array}$	C(12)-C(15) C(16)-C(17) C(16)-C(18) C(17)-C(18) C(17)-C(18) C(19)-C(20)	1.546 (20) 1.521 (19) 1.490 (19) 1.488 (19) 1.535 (19)
P(1) - C(5)	1.867 (14)	C(12)-C(13)	1.502(21) 1.542(20)	C(1) - C(4)	1.496 (20)	C(19) - C(21) C(10) - C(22)	1.517 (17)
P(1)-C(9)	1.810 (12)	C(12) - C(14)	1.543 (20) Bond	(0)-C(0)	1.530 (19)	C(19) - C(22)	1.999 (19)
$Cl_{-}Pt_{-}P(1)$	97 91 (12)	P(1) - C(5) - C(6)	114 9 (10)	Pt-P(2)-C(19)	89.4 (4)	C(13) - C(12) - C(15)) 110.4 (13)
Cl-Pt-P(2) Cl-Pt-C(22) P(1)-Pt-P(2) P(1)-Pt-C(22)	95.50 (13) 163.9 (4) 166.58 (11) 97.6 (4)	$\begin{array}{c} P(1)-C(5)-C(7) \\ P(1)-C(5)-C(8) \\ C(6)-C(5)-C(7) \\ C(6)-C(5)-C(7) \\ C(6)-C(5)-C(8) \end{array}$	$\begin{array}{c} 110.6 (9) \\ 105.1 (10) \\ 108.9 (12) \\ 108.5 (12) \end{array}$	C(12)-P(2)-C(16 C(12)-P(2)-C(19 C(16)-P(2)-C(19) 103.5 (6)) 116.7 (7)) 106.5 (6)	$\begin{array}{c} C(14)-C(12)-C(15)\\ P(2)-C(16)-C(17)\\ P(2)-C(16)-C(18)\\ C(17)-C(16)-C(18)\\ \end{array}$	$ \begin{array}{c} 109.0 (13) \\ 118.7 (10) \\ 120.5 (10) \\ 59.2 (10) \end{array} $
P(2)-Pt-C(22) Pt-P(1)-C(1) Pt-P(1)-C(5) Pt-P(1)-C(9)	69.0 (4) 113.7 (5) 109.9 (5) 119.7 (5)	C(7)-C(5)-C(8) P(1)-C(9)-C(11) P(1)-C(9)-C(10) C(10)-C(9)-C(11)	108.5 (13) 119.5 (11) 125.8 (11) 61.6 (11)	P(1)-C(1)-C(2) P(1)-C(1)-C(3) P(1)-C(1)-C(4) C(2)-C(1)-C(3)	$\begin{array}{c} 108.7 \ (10) \\ 112.8 \ (11) \\ 114.3 \ (10) \\ 105.3 \ (14) \end{array}$	$\begin{array}{c} C(16)-C(17)-C(18)\\ C(16)-C(18)-C(17)\\ P(2)-C(19)-C(20)\\ P(2)-C(19)-C(21) \end{array}$) 59.4 (10)) 61.4 (10) 112.1 (10) 119.2 (11)
$\begin{array}{c} C(1)-P(1)-C(5)\\ C(1)-P(1)-C(9)\\ C(5)-P(1)-C(9)\\ Pt-P(2)-C(12) \end{array}$	110.5 (7) 97.7 (7) 104.4 (7) 125.7 (5)	C(9)-C(10)-C(11) C(9)-C(11)-C(10) P(2)-C(12)-C(15) P(2)-C(12)-C(15) P(2)-C(12)-C(15) P(2)-C(12)-C(15) P(2)-C(12)-C(15) P(2)-C(10)-C(11) P(2)-C(10)-C(10) P(2)-C(10)-C(10)-C(10) P(2)-C(10)	59.0 (11) 59.5 (12) 110.1 (10)	C(2)-C(1)-C(4) C(3)-C(1)-C(4) P(2)-C(12)-C(13) P(2)-C(12)-C(14)	106.3 (14) 109.0 (13)) 107.4 (10)) 110.6 (10)	P(2)C(19)-C(22) C(20)-C(19)-C(21) C(20)-C(19)-C(22) C(21)-C(19)-C(22) C(21)-C(19)-C(22)	90.8 (8) 110.8 (11) 106.9 (12) 115.2 (11)
Pt-P(2)-C(16)	113.8 (5)	C(13)-C(12)-C(14)	109.3 (13)			Pt-C(22)-C(19)	104.8 (8)
		tran	s-PtHCl(P(t-B	$(u)_2 CHCH_2 CH_2)_2$	3)		
			Bond I	Distances			
Pt-Cl Pt-P(1) Pt-P(2) P(1)-C(1)	2.427 (3) 2.301 (2) 2.298 (2) 1.820 (11)	C(2)-C(2') ^a C(3)-C(4) C(3)-C(5) C(3)-C(6)	1.489 (16) 1.484 (11) 1.494 (14) 1.501 (12)	P(1)-C(3) P(2)-C(7) P(2)-C(9) C(1)-C(2)	1.882 (8) 1.785 (13) 1.871 (9) 1.471 (11)	C(7)-C(8) C(8)-C(8') C(9)-C(10) C(9)-C(11) C(9)-C(12)	1.480 (17) 1.47 (5) 1.514 (12) 1.508 (14) 1.529 (14)
			Bond	Angles			
$\begin{array}{c} Cl-Pt-P(1)\\ Cl-Pt-P(2)\\ P(1)-Pt-P(2)\\ Pt-P(1)-C(1)\\ Pt-P(1)-C(3)\\ C(1)-P(1)-C(3)\\ C(3)-P(1)-C(3')\\ \end{array}$	96.4 (1) 94.9 (1) 168.3 (1) 111.6 (3) 113.7 (2) 102.1 (3) 112.3 (6)	$\begin{array}{c} P(1)-C(3)-C(4)\\ P(1)-C(3)-C(5)\\ P(1)-C(3)-C(6)\\ C(4)-C(3)-C(6)\\ C(4)-C(3)-C(6)\\ C(5)-C(3)-C(6)\\ P(2)-C(7)-C(8)\\ \end{array}$	111.6 (7) 107.6 (6) 113.0 (7) 106.5 (8) 107.6 (10) 110.1 (12) 124.4 (8)	$\begin{array}{c} Pt-P(2)-C(7)\\ Pt-P(2)-C(9)\\ C(7)-P(2)-C(9)\\ C(9)-P(2)-C(9')\\ P(1)-C(1)-C(2)\\ C(2)-C(1)-C(2')\\ C(1)-C(2)-C(2')\\ \end{array}$	$114.1 (4) \\113.1 (3) \\102.4 (4) \\110.7 (5) \\124.0 (7) \\60.8 (8) \\59.6 (4)$	$\begin{array}{c} C(8)-C(7)-C(8')\\ P(2)-C(9)-C(10)\\ P(2)-C(9)-C(11)\\ P(2)-C(9)-C(12)\\ C(10)-C(9)-C(12)\\ C(10)-C(9)-C(12)\\ C(11)-C(9)-C(12)\\ \end{array}$	59.4 (17) 107.0 (6) 111.5 (6) 113.1 (9) 108.5 (11) 106.9 (7) 109.6 (11)
		[PtC	$Cl(P(t-Bu)_2CHC)$	$CH_2CH_2)]_2(\mu-Cl)_2$ (4)		
D_{+} (11(1))	0 495 (0)	O(1) $O(2)$	Bond I	Distances	1 002 (7)		1 591 (11)
Pt-Cl(1) Pt-Cl(1') ^b Pt-Cl(2) Pt-P	$\begin{array}{c} 2.435 (3) \\ 2.324 (3) \\ 2.278 (3) \\ 2.255 (3) \end{array}$	C(1)-C(3) C(1)-C(4) C(5)-C(6) C(5)-C(7)	1.529 (10) 1.537 (9) 1.551 (10) 1.546 (9)	P-C(1) P-C(5) P-C(9) C(1)-C(2)	1.903 (7) 1.870 (7) 1.814 (7) 1.537 (10)	C(9)-C(10) C(9)-C(11) C(10)-C(11)	1.502 (9) 1.513 (9) 1.489 (12)
			Bond	Angles	100 0 (2)		
$\begin{array}{c} Cl(1)-Pt-Cl(1)'\\ Cl(1)-Pt-Cl(2)\\ Cl(1)-Pt-P\\ Cl(1)'-Pt-P\\ Cl(2)-Pt-P\\ Pt-P-Cl(1)\\ P$	81.05 (11) 86.30 (12) 177.49 (5) 96.52 (1) 96.11 (2) 111.8 (2)) $C(2)-C(1)-C(3)$) $C(2)-C(1)-C(4)$ C(3)-C(1)-C(4) P-C(5)-C(6) P-C(5)-C(7) P-C(5)-C(7) P-C(5)-C(7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} Pt-P-C(9) \\ C(1)-P-C(5) \\ C(1)-P-C(9) \\ C(5)-P-C(9) \\ P-C(1)-C(2) \\ P-C(1)-C(2) \\ P-C(1)-C(3) \end{array}$	$120.6 (2) \\113.5 (3) \\99.7 (3) \\102.1 (3) \\106.0 (5) \\113.5 (5) $	$\begin{array}{c} C(6)-C(5)-C(8)\\ C(7)-C(5)-C(8)\\ P-C(9)-C(10)\\ P-C(9)-C(11)\\ C(10)-C(9)-C(11)\\ C(9)-C(10)-C(11)\\ C(9)-C(10)-C(10)\\ C(9)-C(10)-C(10)\\ C(9)-C(10)-C(10)\\ C(9)-C(10)-C(10)\\ C(9)-C(10)-C(10)\\ C(9)-C(10)-C(10)\\ C(9)-C(10)-C(10)\\ C(10)-C(10)-C(10)\\ C(10)-C(10$	$\begin{array}{c} 109.0 \ (7) \\ 107.6 \ (6) \\ 130.3 \ (5) \\ 124.8 \ (5) \\ 59.2 \ (5) \\ 60.8 \ (5) \\ 0.0 \ (6) \end{array}$
Pt-P-C(5)	108.9 (2)	C(6)-C(5)-C(7	') 109.1 (6)	P-C(1)-C(4)	112.8 (5)	C(9)-C(11)-C(10)	60.0 (5)

^a Primed atoms are related to corresponding unprimed atoms by a mirror plane at z = 1/4. ^b Primed atoms are related to corresponding unprimed atoms by a center of symmetry.

Figure 6. Stereoview of $\dot{PtCl}[P(t-Bu)(CMe_2\dot{C}H_2)(\dot{C}HCH_2\dot{C}H_2)](P(t-Bu)_2\dot{C}HCH_2\dot{C}H_2)$ (2).

(6) Å and Cl-C(7) = 3.384 (7) Å).¹¹ This may reflect the larger contribution of the tert-butyl groups to the phosphorus cone angle.^{1f,12} The dihedral angle between cyclopropane and the PtCl₂P₂ unit is 98.2 (3)°. This arrangement minimizes destabilizing close contacts between the Cl atoms and the methyl hydrogen atoms of the *tert*-butyl groups. Several carbon atoms of the *tert*-butyl groups are closer to the Pt center than are atoms C(2) or C(3) of the cyclopropyl group. Hydrogen atom C(5)H(2)is closest to the Pt center (3.13 vs 3.76 Å for the next closest).

Bond distances in the cyclopropyl ring are normal: C(1)-C(2) = 1.503 (3), C(1)-C(3) = 1.526 (7), and C(2)-C(3)= 1.498 (8) Å. Some typical distances are 1.488 (7)-1.527 (6) Å in cis-Pt(CHCH₂CH₂)₂(PMe₂Ph)₂¹³ and 1.510 (5) Å in cyclopropane.14

The Pt-P distance of 2.373 (1) Å is longer than the 2.302 (1) Å distance reported for the weighted average of 22 Pt(II)-P bond lengths in complexes with mutually $trans - (PR_nPh_{3-n})^{15}$ tertiary phosphines but is the same as that of 2.371 (2) Å in $PtI_2(PCy_3)_2$.¹⁶ As in the diiodo complex, the relatively long Pt-P bond length in 1 can be attributed to steric congestion in the molecule.¹⁷ The Pt-Cl distance, 2.301 (1) Å, is typical for trans-PtCl₂(PR₃)₂ complexes (for example, $PtCl_2(PCy_3)_2$, 2.317 (2) Å,¹⁸ and PtCl₂(PEt₃)₂, 2.294 (9) Å).¹⁵

The P-C(t-Bu) bond distances in 1 (1.889 (6) and 1.899 (5) Å) are the same as those observed for the nonmetalated phosphorus ligand in 2. At 1.823 (5) Å, the P-C(cyclopropyl) distance is significantly shorter.

 $PtCl[P(t-Bu)(CMe_2CH_2) (CHCH_2CH_2)](P(t - t))$

 $Bu_{2}CHCH_{2}CH_{2}$ (2). The structure of 2 is shown in Figure 2 with a stereoview in Figure 6. The geometry is approximately square-planar about the Pt center. The average deviation from the least-squares plane ($PtClCP_2$) is 0.030 Å. The platinaphosphacyclobutane ring is puckered; atom C(19) is below (0.276 Å) while atom C(22) is above (0.220 Å) the best plane defined by the four ring atoms. The dihedral angle between these two planes is 10.6°.

Geometric constraints on the four-atom ring prevent idealized 90° bond angles between ligands on the Pt atom. Thus, the P(2)-Pt-C(22) bond angle is only 69.0 (4)°. The Pt-P(2) bond is much shorter than the Pt-P(1) bond (2.258 (4) vs. 2.342 (4) Å). These two distortions appear

to be general for platinaphosphacyclobutanes. In [Pt- $(P(t-Bu)_2CMe_2CH_2]_2(\mu-NNCMeCHCMe)_2^{19}$ Pt-P bond lengths are 2.224 (7) and 2.207 (6) Å and the P-Pt-CH₂ bond angles are 69.8 (6) and 69.9 (7)°. In $\dot{P}t(\eta^{1}-Cp)(P (t-Bu)_2CMe_2CH_2)(PPh_3)^{20}$ the analogous bond lengths and bond angles are 2.284 Å (vs. 2.313 Å for Pt-PPh₃) and 68.1°. As noted above 2.302 (1) Å is probably a typical Pt-P bond length in complexes of this type.

The trans influence of atom C(22) on the Cl atom in 2 is not affected by the distortions of the four-atom ring: the Pt-Cl distance of 2.410 (4) Å in 2 is the same as that of 2.401 (2) Å in $PtCl(P(t-Bu)_2CHCCMeCH_2)(P(t-bu)_2CHCCMeCH_2))$ Bu),CH,CHCH,CH,).21a

trans-PtHCl(P(t-Bu)₂CHCH₂CH₂)₂ (3). Each molecule (Figure 3) is situated on a mirror plane that contains the Pt, P(1), P(2), C(1), and C(7) atoms. The disordered Cl atom is 0.67 Å from this mirror plane. The shortest intermolecular distance, 3.652 (13) Å, is between atoms Cl and C(7).

The geometry about the Pt atom is approximately square-planar. The P(1)-Pt-Cl and P(2)-Pt-Cl bond angles are 96.36 (10)° and 96.86 (10)°, respectively. The phosphine ligands fold toward the presumed positions of the disordered hydride ligand. The P(1)-Pt-P(2) bond angle of 166.6 $(1)^{\circ}$ is equal to 166.50 $(5)^{\circ}$, the weighted average of the P-Pt-P bond angles for ten trans-PtHX- $(PR_3)_2$ complexes containing bulky phosphine ligands.²² The average weighted Pt-P bond distances for these complexes is 2.277 (1) Å compared with 2.301 (2) and 2.298 (2) Å for the Pt-P bond distances in $3.^{22}$ In the present complex the cyclopropyl groups on the phosphorus atoms enclose the hydride coordination site; the dihedral angle between the cyclopropyl groups is 64.95°. A similar geometry is adopted by cyclohexyl substituents on the phosphorus atoms in trans-PtHX(PCy₃)₂ complexes.^{22d} As in 1, the t-Bu groups in 3 are staggered about the Pt-Cl axis. Despite the more acute P(1)-Pt-P(2) bond angle, t-Bu methyl groups in 3 remain close to the Cl atom. Thus the shortest C-Cl distance $(C(11)\dots Cl = 3.12 (2) \text{ Å})$ in 3 is comparable to its counterpart (C(20)...Cl = 3.188 (6) Å) in 1. The average of the C(11)-Cl and C(11)-Cl distances,

⁽¹¹⁾ Van der Waals' radii for Cl, 1.80 Å, and the methyl group, 2.0 Å; Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960.

⁽¹²⁾ Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956.
(13) Jones, N. L.; Ibers, J. A. Organometallics 1982, 1, 326.
(14) Bastiansen, O.; Fritsch, F. N.; Hedberg, K. Acta Crystallogr. 1964, 17, 538.

⁽¹⁵⁾ Messmer, G. G.; Amma, E. L. Inorg. Chem. 1966, 5, 1775. (16) Alcock, N. W.; Leviston, P. G. J. Chem. Soc., Dalton Trans. 1974, 1834.

⁽¹⁷⁾ Manojlović-Muir, L.; Muir, K. W.; Solomun, T. J. Organomet. Chem. 1977, 142, 265.

⁽¹⁸⁾ Del Pra, A.; Zanotti, G. Inorg. Chim. Acta 1980, 39, 137.

⁽¹⁹⁾ Goel, A. B.; Goel, S.; Vanderveer, D. Inorg. Chim. Acta 1984, 82, L9.

⁽²⁰⁾ Goel, A. B.; Goel, S.; Vanderveer, D.; Clark, H. C. Inorg. Chim. Acta 1981, 53, L117

<sup>Acta 1981, 53, L117.
(21) (a) Youngs, W. J.; Ibers, J. A. Organometallics 1983, 2, 979. (b)
Youngs, W. J.; Mahood, J.; Simms, B. L.; Swepston, P. N.; Ibers, J. A;
Shang, M.; Huang, J.; Lu, J. Organometallics 1983, 2, 917.
(22) (a) Leidl, E.; Nagel, U.; Beck, W. Chem. Ber. 1983, 116, 1370. (b)
Robertson, G. B.; Tucker, P. A. J. Am. Chem. Soc. 1982, 104, 317. (c)</sup>

Del Pra, A.; Forsellini, E.; Bombieri, G.; Michelin, R. A.; Ros, R. J. Chem. Soc., Dalton Trans. 1979, 1862. (d) Ebsworth, E. A. V.; Marganian, V. M.; Reed, F. J. S.; Gould, R. O. J. Chem. Soc., Dalton Trans. 1978, 1167. (e) Immirzi, A.; Musco, A. Inorg. Chim. Acta 1977, 22, L35. (f) Albinati, A.; Musco, A.; Carturan, G.; Strukul, G. Inorg. Chim. Acta 1976, 18, 219. (g) Immirzi, A.; Bombieri, G.; Toniolo, L. J. Organomet. Chem. 1976, 118, 355. (h) Eisenberg, R.; Ibers, J. A. Inorg. Chem. 1965, 4, 773.

3.38(2) Å, in 3 is longer. This distance corresponds to the second closest Cl atom to methyl carbon atom distance in 1, 3.384 (7) Å. The Pt-P-C bond angles in 3 are much less distorted than those in 1. The largest Pt-P-C bond angles for 1 and 3 are 121.6 (2)° and $\overline{1}13.7$ (2)°, respectively.

Bond distances and angles in the cyclopropyl rings are normal. As in 1, the P-C(t-Bu) bond distances are significantly longer than are the P-C(cyclopropyl) bond distances.

 $[PtCl(P(t-Bu)_2CHCH_2CH_2)]_2(\mu-Cl)_2$ (4). In this structure (Figure 4) the binuclear molecules have crystallographically imposed symmetry $\overline{1}$ and are separated by normal van der Waals' contacts. The closest non-hydrogen intermolecular distances are C(1)...C(8) (3.608 (9) Å) and Cl(2)-C(9) (3.551 (7) Å). The intramolecular Pt-Pt distance is 3.618 (1) Å, which is identical with that ob-

served for the closely related dimer [Pt(P(t- $Bu_{2}CMe_{2}CH_{2}]_{2}(\mu-Cl)_{2}$.²³

The bridging Cl atoms are asymmetrically bound to the Pt atoms (Pt-Cl(1) = 2.324 (3) and 2.435 (3) Å). This asymmetry results from the different trans influences exerted by the Cl(2) and P atoms. The same difference in Pt-(μ -Cl) bond lengths is found in [PtCl(PPr₃)]₂(μ -Cl)₂.²⁴ The Pt-P-bond distance in 4 of 2.255 (3) Å is perhaps longer than that of 2.230 (9) Å in the PPr₃ dimer, presumably because of the greater bulk of P(t- $Bu)_2CHCH_2CH_2$ relative to PPr_3 . However, the distance between Pt and the terminal Cl atom (trans to μ -Cl) is the same for both compounds: 2.278 (3) Å for 4 and 2.279 (9) Å for the PPr₃ complex.²⁴ The P-C distances are normal; as in complexes 1, 2, and 3, the P-C(cyclopropyl) bond is shorter than either P-C(t-Bu) bond.

The geometry about Pt is square planar; the average deviation from the best least-squares plane is 0.017 Å for PtCl₂P. The P atom is approximately tetrahedral with atoms C(1) and C(5) above and below this plane and atoms Pt and C(9) in it. The cyclopropane ring makes a dihedral angle of 82.2° with the PtCl₃P plane. This arrangement minimizes steric interaction between atom Cl(2) and atoms C(10) and C(11); the closest cyclopropyl C...Cl distance is 3.376 (9) Å compared with 3.188 (6) Å in 1. Hydrogen atoms H(2)C(3) and H(3)C(3) lie approximately in the $PtPCl_3$ plane while atom H(1)C(3) is 1.61 Å out of the plane. This arrangement decreases steric interaction between Cl(1) and the H atoms on atom C(3) (H(1)C(3)... Cl(1) = 3.79 Å). A similar balancing of steric forces is seen in $[PtCl(PPr_3)]_2(\mu-Cl)_2$.²⁴ The remaining bond lengths and angles have typical values.

Discussion

The intramolecular conversion of 1 on silica or Florisil to 2 appears to depend on the Brønsted acid nature of the supports:^{25,26} supports pretreated with triethylamine do not catalyze the reaction. Product 3 is formed through an apparent reduction process. Florisil is a mixed oxide whose main constituents are silica and magnesia in a ratio of

5:1.^{26a,c,d} MgO surfaces induce reductive processes,²⁷ and this type of reaction may explain the formation of product 3. The complexity of surface chemistry coupled with limited experimental data do not allow us to reach further conclusions.

Complexes similar to 1 undergo metalation reactions on alumina. As opposed to Florisil, alumina shows both Lewis acid and Lewis base properties.²⁵ The complex PdClCp- $(P(O-o-Tol)_3)$ in CH_2Cl_2 /pentane solution reacts with Al_2O_3 (on passage through a chromatographic column) to form the ortho-metalated complex PdCp(P(O-o-Tol)₂(OCC- $(CH_3)(CH)_3\dot{C}).^{28}$ However, no metalation of PdClCp(P- $(t-Bu)_2$ Ph) occurs on Al₂O₃, although the related complex $PdCl_2P(t-Bu)_2Ph)_2$ undergoes facile metalation of a t-Bu group when combined with AgOAc in chloroform.^{1e} This

reaction proceeds through an acetate intermediate.^{1e} Similarly, the reaction of 1 in acetic acid to form 2 may proceed via an acetate intermediate in view of the nearly quantitative reaction of 1 with TlOAc in boiling ethanol to give 2. Formation of the hydride competes with formation of 2 in refluxing acetic acid. However, the hydride is not an intermediate in the reaction: when the hydride 3 is heated at reflux in acetic acid for up to 48 h, it is recovered unchanged.

The complexes $PtHX(P(t-Bu)_3)_2$ eliminate H_2 to form $PtX(P(t-Bu)_2CMe_2CH_2)(P(t-Bu)_3)$.^{29b} Steric factors and choice of solvent influence the intramolecular metalation of $P(t-Bu)_3$ in these complexes. Metalation occurs easily in the order X = I > Br > Cl in benzene solution and is accelerated by trace amounts of acid or alcohol. For X =H or CN metalation does not occur.^{29a} Thus 3 differs markedly from $PtHX(P(t-Bu)_3)_2$ (X = Cl, Br, I). Perhaps 3 fails to undergo metalation because it is a relatively uncongested molecule.

The complexes $\dot{P}tX(P(t-Bu)_2CMe_2CH_2)(P(t-Bu)_3)$ (X = I, Br, Cl) lose coordinated $P(t-Bu)_3$ to afford the halo-

bridged dinuclear complexes $[Pt(P(t-Bu)_2CMe_2CH_2)]_2(\mu$ -X)₂.²⁹ Formation of such dimers is dependent on solvent^{29a} and halide ion.^{29b} As for metalation of $PtHX(P(t-Bu)_3)_2$

⁽²³⁾ Goel, A. B.; Goel, S.; Vanderveer, D. Inorg. Chim. Acta 1981, 54, L267.

⁽²⁴⁾ Black, M.; Mais, R. H. B.; Owston, P. G. Acta Crystallogr., Sect

B: Struct. Crystallogr. Cryst. Chem. 1969, B25, 1760.
 (25) (a) Benesi, H. A.; Winquist, B. H. C. Adv. Catal. 1978, 27, 97. (b)
 Zecchina, A.; Coluccia, S.; Morterra, C. Appl. Spectrosc. Rev. 1985, 21, 259 and references cited therein.

^{(26) (}a) Snyder, L. R. J. Chromatogr. 1963, 12, 488. (b) Lercher, J. A.; Noller, H. J. Catal. 1982, 77, 152 and references cited therein. (c) Walling, C. J. Am. Chem. Soc. 1950, 72, 1164. (d) Fieser, L. F.; Fieser, M. Reagents for Organic Chemistry; Wiley: New York, 1967; Vol. 1, p 393.

^{(27) (}a) Cordischi, D.; Indovina, V.; Cimino, A. J. Chem. Soc., Faraday Trans. 1 1974, 2189. (b) Kijenski, J.; Malinowski, S. J. Chem. Soc., Faraday Trans. 1 1978, 250. (c) Klabunde, K. J.; Kaba, R. A.; Morris, R. A. Adv. Chem. Ser. 1979, No. 173, 140.

⁽²⁸⁾ Tune, D. J.; Werner, H. Helv. Chim. Acta 1975, 58, 2240.
(29) (a) Clark, H. C.; Goel, A. B.; Goel, R. G.; Goel, S. Inorg. Chem.
1980, 19, 3220. (b) Goel, R. G.; Ogini, W. O.; Srivastava, R. C. Organometallics 1982, 1, 819.

complexes, the rate of dimer formation increases in going from X = Cl to I, presumably for steric reasons.^{29b} The dimers form more quickly in ethanol than in noncoordinating solvents, such as dichloromethane or benzene.^{29b} A

similar loss of $P(t-Bu)_2(CHCH_2CH_2)$ from 1 in toluene/ acetic acid or dioxane must lead to formation of 4. Oxidation of free phosphine to phosphine oxide hinders the reverse reaction.^{29a}

Under various conditions complex 1 forms the less sterically congested complexes 2, 3, and 4. However, complex 1 fails to form an internally metalated σ -cyclopropyl complex even though such a complex would be less sterically congested than 1 (Scheme II).

We have previously reported the intramolecular activation of the cyclopropyl ring of the phosphine ligand by the Pt center in trans-PtCl₂(P(t-Bu)₂CH₂CHCH₂CH₂)₂ to form a σ -allyl complex.^{21a} In this complex the cyclopropyl group is accessible to the Pt atom. In the structures of the present complexes 1-4, the cyclopropyl rings are well removed from the Pt center. Thus, geometric constraints may prevent precoordination of the cyclopropane group to the Pt atom that would encourage cleavage of the strong cyclopropyl C-H bond. If no electronic interactions occur between Pt and cyclopropane in 1 in solution, then a t-Bu C-H bond (91.0 kcal/mol) should be more reactive than a cyclopropyl C-H bond ($\sim 101 \text{ kcal/mol}$),³⁰ in agreement with the reaction chemistry found here. Whether activation of this type is thermodynamically or kinetically controlled is not known.^{1b}

Acknowledgment. This work was supported by the U.S. National Science Foundation (CHE-83-08076). We thank Johnson-Matthey Inc., Malvern, PA, for the loan of Pt salts used in this study. We thank Dr. Claire Tessier-Youngs for helpful discussions concerning oxide surfaces

Registry No. 1, 107202-80-2; 2, 107202-81-3; 3, 107202-82-4; 4, 107202-83-5; K₂PtCl₄, 10025-99-7; di-tert-butylcyclopropylphosphine, 107245-36-3; cyclopropyl bromide, 4333-56-6; ditert-butylchlorophosphine, 13716-10-4.

Supplementary Material Available: Anisotropic thermal parameters (Table IV) and hydrogen atom positions (Table V) (10 pages); structure amplitudes (Table VI) (68 pages). Ordering information is given on any current masthead page.

(30) Kerr, J. A. Chem. Rev. 1966, 66, 465.

Photorearrangements of CuCl Complexes of 1,5,9-Cyclododecatrienes: Wavelength Dependence

Yuan L. Chow,* Xian-en Cheng, and Gonzalo E. Buono-Core

Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Received September 30, 1986

Irradiation of the CuCl complexes of the cis-trans isomers of 1,5,9-cyclododecatriene (CDT) in the presence of an excess of these ligands at wavelength >290 nm caused sequential interconversions of all the possible isomers: ttt-CDT \Rightarrow ctt-CDT \Rightarrow cct-CDT \Rightarrow ccc-CDT. Irradiation of similar solutions at wavelength >240 nm induced irreversible rearrangement of CDT to 9-vinyl-cis, cis-1,5-cyclodecadiene (VCDD) in addition to the reversible cis-trans photoisomerizations. The rearrangement was most likely caused by photoexcitation of CuCl ccc-CDT with the light energy corresponding to 240-290 nm, and its mechanisms are proposed.

Introduction

Chemical reactions caused by sensitized, and less frequently direct, excitations of nonconjugated cyclic polyenes have attracted extensive investigations and are known to involve cis-trans isomerization, cycloaddition, and other assorted rearrangements.¹ Nonconjugated polyenes are known to form π -complexes with copper(I) salts;^{2,3} the structure and bonding of some of these Cu(I) complexes are well-defined.² Owing to the tendency of coordination, photocatalyzed cycloadditions and rearrangements of such polyenes in the presence of Cu(I) salts have been extensively investigated;^{4,8} an excellent review on these subjects

has been published.¹⁴ Recently we have provided evidence of the isomerization and cycloaddition of 1,5-cyclooctadienes (1,5-COD) complexed with copper(I) salts and, further, a wavelength dependence of these photoreactions in the Cu(I) complexes.⁸ This work led us to examine similar CuCl complexes of readily available trans, trans,trans-1,5,9-cyclododecatriene (ttt-CDT) and cis,trans,trans-1,5,9-cyclododecatriene (ctt-CDT); their photorearrangements are described here.

Sensitized photorearrangements of CDT's have been investigated occasionally in the past.⁹⁻¹¹ The major pathway is the cis-trans isomerization of the olefinic bonds to give a mixture of all possible isomers, e.g., photolysis of *ctt*-CDT to *ttt*-CDT, *cct*-CDT, and *ccc*-CDT, although the disagreement on the presence of the last isomer has

^{(1) (}a) Turro, N. J. Modern Molecular Photochemistry; The Benjamin: Menlo Park, CA, 1978; Chapter 10-13; general references are cited here. (b) Inoue, Y.; Takamuku, S.; Sakurai, H. J. Chem. Soc., Perkin Trans. 2 1977, 1635.

 ⁽²⁾ Salomon, R. G.; Kochi, J. K., J. Am. Chem. Soc. 1973, 95, 1889.
 (3) Haight, H. L.; Doyle, J. R.; Baenziger, N. C.; Richard, G. F. Inorg. Chem. 1963, 2, 1301.

⁽⁴⁾ Salomon, R. G. Tetrahedron 1983, 39, 485.
(5) (a) Kutal, C.; Grutsch, P. A. Adv. Chem. Ser. 1979, No. 173, 3250.
(b) Salomon, R. G. Adv. Chem. Ser. 1978, No. 168, 174.

⁽⁶⁾ Srinivasan, R. J. Am. Chem. Soc. 1964, 86, 3318.

⁽⁷⁾ Whiteside, G. M.; Goe, G. L.; Cope, A. C. J. Am. Chem. Soc. 1969, 91, 2608.

 ⁽⁸⁾ Chow, Y. L.; Buono-Core, G. E.; Y. Q. Organometallics 1984, 3, 702.
 (9) Nozaki, H.; Nisikawa, Y.; Kawanisi, M.; Noyori, R. Tetrahedron

<sup>1967, 23, 2173.
(10)</sup> Crandall, J. K.; Mayer, C. F. J. Am. Chem. Soc. 1967, 89, 4374.
(11) Attridge, C. J.; Maddock, S. J. J. Chem. Soc. C 1971, 2999.