borons in 1-Cl⁻ are tetrahedral in solution, simultaneously coordinated to the bridging C1, rather than equilibrating between trigonal and tetrahedral states. Both 1 and PhBCI₂ abstract chloride from triphenylmethyl chloride and *p,p* '-dimethoxybenzhydryl chloride."

Crystals of 1.Ph₃PNPPh₃Cl suitable for X-ray diffraction were grown from CH_2Cl_2 -hexane by vapor diffusion, and the structure was determined.¹² The B_2C_{15} grouping appears to adopt two similar but distinguishable conformations in the lattice (Figure l). **A** common occupancy factor was refined in least-squares cycles for the chlorines in both of these conformations. The major conformer, represented by nonprimed atoms Cl_1 - Cl_5 , was refined to a value of 0.60 **(1);** the minor conformer represented by primed atoms Cl_1' - Cl_5' was refined to a value of 0.40 (1). Pertinent bond lengths and angles are listed in Tables I and 11. In both conformations, the geometries at boron are mildly distorted tetrahedral, with C-B bonds <10° out of the naphthalene plane and nonbridging C1-B bond lengths deviating by \leq 0.2 Å from the 1.75- \tilde{A} length found in BCl₃.¹³ The apparently short $Cl_2' - B_1$ length may not be meaningful because of the large thermal disorder associated with Cl₂'. The bridging chlorides are unambiguously observed, with the major conformer featuring a bridge nearly in the plane of the naphthalene, while the minor conformer is marked by a more puckered bridge that may result from the strain involved in squeezing a relatively large anion into a restricted space. *This is the first definitive example* of *C1 bridging between two otherwise trigonal borons.*

It is interesting to contrast the two structures of $1 \cdot Cl^{-}$ with the structure of the Cl⁻ complex of o-phenylenedimercury dichloride.³ Because secondary coordination to Hg tends to be orthogonal to the primary bonds and directionally diffuse, the latter complex features C1- "perched" over the dimercurials. The vacant orbitals on the borons in 1, however, are directional and convergent,' so that it is possible for bridging Cl^- to "nest" in the electron-deficient region between the B atoms, particularly in the major conformation.

Extensions of our work on anion complexation to rigid, tridentate Lewis acids are under active pursuit.

Supplementary Material Available: Tables of atomic coordinates, thermal parameters, bond lengths, and bond angles for $(C_6H_5)_6P_2N \cdot C_{10}H_6B_2Cl_5$ (15 pages); a listing observed and calculated structure factors (11 pages). Ordering information is given on any current masthead page.

Mechanism of Silanone Extrusion from Alkoxyvlnylsilanes

Sukhamaya Baln, Slna Ijadl-Maghsoodl, and Thomas J. Barton'

Department of Chemistry, Iowa State University Ames, Iowa 500 1 ^I

Received February 3, 1987

Summary: Flash vacuum pyrolytic studies of several alkoxyvinylsilanes revealed that, if α -hydrogens were present on the alkyl group, decomposition proceeded by extrusion of Me₂Si=O. Deuterium labeling showed that the process was initiated by a novel 1,5-migration of hydrogen.

Several years ago we established' that the gas-phase thermolysis of α -silyl methoxysilanes (1) was a convenient route to silenes **2** and have utilized this reaction in the generation of a variety of theoretically interesting silenes.2 Thus it was a natural extension to exploit this thermal elimination in the synthesis of 1-silaallenes **43** for which the only change would involve departure of the trimethylsilyl group in **3** from an sp2-hybridized carbon rather than one of $sp³$ hybridization.

The potential silaallene precursor 3 was synthesized⁴ and subjected to flash vacuum pyrolysis (FVP)⁶ at temperatures of 750 and 800 °C. Two major products, isopropenylsilane **5** and disiloxane **6,** were obtained in respective yields of **34-46%** and **35-23%** along with lesser amounts $(25-12\%)$ of cyclosiloxanes D_3 and D_4 .⁷ reaction products reveal no indication of the desired silaallene **4** but strongly suggest the formation of dimethylsilanone, Me₂Si=0. Thus the cyclosiloxanes D_3 and D_4 are cyclic oligomers of dimethylsilanone,8 **6** can be formed from the well-precedented insertion of silanone into the

(8) Gusel'nikov, L. E.; Nametkin, N. S. *Chem. Reu.* **1979,** *79,* **529.**

⁽¹¹⁾ The ionization of benzhydryl chlorides by $BCl₃$ has been exploited in the study of carbocation addition to olefins: Schneider, R.; Grabis, U.; Mayr, **H.** *Angew. Chem., Int. Ed. Engl.* **1986,25, 89-90.**

⁽¹²⁾ The crystal structure analysis was performed by C. S. Day of Crystalytics Co., Lincoln, NE. A colorless, rectangular parallelepiped crystal of dimensions $0.40 \times 0.55 \times 0.60$ mm was employed. The crystal system was monoclinic, space group $P2₁/c$, with lattice constants $a =$ **9.974** (3) **Å,** $b = 24.906$ (6) **Å,** $c = 17.504$ (4) **Å,** $\beta = 93.93$ (2)°, $V = 4338$ (2) \mathbf{A}^3 , and $\mathbf{Z} = 4$. The structure was refined to $R = 0.055$ and $R_w = 0.046$ by using 2539 independent reflections $(23 \sigma(I))$ of Mo K_{α} radiation, 2 θ between **3.0'** and **43.0°,** and *T* = **20** OC. The **61** non-hydrogen atoms were located using the SHELXTL Direct Methods programs. All hydrogen atoms were included in the structure factor calculations as idealized
atoms (assuming sp^2 hybridization of the carbon atoms and a C-H bond
length of 0.96 Å) "riding" on their respective carbon atoms. The isotropic thermal parameter of each hydrogen atom was fixed at **1.2** times the equivalent isotropic thermal parameter of the carbon atom to which it is covalently bonded. There were no peaka in the find difference Fourier above the background level **(0.24** e/AS).

⁽¹³⁾ Cotton, F. A.; Wilkinson, G. *Aduanced Inorganic Chemistry;* Wiley: New York, **1972; p 223.**

⁽¹⁾ Barton, T. J.; Burns, G. T.; Arnold, E. V.; Clardy, J. C. *Tetrahe-*

dron Lett. 1981, 22, 7.
(2) Barton, T. J.; Burns, G. T. J. Organomet. Chem. 1981, 216, C5.
Barton, T. J.; Vuper, M. J. Am. Chem. Soc. 1981, 103, 6788. Burns, G.
T.; Barton, T. J. J. Am. Chem. Soc. 1983, 105, 2006.

⁽³⁾ 1-Silaallenes: Ishikawa, M., et al. *J.* Am. *Chem.* **SOC. 1982, 104, 2872.** Ishikawa, M.; Ohshita, J.; Yoshihiko, I. *Organometallics* **1986,5,** 1518.

⁽⁴⁾ Synthesis **of 3** was accomplished **in 26%** yield by Grignard coupling of **1-bromo-l-(trimethylsilyl)ethene6** and dichlorodimethylsilane followed by reaction with LiOMe/THF. Characterization was by 'H NMR, 13C NMR, and mass spectra and combustion analysis.

⁽⁵⁾ Boeckman, R. **K.,** Jr.; Blum, D. M.; Ganem, B.; Halvey, N. *Org. Synth.* **1978,58, 152.**

⁽⁶⁾ FVP was conducted by slowly distilling the neat material through a 30 cm (1.6-cm o.d.) horizontal quartz tube packed with quartz chips.
Pressures typically ca. 10⁻⁴ torr are measured behind a liquid N_2 trap where

⁽⁷⁾ Conversion of **3** was ca. **25%** at **750** OC and ca. **50%** .at *800* OC, and yields are based on reacted **3.** At **850** "C conversion was **84%** but mass recovery was only **53%.** At 800 **"C** both **D3** and **D,** were observed, but at **750** OC only D4 was obtained.

Si-0 bond of **3,** and isopropenylsilane **5** corresponds to the loss of Me₂SiO from 3.

An intriguing possibility for mechanistic rationalization of the surprising extrusion of dimethylsilanone from **3** is that it is initiated by isomerization to carbene **7** via a 1,2-shift of SiMe20Me (Scheme **I).** Thus **7** could intramolecularly insert into the C-0 bond (either concertedly or via the intermediacy of ylide **8)** to form silaoxetane **9** which would be expected⁸ to extrude dimethylsilanone and afford **5.**

Although isomerization of an olefin to an alkylcarbene is certainly anticipated to be quite a high-energy process,⁹ there is one apparently documented example involving aryl migration¹⁰ and a very likely example involving silicon migration'l in the literature. To test the hypothesis of Scheme **I** the FVP12 of vinylsilane **10** was conducted and found **to** produce propene **(58%),** disiloxane **11** (21%), and minor amounts of \bar{D}_3 and D_4 , all in accord with this mechanism. Likewise ethoxyvinylsilane **12** afforded butene, disiloxane 13, D_3 , and D_4 ,¹³ but the butene formed was

2-butene, and subsequent experiments revealed that the 1-butene required by the carbene mechanism did *not* isomerize to 2-butene under these experimental conditions. Further evidence against the carbene mechanism was found in the FVP of phenoxyvinylsilane **14** which was

These results are consistent with either a mechanism involving initial **C-0** homolysis (Scheme **11,** path A), where it is assumed that the initial 1-butene from **12** is isomerized via hydrogen atom abstractions and that methyl radical addition is regiospecific to produce a radical that is β to two silicons, or by a retro-ene type route (Scheme **11,** path B) involving concomitant formation of a silene and a carbonyl species which would be expected to cycloadd to the silene to produce silaoxetane **9.** Path B is rendered unlikely by the observations that (1) copyrolysis of **3** and 173-butadiene did not intercept silene **15, (2)** no formaldehyde was observed among the products, and (3) copyrolysis of **3** and benzaldehyde did not afford 1 phenylpropene, which would be expected from the reaction of benzaldehyde and **15.**

Both paths A and B of Scheme **I1 (as** well as Scheme **I)** are eliminated from consideration by the results of a single labeling experiment. FVP of the trideuteriomethyl derivative of **3,3D,** afforded isopropenylsilane **5D** with the three deuteriums *exclusively* (by ¹H and ²H NMR) in the 1,1,3-positions. Futhermore, intramolecularity is strongly supported by the fact that the copyrolysis of equimolar amounts of **3** and **3D** yielded only (from mass spectra) **5** and **5D.** These labeling results force us to the surprising

⁽⁹⁾ Pople, J. A.; Raghavachari, K.; Frisch, M. J.; Brinkley, J. S.; Schleyer, P. v. R. *J. Am. Chem. SOC.* **1983,105,6389.**

⁽¹⁰⁾ Chan, T. H.; Massuda, D. *J. Am. Chem.* **SOC. 1977, 99, 936. (11) Conlin, R. T.; Huffaker, H. B.; Kwak,** Y. **W.** *J. Am. Chem. SOC.* **1985,** *107,* **731.**

OC for 10 was 80% and for 12 was 54%. (12) Yields are corrected for unreacted starting material which at *800*

⁽¹³⁾ This experiment was complicated by the competing extrusion of ethylene from 12 to produce dimethylvinylsilanol.

conclusion that the decomposition mechanism (Scheme 111) is initiated by an intramolecular hydrogen (deuterium) transfer from the methoxyl group to the olefinic terminus to afford the 1,4-diradical 16 which closes to silaoxetane **9D** which in turn proceeds directly to products.¹⁴

If indeed this mechanism, which fits **all** the known facts of this decomposition, is correct, one would expect an isotope effect between **3** and **3D,** albeit small at such extreme temperatures. Compounds **3** .and **3D** were pyrolyzed in a stirred-flow reactor¹⁵ at 695.4 °C (60 mL/min of He), and from the apparent rate constants for formation of *5* and $5D k_H/k_D$ was determined to be 1.34 \pm 0.08, consistent with $C-H(D)$ cleavage in the transition state.

Current efforts, which will be reported in a full paper along with complete details of this work, include synthetic modification of **3** so as to promote silaallene formation and/or reduced decomposition temperatures to allow obtainment of reliable Arrhenius parameters for this process. The generality of intramolecular H-atom transfer to produce diradicals is also being probed in carbon systems devoid of silicon.

Acknowledgment. We gratefully acknowledge the National Science Foundation for support of this work. We thank the Department of Energy for support of Dr. Ijadi-Magshoodi and for the funds used for construction of our stirred-flow reactor. Helpful discussions with Professor Philip M. Warner are gratefully acknowledged.

(15) Our stirred-flow reactor is modeled after the design of Davidson.¹⁶
(16) Baldwin, A. C.; Davidson, I. M. T.; Howard, A. V. *J. Chem. Soc*., *Faraday Trans. 1* **1975,** *71, 912.*

Formatlon of a Trlshomocubane Structure Contalnlng Three Rhenlum and Elght Arsenic Atom Vertices. The Crystal Structure of ${cyclo}$ - ${(\text{AsMe})_7(\text{As})\text{Re}(\text{CO})_4|\text{Re}_2(\text{CO})_6}$

Anthony-Joseph MMalo and Arnold L. Rhelngold"

Department of Chemistry and the Center for Catalytic Science and Technology University of Delaware, Newark, Delaware 197 16 Received January 23, 1987

Summary: Pentamethylcyclopentaarsine, cyclo-(AsMe)₅, reacts with $\mathsf{Re}_2(\mathsf{CO})_{10}$ to form $\{cyclo - [(\mathsf{AsMe})_7(\mathsf{As})\mathsf{Re} (CO)_4]$ Re₂ $(CO)_6$ in 26% yield. The product has been structurally characterized by X-ray methods. The 11 heavy atoms form a trishomocubane structure analogous to that found in $[(AsMe)₉Mo₂(CO)₆]$; as compensation for the additional electron of each Re(CO)_3 group (compared to $Mo(CO)₃$, one of the As units has, through demethylation, converted from a two-electron to a one-electron donor. Another of the positions is occupied by a Re(CO)_4 group which functions as the isolobal equivalent of a second naked As atom.

We have proposed' that transition-metal, main-group hybrid clusters containing a majority of main-group atoms generally form structures explicable (but not always pre-

Figure 1. Molecular structure and labeling scheme for **I1 as** viewed approximately along the $Re(1) \cdots Re(3)$ vector with 40% **probability thermal ellipsoids.**

Table I. Selected Bond Distances and Angles for I1

(a) Bond Distances (A)			
$Re(1)-As(1)$	2.605(3)	$As(1)-As(2)$	2.443(5)
$Re(1) - As(4)$ $Re(1) - As(7)$	2.543(4) 2.567(4)	$As(2)-As(3)$ $As(3)-As(4)$	2.419(5) 2.414(5)
$Re(2)-As(1)$	2.602(4)	$As(4)-As(5)$	2.437(6)
$Re(2) - As(8)$	2.601(3)	$As(5)-As(6)$	2.406(5)
$Re(3) - As(5)$	2.646(3)	$As(7)-As(8)$	2.432(5)
$Re(3) - As(8)$	2.612(4)		

(b) Bond Angles (deg)

dictable) by application of two concepts: (1) the overall cluster structure will have isolobal relationships to known (or expected) *main-group* structures and **(2)** the maingroup component will undergo structural modifications as needed to fulfill the steric and electronic demands of the transition-metal components. We illustrated these concepts with the structure of $[cyclo-(AsPh)_{9}Mo_{2}(CO)_{6}]$ (I) which formed an isolobal trishomocubane structure in good yield from $Mo(CO)_6$ and cyclo- $(AsPh)_6$. As a test of these concepts, we were curious to learn the results of substituting a metal center of higher electron count, e.g., Re(CO), for $Mo(CO)₃$. If a trishomocubane structure persisted, what structural accommodations would be necessary in the main-group and transition-metal portions of the structure? To this end we now report the product of the reaction of $\text{Re}_2(\text{CO})_{10}$ with cyclo-(AsMe)₅ which does lead to a trishomocubane structure, $\{cycle\}$ (AsMe)₇(As)Re(CO)₄]Re₂- $(CO)_{6}$ (II), but with some unusual structural accommodations needed to achieve this result.

0276-7333/87/2306-ll38\$01.50/0 *0* ¹⁹⁸⁷**American Chemical Society**

⁽¹⁴⁾ It is, of course, possible to write the mechanism of Scheme I11 as an ionic process initiated by **hydride transfer. However, in the absence of solvent stabilization, the energetics of charge separation are normally considered to be prohibitive.**

⁽¹⁾ Rheingold, A. L.; Fountain, M. E.; DiMaio, A.-J. *J. Am. Chem. SOC.* **1987,** *109,* **141.**