

Synthesis and characterization of alkylidene-bridged zirconium-aluminum complexes

Frederick M. Hartner, Susan M. Clift, Jeffrey. Schwartz, and Thomas H. Tulip Organometallics, **1987**, 6 (6), 1346-1350• DOI: 10.1021/om00149a035 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on April **27**, **2009**

More About This Article

The permalink http://dx.doi.org/10.1021/om00149a035 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Synthesis and Characterization of Alkylidene-Bridged Zirconium–Aluminum Complexes

Frederick M. Hartner, Jr., Susan M. Clift, and Jeffrey Schwartz*

Department of Chemistry, Princeton University, Princeton, New Jersey 08544

Thomas H. Tulip*[†]

Central Research & Development Department,[‡] E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898

Received July 25, 1986

Examples of the title complexes have been prepared through two complementary routes. Spectral analysis

indicate that they are best formulated as Zr analogues of Tebbe's reagent, Cp2TiCH2AlClMe2. Single-crystal

X-ray diffraction analysis of Cp₂ZrCH(CH₂-t-Bu)AlCl(*i*-Bu)₂ at -100 °C confirms this result: space group $C_{2h}^5 - P2_1/n$ (No. 14), a = 19.779 (3) Å, b = 14.055 (3) Å, c = 9.086 (2) Å, $\beta = 90.12$ (2)°, V = 2526 (2) Å, and Z = 4. The final conventional and weighted agreement indices on F_0 for 4306 reflections with $F_0^2 > 2526$ (2) Å, $\beta = 90.12$ (2)°, V = 2526 (2) Å, and Z = 4. $3\sigma(F_{\alpha}^{2})$ are 0.035 and 0.040. Both Zr and Al show pseudotetrahedral coordination. The Zr—C bond length, 2.158 (2) Å, indicates significant Zr=C bonding.

Introduction

Alkylidene-bridged complexes of transition metals have been proposed as intermediates in several metal-catalyzed processes; a large number of such compounds have also been prepared, isolated, and studied with regard to stoichiometric reactions which they undergo.¹ Of these, as especially interesting example is the Tebbe compound² (1a), which serves as a starting point for studies of topics ranging from olefin metathesis²⁻⁴ to novel "Wittig"-type reactivity with regard to carbonyl group containing organics.² In the latter context the "Tebbe reagent" has now been developed as a unique reagent in the repertory of the synthetic organic chemist,⁵ and its ability and that of analogues⁶⁻⁹ to methylenate esters or lactones has been exploited in a variety of interesting organic transformations.¹⁰⁻¹² Unfortunately, due to its mode of synthesis,¹³ alkyl chain containing analogues of the "Tebbe" reagent have not been forthcoming with use of variations on the originally described synthetic scheme.

Tebbe's compound has been described as a organoaluminum-stabilized Ti carbene complex,^{2,3} and reactions of note of this species have been discussed in terms of processes in which the organoaluminum residue of 1a is either lost or removed, yielding a reactive Ti carbene compound.^{3,4} The carbenoid nature of these compounds has been proposed but has not been demonstrated; due to CH₂, Cl disordering in 1b, an analogue of 1a, no meaningful structural analysis of this class of compounds has yet been obtained.³ Zirconium compounds could behave in similar fashion to their Ti analogues, and details of structure of such alkylidene-bridged complexes, aimed at revealing the "carbenoid" nature of such species, are of general significance. In this paper we describe the first example of the preparation and structural characterization of a novel, long-chain alkylidene-bridged member of this class of compounds (2),¹⁴ which demonstrate conclusively the carbenoid character of these species.

Results and Discussion

Attempts to prepare titanium-based long alkylidene chain bridged species from trialkylaluminum reagents fail

due to formation of hydridic species.¹⁵ An alternative route could involve the addition of a metal hydride to a metal alkenyl complex.¹⁶ A reaction of this type was studied, but products could not be separated from Ti(III) byproducts.

Zirconium(IV) is considerably more stable than is Ti(IV) toward reduction to lower valent species. For example, the

- (1) For example, see: Holton, J.; Lappert, M. F.; Pearce, R.; Yarrow, P. I. W. Chem. Rev. 1983, 83, 135.
- (2) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611.
- (3) Klabunde, U.; Tebbe, F. N.; Parshall, G. W.; Harlow, R. L. J. Mol. Cat. 1980, 8, 37
- (4) Howard, T. R.; Lee, J. B.; Grubbs, R. H. J. Am. Chem. Soc. 1980,
- 102, 6876. Straus, D. A.; Grubbs, R. H. Organometallics 1982, 1, 1658. (5) Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs, R. H. J. Am. Chem.
- Soc. 1980, 102, 3270.
 - (6) Lombardo, L. Tetrahedron Lett. 1982, 4293.

(7) Bruin, J. W.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F. Tetra-hedron Lett. 1983, 3935. Seetz, J. W. F. L.; Schat, G.; Akkerman, O. S.;

- Bickelhaupt, F. Angew. Chem., Int. Ed. Engl. 1983, 22, 248.
 (8) Buchwald, S. L.; Grubbs, R. H. J. Am. Chem. Soc. 1983, 105, 5490.
 - (9) Eisch, J. J.; Piotrowski, A. Tetrahedron Lett. 1983, 2043.
 (10) For example, see: Stevenson, J. W. S.; Bryson, T. A. Tetrahedron
- Lett. 1982, 3143.
- (11) Stille, J. R.; Grubbs, R. H. J. Am. Chem. Soc. 1983, 105, 1664.
 (12) Chou, T.-S.; Huang, S.-B. Tetrahedron Lett. 1983, 2169.
 (13) Ott, K. C.; de Boer, E. J. M.; Grubbs, R. H. Organometallics 1984,
- 3, 223 (14) Hartner, F. W., Jr.; Schwartz, J. J. Am. Chem. Soc. 1981, 103,
- 4979. (15) Tebbe, F. N.; Guggenberger, L. J. J. Chem. Soc., Chem. Commun.
- 1973, 227. (16) Such Ti(IV) complexes are best made in CH_2Cl_2 . For example,
- see; Waters, J. A.; Mortimer, G. A. J. Organomet. Chem. 1970, 22, 417.

[†]Current address: Medical Products Department, E. I. du Pont de Nemours and Co., 331 Trebel Cove Road, No. Billerica, MA 01862.

[‡]Contribution No. 3636.

Table II. Summary of X-ray Diffraction Data

complex	$(\eta^5 - C_5 H_5)_2 ZrCH[CH_2C(CH_3)_2]AlCl-$
-	$[CH_2CH(CH_3)_2]_2$ (2a)
formula	C ₂₄ H ₄₀ AlClZr
fw	482.24
space group	$C_{2h}^{5} - P2_{1}/n$ (No. 14)
a, Å	19.779 (3)
b, Å	14.055 (3)
c, Å	9.086 (2)
β , deg	90.12 (2)
V, Å ³	2526 (2)
Z	4
ρ (calcd), g cm ⁻³	1.268
cryst dimens, mm	$0.29 \times 0.30 \times 0.33$
temp, °C	-100
radiatn	Mo K α (0.71069 Å) from
	graphite monochromator
$\mu, {\rm cm}^{-1}$	5.75
absorptn correctn	0.84-1.13; average 0.99
factors	
2θ limits, deg	4.0-55.0
total no. of unique	6411
observns	
data, $F_{0}^{2} > 3\sigma(F_{0}^{2})$	4306
final no. of variables	271
R	0.035
R _w	0.040
error in observn unit	1.963
wt, electrons	
-	

preparation of Zr(III) complexes from Cp₂ZrCl₂ requires the use of strong reducing agents such as alkali metals¹⁷ whereas zinc, Grignard reagents, aluminum, and a variety of other reductants will readily transform Cp₂TiCl₂ into Ti(III) compounds.¹⁸ Consequently the preparation of zirconium analogues of 1 was anticipated to be more facile than was that of their titanium counterparts.

Addition of 1 equiv of DIBAH to a benzene solution of chlorobis(cyclopentadienyl)(neohexenyl)zirconium (3a)¹⁹ or addition of Cp₂ZrHCl to a solution of (neohexenyl)diisobutylaluminum gave a single product, 2a, in essentially quantitative yield, which could be obtained as orange crystals. For this (and analogous) species, ¹H and ¹³C NMR spectral analysis suggested a structural analogy with 1a (see Table I). Other analogues of 2 could be obtained in similar fashion; however, as the steric bulk of substituents of the double bond decreased, isomeric products were also observed, and ¹H NMR spectroscopic analysis suggested the presence of a bimetallic (4) compound containing a bridging (ethylene) unit. In general, regioselectivity for formation of the bridged alkylidene species is higher when diisobutylaluminum hydride reacts with the alkenylzirconium compound than when the other mode of addition is utilized.

Description of the Structure of

$Cp_2ZrCH[CH_2(t-Bu)]AlCl(i-Bu)_2$ (2a)

The crystal structure consists of the packing of four well-separated molecules in a cell having the dimensions

(17) For example, see: Gell, K. I.; Schwartz, J. J. Am. Chem. Soc. 1981, 103, 2687.

Table III. Selected Distances (Å) and Angles (deg) and Estimated Standard Deviations

Bond Distances										
Zr-C(1)	2.158 (2)	Zr-Cl	2.576 (1)							
ZrAl = 3.082 (1)										
Al-C(1)	2.087 (2)	Al-Cl	2.356 (1)							
C(1)-C(2A)	1.444 (5)	C(1)-C(2B)	1.471 (5)							
C(2A)-C(3)	1.629 (5)	C(2B)-C(3)	1.595 (5)							
C(3) - C(4)	1.532(3)									
C(3)-C(5A)	1.626 (6)	C(3)-C(5B)	1.383 (6)							
C(3) - C(6A)	1.406 (6)	C(3) - C(6B)	1.622 (6)							
AI = U(11)	1.970 (2)	AI = C(21) C(21) = C(22)	1.977 (2)							
C(11) = C(12)	1.528 (3)	C(21) = C(22) C(20) = C(22)	1.538 (3)							
C(12)-C(13) C(12)-C(14)	1.512(4) 1.514(5)	C(22)-C(23) C(22)-C(24)	1.500(4) 1.522(4)							
Zr-C(31-	35) 2.487-21	516 (3) (average 2.5)	15 (3))							
Zr-C(41-4)	(15) 2.476-2.5	517 (3) (average 2.49	96 (3))							
C(31)-C(32)	1.390 (4)	C(41)-C(42)	1.311 (5)							
C(31)-C(35)	1.410 (4)	C(41)-C(45)	1.336 (4)							
C(32) - C(33)	1.371(4)	C(42)-C(43)	1.356 (6)							
C(33)-C(34)	1.385(4)	C(43) - C(44)	1.417 (6)							
C(34)–C(35)	1.384 (4)	C(44)-C(45)	1.381 (4)							
	Bond	Angles								
Cl-Zr-C(1)	90.69 (6)	Cl-Al-C(1)	98.89 (7)							
$2I-Zr-3M^{a}$	105.0 (1)	Cl-Al-C(11)	109.06 (8)							
$2\mathbf{r} - 4\mathbf{M}^{\circ}$	105.5(1)	$C(1) \rightarrow C(21)$	106.21 (8)							
$\sum_{1} \sum_{n=2}^{1} \sum_{n=4}^{1} N_{1}$	107.6(1) 105.2(1)	C(1) - AI - C(11) C(1) - AI - C(21)	110.5(1) 111.7(1)							
M_{-7r-4M}	100.3(1) 194.3(2)	C(1) = AI = C(21) C(11) = AI = C(21)	111.7(1) 1185(1)							
$\frac{1}{2r-C(1)-\Delta l}$	93.07 (9)	$7r_{-}C_{-}A_{-}A_{-}C_{-}A_{-}A_{-}C_{-}A_{-}A_{-}C_{-}A_{-}A_{-}C_{-}A_{-}A_{-}C_{-}A_{-}A_{-}A_{-}C_{-}A_{-}A_{-}A_{-}A_{-}A_{-}A_{-}A_{-}A$	77 90 (9)							
2r - C(1) - C(2A)	1441(2)	$Z_{r-C(1)-C(2B)}$	1460(2)							
Al - C(1) - C(2A)	108.3(2)	Al - C(1) - C(2B)	108.0(2)							
C(1) - C(2A) - C(3)	116.5(3)	C(1)-C(2B)-C(3)	117.0(3)							
C(2A) - C(3) - C(4)) 110.5 (2)	C(2B) - C(3) - C(4)	108.7 (2)							
C(2A) - C(3) - C(5)	5A) 102.0 (3)	C(2B)-C(3)-C(5B)	117.3 (3)							
C(2A)-C(3)-C(6)	SA) 113.4 (3)	C(2B)-C(3)-C(6B)	103.3 (3)							
C(4) - C(3) - C(5A)	.) 108.2 (3)	C(4)-C(3)-C(5B)	110.4 (3)							
C(4) - C(3) - C(6A)	.) 112.7 (3)	C(4)-C(3)-C(6B)	105.7 (3)							
C(5A) - C(3) - C(6)	SA) 109.5 (4)	C(5B)-C(3)-C(6B)	110.7(4)							
Al-C(11)-C(12)	121.5 (2)	Al-C(21)-C(22)	120.4 (2)							
C(11) - C(12) - C(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)-C(22)-C(23)	112.3(2)							
C(11) - C(12) - C(12	14) 111.3 (3) 14) 110.0 (3)	C(21) - C(22) - C(24)	111.7(2)							
~	14) IIU.U (3)		110.3 (2)							
C-I	U = U [C(31 = 35)]	106.8 - 109.1 (3)								
0-1	U-U [U(41-45)]	105.2 - 110.3 (3)								

 a 3M and 4M = centroids of C(31-35) and C(41-45) rings, respectively.

Figure 1. A perspective view of $Cp_2ZrCH(CH_2-t-Bu)AlCl(i-Bu)_2$ (2a). The vibrational ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Only one of the disordered neopentyl groups is included.

shown in Table II. Selected bond distances and angles are listed in Table III, and non-hydrogen atom positional and equivalent isotropic thermal parameters are compiled in Table IV. Full non-hydrogen atom thermal parameters

⁽¹⁸⁾ Wailes, P. C.; Coutts, R. S. P.; Weigold, H. Organometallic Chemistry of Titanium, Zirconium, and Hafnium; Academic: New York, 1974.

⁽¹⁹⁾ Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1979, 101, 3521.

Hartner et al.

atom	<i>x</i>	У	z	<i>B</i> , Å ²	atom	x	У	z	<i>B</i> , Å ²		
ZR	0.09909(1)	0.22059(2)	0.46305(3)	1.745(4)	C(14)	-0.1077(3)	0.0459(4)	0.1094(6)	7.2(1)		
CL	-0.01459(4)	0.13156(6)	0.4498(1)	3.05(2)	C(21)	-0.0995(2)	0.3398(2)	0.3592(4)	2.71(7)		
AL	-0.02917(4)	0.25512(6)	0.2774(1)	1,93(2)	C(22)	-0.1744(2)	0.3107(3)	0.3536(4)	2.69(6)		
C(1)	0.0668(1)	0.3163(2)	0.2910(3)	2,34(6)	C(23)	-0.1883(2)	0.2225(3)	0.4417(5)	4.57(9)		
C(2A)	0.0613(3)	0.4152(4)	0.2497(7)	2.0(1)	C(24)	-0.2205(2)	0.3912(3)	0.4027(5)	4.6(1)		
C(2B)	0.0829(3)	0.3579(5)	0.1467(6)	2.3(1)	C(31)	0.1399(2)	0.1077(3)	0.2686(4)	4.19(8)		
C(3)	0.1215(2)	0,4575(2)	0.1467(3)	2.39(6)	C(32)	0.1407(2)	0.0565(3)	0.3996(5)	4.19(8)		
C(4)	0,1903(2)	0.4446(3)	0.2219(4)	3.09(7)	C(33)	0.1882(2)	0.0951(3)	0.4922(4)	4.30(9)		
C(5A)	0.1039(3)	0.5705(5)	0.1443(8)	3.3(1)	C(34)	0.2181(2)	0.1710(3)	0.4202(5)	4.19(9)		
C(58)	0.0879(4)	0.5348(5)	0.2057(8)	3.5(2)	C(35)	0.1897(2)	0.1790(3)	0.2814(4)	3.82(8)		
C(6A)	0,1205(4)	0.4218(6)	0.0021(8)	3.9(2)	C(41)	0.0537(2)	0.3490(3)	0.6280(5)	4.95(9)		
C(6B)	0.1379(3)	0,4750(5)	-0.0261(7)	3.0(1)	C(42)	0.0473(2)	0.2701(4)	0.7040(5)	6.1(1)		
C(11)	-0.0440(2)	0.1994(2)	0.0811(4)	2.81(7)	C(43)	0.1095(3)	0.2342(3)	0.7339(4)	7.1(1)		
C(12)	-0.1087(2)	0.1450(3)	0.0440(4)	4.05(8)	C(44)	0.1572(2)	0.2982(3)	0.6728(4)	5.12(9)		
C(13)	-0.1207(2)	0.1394(3)	-0.1202(5)	5.4(1)	C(45)	0.1191(2)	0.3691(3)	0,6079(4)	4.01(9)		

^a Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as $(4/_3)[a^2B(1,1) + b^2B(2,2) + b^2B(2,2)]$ $c^{2}B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \alpha)B(2,3)].$

(Table V) and idealized hydrogen atom positions (Table VI) are available as supplementary material as is a listing of observed and calculated structure amplitudes.²⁰ Figure 1 contains a diagram of the molecule and includes the atom labels used in the text and tables. Only one of the disordered neopentyl orientations (vide infra) is included in Figure 1. Figure 2 shows both orientations of the disorder and is available as supplementary material.²⁰

The neopentyl side chain of the neohexylidene ligand is disordered about a pseudomirror defined by the metallacyclic plane. The two orientations are equally populated. The positions of C(1), C(3), and C(4) are common to both orientations and have been given full weight while A and B components of atom C(2), C(5), and C(6) have been included at 50% occupancy and successfully refined. The model is inadequate as nonrepresentative bond distances, e.g., C(2A)-C(3) = 1.629 (6) Å and C(3)-C(6B) =1.622 (6) Å, are observed. These probably result from inclusion of only a single atom for C(3), but little additional information is expected from a more sophisticated model and none has been forthcoming. A consequence of the disorder is the lack of definition of the alkylidene hydrogen atom, HC(1), whose position might have been informative as to the nature of the Zr-C(1)-Al bonding. This disorder may also result in the large thermal parameters observed, e.g., those of the *i*-Bu methyl carbon atoms and those of ring 4, and in the associated nonrepresentative distances, e.g., C(41)-C(42) = 1.311 (5) Å. Dynamic disorder of these relatively unconstrained units, even at -100 °C, could also produce the apparent vibrational motion. Despite these difficulties, bonding information is available from the metrical details of the metallacyclic system.

The Zr atom adopts the expected pseudotetrahedral wedge structure with the Cl-Zr-C(1) plane bisecting the Cp(3)-Cp(4) dihedral angle. The parameters of the Cp_2Zr fragments are unexceptional, as is the pseudotetrahedral coordination about the Al center. The Zr-C(1)-Al-Cl ring is almost planar; the largest displacement from the best plane is 0.03 Å for C(1).

The most striking feature in the structure is the short Zr-C(1) distance, 2.158 (2) Å, which reflects a major con-

tribution to the bonding in the title complexes from form A. This is consistent with the alkylidene-like deshielding of the α -proton in the ¹H NMR spectra described above. Three equivalent short Zr-C bonds have recently been reported for the complexes Cp₂ZrClCHPPh₃²¹ [2.152 (8) Å], {[$Zr(\mu$ -CPMe₃)[(CH_2)₂PMe₂]₂ $\}_2^{22}$ [2.158 (4) Å], and { $ZrCHSiMe_2NSiMe_3[N(SiMe_3)_2]_2^{23}$ [2.16 (2) Å]. The first two complexes certainly involve Zr-C double-bond character while in the third the short Zr-C distance is ascribed to contraction of the metal's radius resulting from the relatively low coordination number. An alternative bonding description in which alkylidene units bridge two Zr atoms was disfavored by the authors but cannot be excluded. For comparison, $d[Zr-C(sp^3)]$ in $Cp_2ZrX(alkyl)$ complexes have been reported in the range 2.25-2.20 Å.²⁴ Zirconium-carbon (sp²) bond lengths of 2.18-2.20 Å have been observed for zirconocene complexes of η^2 -acyl, ketene, and enolate complexes.²⁵⁻²⁷ Delocalized bonding schemes incorporating Zr-C bonds of order greater than one have been advanced for these complexes. The contribution to the bonding in complex 2a from form A is also evident in the unusually large Zr-C(1)-C(2A,2B) angles, which average 145°. Schrock has commented extensively on the distended angles observed in terminal alkylidene complexes.²⁸ In zirconocene-hydrocarbyl complexes Zr-C-X $(X \neq H)$ angles range from 117 to 143°.²⁴ The anoma-lously large value of 142.7 (5)° is reported for Cp₂Zr-(CH₂CMe₃)₂,²⁹ in which nonbonded repulsions involving

(21) Baldwin, J. C.; Keder, N. L.; Strouse, C. E.; Kaska, W. C. Z. Naturforsch., B: Anorg. Chem. Org. Chem. 1980, 35B, 1289-1297.
(22) Rice, G. W.; Ansell, G. B.; Modrick, M. A.; Zentz, S. Organometallics 1983, 2, 154-157.

(23) Planalp, R. P.; Andersen, R. A.; Zalkin, A. Organometallics 1983, 2, 16-20.

(24) See for examples ref 14 of ref 23.

(25) Fachinetti, G.; Fochi, G.; Floriani, C. J. Chem. Soc., Dalton Trans. 1977. 1946-1950.

(26) Bristow, G. S.; Hitchcock, P. B.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1982, 462-464. Moore, E. J.; Straus, D. A.; Armantrout, .; Santarsiero, B. D.; Grubbs, R. H.; Bercaw, J. E. J. Am. Chem. Soc. 1983, 105, 2068-2070.

(27) Ho, S. C. H.; Straus, D. A.; Armantrout, J.; Schaefer, W. P.; Grubbs, R. H. J. Am. Chem. Soc. 1984, 106, 2211–2213. Waymouth, R. M.; Santarsiero, B. D.; Grubbs, R. H. J. Am. Chem. Soc. 1984, 106, 4050-4051.

(28) Schrock, R. R. Acc. Chem. Res. 1979, 12, 98-104.

⁽²⁰⁾ See paragraph at end of paper regarding supplementary material.

the bulky t-Bu group are severe. Angles of ca. 160° are reported for η^2 -acyl, ketene, and enolate complexes.²⁵⁻²⁷

The Zr-Cl bond length, 2.576 (1) Å, is longer than that observed in Cp₂ZrClX complexes, 2.42-2.46 Å,²⁴ as predicted from form A. We are aware of no structurally characterized Cp_2Zr^{IV} complexes that contain simple bridging chloride ligands. The two coordination complexes that have such bridging atoms are $(Zr(\mu-Cl)Cl_2[P(n-$ Bu)_{3]2})₂³⁰ and $[(\eta^6-C_6Me_6)Zr(\mu-Cl)_2]_3[Al_2Cl_7]_2^{31}$ which have Zr-Cl(bridge) distances of 2.54-2.56 Å. Both of these complexes contained reduced Zr, and we expect Zr(IV) bridge bonds to be shorter. The structures of ZrCl₄ shows two bridging Zr-Cl lengths 2.498 (2) and 2.655 (2) Å.³² Unusually long Zr-Cl bonds have been observed in bridges to Al in the complexes $Cp_2ZrC_2H_3(AlEt_2)_2Cl$ (2.60 Å) and [Cp₂ZrClAlEt₂]₂C₂H₄ (2.40 Å).³³

The endocyclic bond lengths about the Al center are also of interest, although they are not definitive in regard to the bonding mode. The Al-C(1) distance, 2.087 (2) Å, is markedly longer than the terminal Al-C(11,12) distances, 1.970 (2) and 1.977 (2) Å, consistent with form A. A distance of 1.917 (3) Å has been observed in the methylenebridge complex $Al_2(\mu$ -CH₂)Cl₄·OEt₂ in which an sp³-carbon bridge is present.³⁴ The value in **2a** corresponds reasonably to the bridging Al-C(sp^2) data reported for Al₂(c- $C_{3}H_{5}_{6}_{6}$ (2.087 (8) Å)³⁵ and $Al_{2}(\mu-CH=CH-t-Bu)_{2}(i-Bu)_{4}$ (2.11 Å).³⁶ Unfortunately the C/Cl disorder in Cp₂-

TiCH₂AlCl(neopentyl)₂³ prohibits meaningful comparison with 2a. Churchill, Schrock, and co-workers have observed a bridging Al-C bond length of 2.223 (6) Å in the methylidyne complex W(=CHAlMe_{2-x}Cl_x)Cl(PMe₃)₃.³⁷ Aluminum to sp³-carbon bridge bond lengths in alkyl-bridged complexes are also long: 2.124 (2) Å in Al₂Me₆.³⁸

The Al–Cl bond, 2.356 (1) Å, is surprisingly long on the basis of form A. In supported Al-Cl-M, where M = atransition or a lanthanide metal, Al–Cl bridge bonds range from 2.15 to 2.20 Å.³⁹ A 2.31-Å Al–Cl bond has been reported for $Cp_2ZrC_2H_3(AlEt_2)_2Cl.^{33}$ Chloride-bridged dialuminum complexes exhibit Al-Cl bonds between 2.25 and 2.31 Å, but long bonds comparable to that found in 2a have been found in $[(\eta^3-C_5Me_5)Al(\mu-Cl)Me]_2$ (average 2.388 (3) Å).⁴⁰ The Al-Cl bond length in 2a is more in accord with form B than A but may result in part from steric repulsion across the metallacyclic ring. Because of the tight Zr-C binding the Zr-Al separation is only 3.082 (1) Å. With additional contraction of the Al-Cl bond excessive nonbonded repulsions would be expected.

- (34) Messerle, L., unpublished results.
 (35) Moore, J. W.; Sanders, D. A.; Scherr, M. D.; Oliver, J. P. J. Am.

- (36) Moore, J. W.; Sanders, D. A.; Scherr, M. D.; Oliver, J. P. J. Am. Chem. Soc. 1971, 93, 1035–1037.
 (36) Albright, M. J.; Butler, W. M.; Anderson, T. J.; Glick, M. D.; Oliver, J. P. J. Am. Chem. Soc. 1976, 98, 3995–3996.
 (37) Sharp, P. R.; Holmes, S. J.; Schrock, R. R.; Churchill, M. R.; Wasserman, H. J. J. Am. Chem. Soc. 1981, 103, 965–966. Churchill, M. R.; Rheingold, A. L.; Wasserman, H. J. Inorg. Chem. 1981, 20, 3392–3399.
 (38) Huffman, J. C.; Streib, W. E. J. Chem. Soc., Chem. Commun. 1071, 011, 012 1971, 911-912.
- (39) Watson, P. L.; Whitney, J. F.; Harlow, R. L. Inorg. Chem. 1981 20, 3271-3278. Thewalt, U.; Stollmaier, F. J. Organomet. Chem. 1982, 228, 149-152. Thewalt, U.; Osterle, F. J. Organomet. Chem. 1979, 172, 317-324. Turner, R. W.; Amma, E. L. J. Am. Chem. Soc. 1966, 88, 1877-1882, 3243-3247.

We interpret these structural features to indicate a major

contribution from canonical form A with a lesser admixture

from form B. Of particular interest would be comparison

of these data with those of a Ti analogue which, on the

Experimental Section

General Details. Reactions of organometallic compounds were conducted under purified nitrogen, either with a Schlenk apparatus or in a Vacuum Atmospheres drybox. Solvents were distilled under nitrogen from sodium benzophenone ketyl. Dialkylalkenylaluminum and chlorobis(cyclopentadienyl)alkenylzirconium compounds were prepared and isolated according to a published procedure.¹⁹

Preparation of ab-Bis(cyclopentadienyl)-c-(µ-chloro)d-(μ -neohexylidene)-ef-diisobutylzirconium(IV)aluminum (2a). Method B. To a suspension of 7.08 g (22 mol) of Cp₂ZrHCl in 60 mL of benzene was added dropwise, at room temperature, a solution of 4.48 g (20 mmol) of diisobutylneohexenylaluminum in 5 mL of the same solvent. The mixture was stirred in the dark for 5 h and was filtered to give a red-brown solution. Evaporation of the solvent yielded a waxy solid which was dissolved in a minimal amount of pentane, decanted, and cooled to -30 °C. Red-orange crystals could thus be obtained in 90% yield. NMR data are listed in Table I.

Anal. Calcd for C₂₄H₄₀AlClZr: C, 59.78; H, 8.36; Cl, 7.35; Zr, 18.92; Al, 5.59. Found: C, 59.69; H, 8.21; Cl, 7.53; Zr, 19.10; Al, 5.63. Mass spectrum (relative intensity), m/e 480 (38.86), 481 (8.48), 482 (25.51), 483 (2.75), 484 (17.24), 486 (6.37), and 488 (0.69).

Preparation of ab-Bis(cyclopentadienyl)-c-(µ-chloro)d-(µ-neohexylidene)-ef-dimethylzirconium(IV)aluminum (2b). Method B. The procedure for the preparation of 2a was followed, using Cp₂ZrHCl (1.97 g, 6.13 mmol) and dimethylneohexenylaluminum (0.86 g, 6.13 mmol) in 20 mL of benzene. This reaction mixture was stirred 18 h. The benzene was removed at reduced presure, and the residue was redissolved in 5 mL of toluene. Ten milliliters of hexane was added dropwise to the solution, which was then filtered. The filtrate was maintained at –33 °C for 18 h. The reddish brown crystals that formed were filtered, washed, and dried to give 0.65 g (27%) of products. No attempt was made to maximize the yield of this product.

Data Collection and Structure Solution and Refinement of Complex 2a. A suitable crystal was grown by slowly cooling a pentane solution to -30 °C. The crystal was encapsulated in a glass capillary under N₂ and subjected to preliminary photographic evaluation which indicated the space group and approximate cell parameters. Final versions of these and other crystallographic data are compiled in Table II. The crystal was placed in a Syntex P3 diffractometer and cooled to -100 °C, at which temperature it was shown to be acceptable on the basis of a typical ω -scan peak width at half-height of ca. 0.25°. The cell parameters were then refined to the reported values on the basis of 50 computer-centered reflections chosen from diverse regions of reciprocal space. As the β value closely approaches 90°, we conducted a careful examination of the photographic and intensity data to eliminate an alternative orthorhombic space group

Intensity data were collected by using the ω -scan technique (variable scan rate, 4.0–10.0° min⁻¹; total background counting time = scan time). The intensities of three standard reflections were measured every 200 reflections. No significant variations in the intensities of these reflections were observed. The data were corrected for absorption by using the Difabs routine.⁴¹ The data were processed by using counting statistics and a p value of 0.02 to derive standard deviations.⁴

⁽²⁹⁾ Jeffrey, J.; Lappert, M. F.; Loung-Thi, N. T.; Webb, M.; Atwood,
J. L.; Hunter, W. J. Chem. Soc., Dalton Trans. 1981, 1593-1606.
(30) Wengrovius, J. H.; Schrock, R. R.; Day, C. S. Inorg. Chem. 1981,

^{20, 1844-1849.}

⁽³¹⁾ Stollmaier, F.; Thewalt, U. J. Organomet. Chem. 1981, 208, 327 - 334

⁽³²⁾ Krebs, B. Z. Anorg. Allg. Chem. 1970, 378, 263-272.
(33) Kaminsky, W.; Kopf, J.; Sinn, H.; Vollmer, H.-J. Angew. Chem., Int. Ed. Engl. 1976, 15, 629-630.

⁽⁴¹⁾ Walker, N.; Stuart, D. Acta Crystallogr., Sect. A: Found. Crys-

The solution and refinement of the structure were carried out on a PDP-11 computer using local modifications of the SDP-Plus structure determination package supplied by the Enraf-Nonius Corp. The zirconium atom was located in an origin-removed Patterson synthesis. The positions of the remaining non-hydrogen atoms were obtained by the usual combination of structure factor and Fourier synthesis calculations and full-matrix least-squares refinements. The function minimized in the least-squares runs was $\sum w(|F_{o}| - |F_{c}|)^{2}$, where $|F_{o}|$ and $|F_{c}|$ are the observed and calculated structure amplitudes, respectively, $w = \sigma^{-2}(F_0)$. The scattering factors were taken from the compilation of Cromer and Waber^{43a} and the anomalous dispersion terms from that of Cromer.^{43b} During the refinement process we detected the disorder in the neopentyl group about the pseudomirror of the metallacyclic ring. Atoms C(1), C(3), and C(4), common in both orientations, were fully weighted. The C(2), C(5), and C(6) pairs were shown to be equally populated about the pseudomirror by occupancy factor refinement. The majority of hydrogen atoms were located. The positions of all H atoms other than those attached to C(1)were idealized with a C-H distance of 0.95 Å, and these atoms were included as a fixed contribution with $B_{\rm H} = 5.0$ Å² and the

(43) International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV: (a) Table 2.28B; (b) Table 2.3.1.

appropriate occupancy factor. The highest peaks of residual electron density in a final difference Fourier synthesis are ca. 0.4 e Å⁻³ and correspond approximately to the expected H atom positions about C(1). These H atoms were not refined or included because of the proximity of the disordered atoms C(2A) and C(2B). Least-squares refinements converged to the values shown in Table III, where $R = \sum ||F_o| - |F_c|| / \sum |F_o|$ and $R_w = [\sum w(|F_o| - |F_c)^2 / \sum w(|F_o| - |F_c|)^2 / \sum w(|F_o| \sum w |F_{o}|^{1/2}$.

Acknowledgment. Several of us (F.M.H., S.M.C., and J.S.) acknowledge support for this work given by the National Institutes of Health and the National Science Foundation. T.H.T. thanks L. Lardear for skilled technical assistance, Dr. F. N. Tebbe for invaluable, discussions, and Prof. L. Messerle for communication of results prior to publication.

Registry No. 2a, 79061-88-4; 2b, 79061-85-1; Cp₂ZrHCl, 79061-85-1; diisobutylneohexenylaluminum, 61382-44-3; dimethylneohexenylaluminum, 71058-46-3.

Supplementary Material Available: Non-hydrogen atom thermal parameters (Table V) and idealized H atom positions (Table VI), and a view of disordered neopentyl group (Figure 2) (6 pages); a listing of observed and calculated structure amplitudes (22 pages). Ordering information is given on any current masthead.

Communications

Cationic Phosphonium Carbyne and Bis(phosphonium) Carbene Tungsten Complexes: $[Tp'(OC)_2WC(PMe_3)_n][PF_n]$ (n = 1, 2)

A. E. Bruce, A. S. Gamble, T. L. Tonker, and J. L. Templeton*

W. R. Kenan, Jr., Laboratory Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27514

Received September 4, 1986

Summary: Cationic phosphonium carbyne and bis(phosphonium) carbene complexes [Tp'(OC)₂WC(PMe₃)_a][PF₆] (n = 1, 2) (Tp' = [HB(N₂C₃Me₂H)₃]⁻, hydridotris(3,5-dimethylpyrazolyl)borate) have been prepared. The bis-(phosphonium) carbene complex (n = 2) has been structurally characterized. The cationic carbyne complex reacts with MeLi or K[HB(O-/-Pr)₃] to form Tp'(OC)₂W= $C(Me)PMe_3$ or $Tp'(OC)_2W = C(H)PMe_3$, respectively.

Angelici and co-workers have recently reported that carbyne-carbonyl coupling occurs when PEt₃ is added to $Tp(OC)_2W \equiv CSMe$ ($Tp = [HB(N_2C_3H_3)_3]^-$, hydridotris-(pyrazolyl)borate) (1).¹ We wish to report formation of cationic phosphonium carbyne and bis(phosphonium)carbene tungsten complexes from reaction of the sterically congested analogue of 1, $Tp'(OC)_2W \equiv CSMe$ (Tp' = $[HB(N_2C_3Me_2H)_3]^-$, hydridotris(3,5-dimethylpyrazolyl)borate) (2),² with excess PEt₃ and PMe₃, respectively.

These reactions resemble those of $Tp'(OC)_2Mo \equiv CCl$ recently reported by Lalor and co-workers where Cl⁻ is the leaving group in nucleophilic displacement reactions (eq $1).^{3,4}$

$$Tp'(OC)_2M \equiv CX + Nu \rightarrow [Tp'(OC)_2M \equiv CNu]^+ + X^-$$
(1)

Excess PEt_3 reacts slowly with 2 in CH_2Cl_2 at room temperature to replace the reagent dicarbonyl IR pattern (1975 (s), 1880 (vs) cm⁻¹) with higher energy absorptions (2020 (s), 1935 (vs) cm⁻¹). Slow addition of Et_2O precipitates white byproducts which include the [MePEt₃]⁺ cation.⁵ Further addition of Et₂O to the filtrate precipitates an orange solid which can be recrystallized from CH_3CN/H_2O with added $[NH_4][PF_6]$ to produce low yields (20%) of $[Tp'(OC)_2W \equiv CPEt_3][PF_6]$ (3) as air-stable, red-orange crystals. Informative NMR features⁶ include a 2:1 ratio of pyrazolyl environments in the ¹H NMR, $J_{\rm HP}$ coupling constants suggestive of a PR_4^+ moiety rather than $M-PR_{3}^{7}$, and a singlet in the ³¹P spectrum at +30.1 ppm

⁽⁴²⁾ Corfield, P. W. R.; Doedens, R. J.; Ibers, J. A. Inorg. Chem. 1976, 6, 197

⁽¹⁾ Kim, H. P.; Kim, S.; Jacobson, R. A.; Angelici, R. J. Organo-metallics 1986, 5, 2481.

^{(2) 2} was prepared by using the reported procedure for 1: Greaves, W. W.; Angelici, R. J. Inorg. Chem. 1981, 20, 2983.

⁽³⁾ Desmond, T.; Lalor, F. J.; Ferguson, G.; Parvez, M. J. Chem. Soc., Chem. Commun. 1984, 75

⁽⁴⁾ Angelici and co-workers have demonstrated that SMe⁻ is a good (4) Angelici and co-workers have demonstrated that SMe⁻ is a good leaving group in the reactions of nucleophiles with thiocarbene complexes: Kim, H. P.; Angelici, R. J. Organometallics 1986, 5, 2489. Yu, Y. S.; Angelici, R. J. Organometallics 1983, 2, 1018. Yu, Y. S.; Angelici, R. J. Organometallics 1983, 2, 1018. Yu, Y. S.; Angelici, R. J. Organometallics 1983, 2, 1583.
(5) The [MePEt₃]⁺ cation was identified by comparison of its IR and ¹H NMR spectra with those of an authentic sample of [MePEt₃][I].
(6) ¹H NMR (CD₂Cl₂): δ 6.07 (s, 2 H, Tp'CH), 5.86 (s, 1 H, Tp'CH), 2.49 (s, 6 H, Tp'CH₃), 2.42 (s, 6 H, Tp'CH₃), 2.40 (s, 3 H, Tp'CH₃), 2.23 (s, 3 H, Tp'CH₃), 2.2 (d of q, 6 H, P(CH₂CH₃)₃, ²J_{HP} = 12.1 Hz, ³J_{HH} = 7.6 Hz), 1.35 (d of t, 9 H, P(CH₂CH₃)₃, ³J_{HP} = 1.90 Hz, ³J_{HH} = 7.6 Hz), (7) Schmidbaur, H.; Tronich, W. Chem. Ber. 1968, 101, 595. Weigart, F. J.; Roberts, J. D. J. Am. Chem. Soc. 1969, 91, 4940. Kreissl, F. R.;

F. J.; Roberts, J. D. J. Am. Chem. Soc. 1969, 91, 4940. Kreissl, F. R.; Stuckler, P.; Meineke, E. W. Chem. Ber. 1977, 110, 3040.