AM 1 Calculations for Compounds Containing Silicon

Michael J. S. Dewar* and Caoxian Jie

Department of Chemistry, The University of Texas at Austin, Austin, Texas 78772

Received December 30, 1986

AM1 has been parametrized for silicon. Calculations are reported for a number of silicon compounds. The results are generally superior to those from MNDO. AM1 calculations for several reactions are in good agreement with experiment. AM1 should prove useful **as** a theoretical tool in studies of silicon chemistry.

Introduction

A new parametric SCF MO model (AM1) was recently reported¹ in which the major deficiency of $MNDO²$ has been overcome, i.e. the overestimation of repulsive interactions between atoms when at separations greater than about 1.5 times the corresponding covalent bond distance. Extensive tests' and applications to a number of chemical problems3 have given very encouraging results, and it seems clear that AM1 will prove an even more effective aid in organic chemistry than its precursors, MIND0/34 and MNDO.²

Treatments of this kind are of course restricted to the elements for which parameters are available. In the original paper, parameters were reported for the "organic" elements carbon, hydrogen, oxygen, and nitrogen, and parameters have also been optimized for the halogens⁵ and zinc.⁶ Here we report the extension of AM1 to silicon, an element of major interest in both organic and inorganic chemistry.

Procedure

The calculations were carried out by using the standard **AM1** procedure7 as implemented in the **AMPAC** computer program: together with the previously determined parameters for C, H, 0, and $N¹$ and the halogens.⁵ The parameters for silicon were determined by a least-squares fit to experiment of the values calculated for various properties of a selected set (basis set) of molecules, using a recently described optimization procedure.⁷ This involves the minimization of an error function, SSQ, defined as a sum of the squares of the differences between the individual calculated and experimental values, suitably weighted for different properties. The best values for the weighting factors are found by trial and error, on the basis of the chemical acceptability of the final results. The properties used in the parametrization

- **(3)** For example: (a) Dewar, M. J. S.; Olivella, S. *J. Am. Chem. SOC.*
- **1986,** *108,* **5771.** (b) Dewar, M. J. S.; Jie, C. **X.,** submitted for publication. (c) Dewar, M. J. S.; Dieter, K. M. *J. Am. Chem.* SOC. **1986,** *108,* **8075. (4)** Bingham, R. C.; Dewar, M. J. S.; Lo, D. H. *J. Am. Chem. SOC.* **1975,**
- **97, 1285, 1294. (5)** Dewar, M. J. S.; Zoebisch, E. G., to be submitted for publication.

(6) Dewar, M. J. S.; Merz, K. M., Jr., submitted for publication.

(7) Dewar, M. J. S.; Grady, G. L.; Stewart, J. J. P. J. Am. Chem. Soc.

1984, 106, 6771. Dewar, M. J. S.; Grady, G. L.; Kuhn, D. R.; Merz, K. M.,

- Jr., *Ibid.* **1984,** *106,* **6773.**
- **(8)** Available from QCPE, Department of Chemistry, Indiana University, Bloomington, IN **47405.**

Table 1. Optimized AM1 and MNDO Parameters for Silicon

included heats of formation, ionization energies, dipole moments, and geometries. The minimization of SSQ is affected by a derivative optimization method, based on the Davidon-Fletcher-Powell (DFP) algorithm. 9 The first derivatives of the heats of formation and ionization energies with respect to the various parameters were calculated analytically. The derivatives of the energy with respect to geometry were used as a measure of the deviation of the calculated geometry from the experimental.

Results and Discussion

Table I shows the final set of parameters obtained for silicon in the usual notation.¹ The corresponding MNDO values¹⁰ are listed for comparison. An anomalous feature of the latter was the apparent inversion of ζ_s and ζ_p . Normally ζ_s is the greater, and this is also true for silicon in AM1. As Table I shows, the reverse was true in MNDO, ζ_p being indeed much greater than ζ_s . As we shall see presently, this is probably the main reason why the AM1 geometries are much better than the MNDO ones. The one-center, two-electron parameters (g and *h)* were kept constant at their previous values. 9

⁽¹⁾ Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. *J.* **(2)** Dewar, M. J. S.; Thiel, **W.** *J. Am. Chem. SOC.* **1977,99,4899,4907.** *Am. Chem.* **SOC. 1985,107, 3902.**

⁽⁹⁾ Davidon, **W.** C. *Comput. J.* **1958,** *1,* **406.** Fletcher, R.; Powell, M. **(10)** Dewar, M. J. S.; Friedheim, J. E.; Grady, G. L.; Healy, E. F.; J. D. *Ibid.* **1963,** *6,* **163.**

Stewart, J. J. P. *Organometallics* **1986, 5, 375-9.**

Table 11. Calculated Heats of Formation, Ionization Potentials, and Dipole Moments for Molecules Containing Silicon"

^aExcept where noted, for references of experimental values, see ref 5. Wagman, D. D., et al. *J. Phys. Chem. Ref. Data, Suppl.* 1982, 11. 'Vanderwielen, A. J.; Ring, M. A.; O'Neal, H. E. *J. Am. Chem. SOC.* 1975,97,993-998. dStull, D. R.; Prophet, H., et al. *JANAF Thermochemical Tables,* 2nd ed.; **U.S.** Department of Commerce, National Bureau of Standards, 1970. 'Pedley, J. B.; Rylance, J. Sussex-NPL Computer Analyzed Thermochemical Data; University of Sussex, 1977. f *CRC Handbook of Spectroscopy;* Robinson, J. W., Ed. CRC Press: Baca Raton, FL; 1900; Vol I. *«* Dittmer, G.; Niemann, V.*, Phillips J. Res.* 1982, 37, 1–30. *hMcClellan, A. L. Tables of Experimental Dipole Moments;* W. H. Freeman: San Francisco, 1963.

A. Heats of Formation, Dipole Moments, and Ionization Potentials. Table I1 compares with experiment the heats of formation (ΔH_f) , dipole moments (μ) , and ionization potentials (IP) calculated for a large number of molecules for which experimental data are available, including all those used in the earlier MNDO parametrization.1° The calculated IPS are vertical ones estimated by using Koopmans' theorem. The average unsigned errors given by AM1 are compared with those from MNDO in Table 111. It is clear that AM1 represents a dramatic improvement, the errors all being much less than in the case of MNDO. The average AM1 error in heats of formation is indeed little greater than that for the organic elements (C, H, O, N) ,¹ and there are now only two silicon

Table 111. Comparison of Mean Absolute Errors of AMI

and MNDO			
av error in	no. of compds	AM1	MNDO
heat of formatn, kcal/mol	52	7.47	12.81
dipole moment, D	15	0.35	1.00
ionizatn energy, eV	13	0.59	0.86

compounds for which the error is greater than 20 kcal/mol, i.e. $\rm{Si}_2(CH_3)_6$ (20.6 kcal/mol) and SiF (-27.9 kcal/mol).

While the errors in the calculated IPs are also less than the MNDO ones, they are still rather large in some cases where the HOMOs contain large contributions from silicon. These large errors are probably¹⁰ due mainly to use of the core approximation in AM1, though the neglect of d AOs may also be partly responsible.

The errors in the calculated dipole moments (Table 111) are much smaller in AM1 than in MNDO. Indeed, the AM1 results are also much better than those given by MNDO for other third-period elements.^{11,12} Since AM1 also gives good geometries for silicon compounds (see below), the fact that it reproduces dipole moments suggests that it is also giving good estimates of electron distributions. The formal charges given by AM1 (Table IV) certainly seem reasonable, unlike some of those from MNDO. Thus the MNDO values for the halogen atoms in $SiH₃F$ (-0.527) , SiH₃Cl (-0.537) , SiH₃Br (-0.505) , and SiH₃I (-0.359) are too large and seem inconsistent with their electronegativities whereas the AM1 values **(-0.450,** -0,299, -0.223 , and -0.101 , respectively) are quite reasonable.

The improvement is probably due more to our having located a better minimum on the parameter hypersurface than to superiority of the AM1 model. This indeed is indicated by the more reasonable values for the silicon parameters; see Table I. The situation concerning ζ_s and ζ_p has already been noted, and the AM1 value for β_s is also more reasonable, that in MNDO being unduly large. As we have pointed out elsewhere, 1,7 a major problem in parametrizing treatments such as AM1 is the complexity of the parameter hypersurface and the difficulty of finding the best minimum on it. The one located in the MNDO parametrization was clearly not optimal.

B. Cations and Radicals. Table V shows the heats of formation calculated by AM1 for some silicon-containing cations for which experimental values are available. The agreement is reasonable, whereas the errors in the MNDO values, also listed in Table V, are very large.

C. Molecular Geometries. Table VI shows the geometries calculated by AM1 for 40 molecules for which experimental geometries are available, the experimental values being shown in parentheses. The agreement is again better than it was in MNDO as is shown by the error analysis in Table VII. A major improvement is seen in the case of SiH bonds **for** which the MNDO values were systematically too small by 0.1-0.15 Å. The errors in the AM1 values are only one-fifth as great.

D. Vibrational Frequencies. Table VI11 compares molecular vibration frequencies calculated by AM1 with experiment. The AM1 results are uniformly better than those¹⁰ given by MNDO except for SiH bending vibrations and deformations. Thus the average error for 16 stretching vibrations is now 4.9% compared with 9.5% in MNDO.

Table IV. Calculated Formal Charge

molecule	atom (charge in e)
SiH	$Si(+0.307)$, H (-0.307)
SiH ₂	Si $(+0.587)$, H (-0.294)
SiH.	Si $(+0.632)$, H (-0.158)
(CH ₃)SiH ₃	Si $(+0.812)$, C (-0.528) , H (-0.186)
$HC = CSiH_3$	Si $(+0.971)$, C $(-0.480, -0.143)$, H $(-0.187, +0.214)$
Si_2H_e	Si $(+0.350)$, H (-0.117)
$Si_2(CH_3)_{\rm g}$	Si $(+0.755)$, C (-0.510) , H $(+0.084)$
$\rm Si_3H_8$	Si $(+0.413, -0.038)$, H $(-0.120, -0.075)$
SiH_3F	Si $(+1.177)$, H (-0.242) , F (-0.450)
SiH_3Cl	Si $(+0.810)$, H (-0.170) , Cl (-0.299)
$\rm SiH_3Br$	Si $(+0.635)$, H (-0.137) , Br (-0.223)
SiH_3I	Si $(+0.437)$, H (-0.112) , I (-0.101)
FSiBr ₃	Si $(+1.063)$, F (-0.386) , Br (-0.226)
FSiCl_3	Si $(+1.375)$, F (-0.410) , Cl (-0.392)
SiO	Si $(+0.669)$, C (-0.669)
$(SiH_3)_2O$	Si $(+1.190)$, H (-0.250) , O (-0.898)

E. Unsaturated Molecules. Table **IX** compares the heats of formation and Sic or SiSi bond lengths calculated by AM1 and MNDO for compounds containing single, double, and triple Sic and SiSi bonds. Bond lengths calculated by ab initio procedures are included for comparison, together with an experimental value for methylsilane. AM1 agrees better with the latter and with the ab initio estimates than does MNDO.

Table X compares heats of reaction for some reactions of molecules containing silicon multiple bonds with corresponding ab initio values. Since the corresponding ab initio heats of hydrogenation for ethylene and acetylene are too negative by ca. 10 kcal/mol, it is likely that the same is true for the silicon-containing species. The results in Table **X** then suggest that AM1 overestimates the stabilities of silenes and disilenes by ca. **20** kcal/mol and that the corresponding errors for silynes and disilynes are very large.

Recent high-level ab initio calculations¹³ have indicated that disilene is not planar, having a trans-bent structure. We checked that the planar structure given by AM1 was a minimum, by calculating force constants. The ab initio potential surface was, however, very flat, the difference in energy between the minimum and the planar (D_{2h}) structure being only 2.6 kcal/mol.¹³ Experimental studies of heavily substituted disilenes have shown them to be essentially planar.14 **Ab** initio calculations **agree** with AM1 in predicting silene to be planar.¹⁴

The barrier to rotation calculated for silene by AM1 was 52 kcal/mol. This is probably too large, as would be expected if AM1 does indeed overestimate the strength of the π bond. Experimental estimates and ab initio calculations have led to values close to 40 kcal/mol.14 However, since the experimental values refer to tetrasubstituted silenes and since the electronic and steric effects of substituents would be expected to lower the barrier, the real value for silene itself may well be greater.

In the case of disilene, the barrier to rotation calculated by AM1 (31 kcal/mol) agrees well with those observed $(25-31 \text{ kcal/mol})$ for tetrasubstituted derivatives.¹⁴ The latest ab initio estimate was smaller $(22~\text{kcal/mol}^{14})$.

The evidence certainly suggests that AM1 should not be used for compounds containing triply bound silicon. While the situation concerning doubly bound silicon is less

⁽¹⁴⁾ See Raabe, **G.;** Michl, J. *Chem. Rev.* **1985, 85,** 419.

Table V. Comparison with Experiment of AM1 and MNDO Heats of Formation (kcal/mol) for Cations

		heat of formation			error
ion	obsd ^a	AM1	MNDO	AM1	MNDO
SiH ₃	242.3	222.9	190.8	-19.4	-51.5
SiH ₄	278.4	285.8	245.2	7.4	-33.2
	251	241.9	216.9	-9.1	-34.1
$\frac{\text{Si}_2\text{H}_6^+}{\text{SiF}_4^+}$	-34.2	-43.5		-9.3	

"See footnote b, Table II. b Unable to get self-consistence.

' Except where noted, experimental geometries are taken from: Harmony, M. D.; Laurie, **V.** W.; Kuczkowski, R. L.; Schwendeman, R. H.; Ramsay, D. **A.;** et al. *J.* Phys. Chem. Ref. Data 1979,8(3). bAlmenningen, **A.;** Bastiansen, 0.; Ewing, **V.;** Hedberg, K.; Traettegerg, M. Acta *Chem. Scand.* 1963, *17, 2*455. °Stull, D. R.; Prophet, H., et al. *JANAF Thermochemical Tables*, 2nd ed.; U.S. Department of Commerce,
National Bureau of Standards, 1970. ^d Harmony, M. D.; Strand, M. R. *J. Mol. Spec*

clear, AM1 does seem to overestimate the stabilities of such species. We have not felt it worth while to try to correct this apparent error because compounds of multiply bound silicon are of limited chemical significance and because no accurate and reliable thermochemical data are available. The only estimates of heats of formation come from indirect inferences **of** uncertain reliability; see e.g. ref 15. Ab initio calculations do not provide an adequate substitute because the **errors** in the values given by them are un-

⁽¹⁶⁾ Olbrich, *G.;* Potzinger, P.; Reirnann, **B.** Organometallics **1984,3,** 1267.

"McKean, D. C.; Torto, I.; Morrisson, A. R. *J. Phys. Chem.* **1982,86,** 307. bKattenberg, H. W.; Oskam, A. *J.* Mol. *Spectrosc.* **1974,** *49,* 52. 'Wilde, R. E. *J. Mol. Spectrosc.* **1962,8,** 427. dCradock, S.; Koprowski, J.; Rankin, D. **W.** H. *J. Mol. Struct.* **1981, 77,** 113. eIsmail, Z. K.; Hauge, R. H.; Fredin, L.; Kauffman, J. **W.;** Margrave, J. L. *J. Chem. Phys.* **1982, 7,** 1617. fMcKean, D. C.; Morrisson, **A.** R.; Dakkouri, M. *Spectrochim. Acta, Part A* **1984,40A,** 771.

Table IX. Compounds Containing Multiply Bonded Silicon

compd	$\Delta H_{\rm f}$, kcal/mol		$Si-X$ bond length, \AA			
	AM1	MNDO	AM1	MNDO	ab initio	obsd.
$H_3Si-SiH_3$	15.9	22.4	2.417	2.173	2.352^{a}	2.327 ^b
$H_2Si = SiH_2$	54.5	74.9	2.055	1.967	2.19 ^c	$2.16^{cd} 2.14^{c}$
$HSi = SiH$	80.8	127.0	1.767	1.806		
H_3C-SiH_3	-11.1	-14.0	1.807	1.800	1.882^h	1.869^{b}
$H_2C = SiH_2$	21.8	38.0	1.605	1.607	1.70 ^c	1.702c
$HC = SiH$	58.9	101.2	1.489	1.471	1.59 ^c	

silene. **eTetrakis(2,6-diethylphenyl)disilene. ~1,2-Di-tert-butyl-l,2-dimesityldisilene. g** Not a minimum; see ref c. Magnusson, E. *Tetrahedron* **1985,41,** 2945. ^a Glidwell, C. J. Organomet. Chem. 1981, 217, 11. ^b See Table VI. ^c See Raabe, G.; Michl, J. Chem. Rev. 1985, 85, 419 ^d Tetramesityldi-

"Yoshioka, **Y.;** Goddard, J. D.; Schaefer, H. F., **I11** *J. Am. Chem. SOC.* **1981,** 103, 2452. bHoffmann, M. R.; Yoshioka, **Y.;** Schaefer, H. F., **I11** *J. Am. Chem. SOC.* **1983,** *105,* 1084. 'Gordon, M. S.; Pople, J. A. *J. Am. Chem. Soc.* 1981, 103, 2945. ^d Kudo, T.; Nagase, S. J. *Phys. Chem.* **1984,88,** 2833.

known. The errors in ab initio values for heats of reaction **or** activation can be estimated only by comparison with experiment, and here the lack of experimental data makes such comparisons impossible. Preliminary attempts to improve the agreement between the AM1 and ab initio results led moreover to unacceptable errors in the AM1 values for other silicon compounds.

Table XI. Heats of Activation (kcal/mol)

reaction	AM1	obsd ^a
$Si_2H_6 \rightarrow :SiH_2 + SiH_4$	49.0	49.3
$CH_3Si_2H_5 \rightarrow :SiH_2 + CH_3SiH_3$	50.0	50.7
$CH_3Si_2H_5 \rightarrow :SiH(CH_3) + SiH_4$	44.2	49.9
$Si_3H_8 \rightarrow :SiH_2 + Si_2H_6$	51.2	53.0
$Si_3H_8 \rightarrow :SiH(SiH_3) + SiH_4$	48.8	49.2

"References 13 and 14.

F. Activation Energies of Some Reactions. Table XI compares activation energies calculated by AM1 for some simple reactions of silicon compounds with those observed in the gas phase.^{16,17} The agreement is clearly satisfactory. Further studies **of** silicon chemistry are in progress.

Acknowledgment. This work was supported by the *Air* Force Office of Scientific Research (Grant *AF86-0022)* and the Robert A. Welch Foundation (F-126).

⁽¹⁶⁾ Bowerv. **M.:** Purnell. J. H. hoc. *R. SOC.* London. A 1971.321.341. (17) Vanderwielen, A. J.; Ring, M. A.; O'Neal, H. E. *J. Am. Chem. Soc.* **1975, 97, 993-8.**