Reactivity and Structure of a Cationic Allenyl Complex, $(\mu - \eta^2, \eta^3$ -Allenyl)bis(methylcyclopentadienyl)tetracarbonyldimolybdenum Tetrafluoroborate, and Its Reductive Coupling Product, $[Cp_2(CO)_4Mo_2]_2 - \mu - (\mu - HC \equiv CCH_2 -)_2$

Angelika Meyer, Daniel J. McCabe, and M. David Curtis*

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055

Received January 13, 1987

Bis(methylcyclopentadienyl)tetracarbonyldimolybdenum, 1', reacts with methoxyallene to give the complex $M_2(\mu$ -CH₂=C=CHOMe) (3) and with methyl propargyl ether to give the isomeric complex $M_2(\mu$ -HC= CCH_2OMe) (4) (M = Mo(CO)₂Cp'). Complexes 3 and 4 react with HBF₄ with loss of MeOH to produce the cationic allenyl complex $M_2(\mu-\eta^2,\eta^3$ -HCCCH₂)⁺BF₄⁻ (2·BF₄). The cation 2 reacts with a variety of nucleophiles (Nu) to form the substituted alkyne adducts $M_2(\mu$ -HC=CCH₂Nu). With CpFe(CO)₂⁻, the dimer $[M_2(\mu-HC \equiv CCH_2-)]_2$ (11) is formed. Spectroscopic properties (¹H and ¹³C NMR, IR, etc.) are reported. The structures of 2·BF₄ and 11 were determined by single-crystal X-ray diffraction: for 2·BF₄, a = 8.663(2) Å, b = 35.652 (10) Å, c = 13.746 (3) Å, $\beta = 92.92$ (2)°, V = 4240 (2) Å³, Z = 8, $\rho_{calcd} = 1.842$ g cm⁻³, $\rho_{obsd} = 1.843$ g cm⁻³, space group $P2_1/n$, $R_1 = 0.054$, and $R_2 = 0.059$ on 2589 reflections with $I > 3\sigma(I)$; for 11, a = 8.897 (2) Å, b = 18.643 (11) Å, c = 11.457 (4) Å, $\beta = 108.72$ (2)°, V = 1800 (1) Å³, Z = 2, $\rho_{calcd} = 1.850$ g cm⁻³, space group $P2_1/n$, $R_1 = 0.025$, and $R_2 = 0.024$ on 2062 reflections with $I > 3\sigma(I)$.

Introduction

The reactivity displayed by metal-metal multiply bonded compounds has provided new synthetic routes to a wide variety of organometallic complexes.¹ In particular, the reactions of $Cp_2Mo_2(CO)_4$ (1) with alkynes,² allenes,³ diolefins,⁴ and diazoalkanes⁵ have allowed the isolation of novel complexes of hydrocarbyl ligands bonded to a dimetal framework.

Transformations of hydrocarbon fragments on multimetal sites are of interest from the standpoint of understanding bonding and reactivity modes of hydrocarbons on metal surfaces. We are especially interested in the chemistry of hydrogen-poor, carbon-rich fragments, $C_n H_x$ $(n \ge 2, x < 2n)$, which are formed on metal catalyst surfaces in the course of hydrogenations of $olefins^6$ and $CO.^7$ The mechanism of formation, the structures of these surface "carbides" (i.e. partially hydrogenated carbon species), and the role they play in product formation and/or catalyst deactivation ("coke" formation) are largely unknown and are a matter of some controversy.⁷⁻¹¹

It is in this vein that we here report the synthesis and structure of $Cp'_2Mo_2(CO)_4(\mu - \eta^2, \eta^3 - C_3H_3)^+$ (2: Cp' =

 C_5H_4Me) and its reactions with various bases. Cation 2 is formed from the loss of MeOH from either Cp'₂Mo₂- $(CO)_4(\mu - \eta^2, \eta^2 - H_2C = C = CHOMe)$ (3) or $Cp'_2Mo_2(CO)_4(\mu - \eta^2, \eta^2 - H_2C) = C = CHOMe$ η^2 -HC=CCH₂OMe) (4) following protonation by HBF₄.

Experimental Section

Manipulation of all reactants and anhydrous solvents were carried out under an inert atmosphere of dry N₂ using standard Schlenk techniques. Solvents were dried and purged of molecular oxygen by distillation from sodium (potassium) benzophenone ketyl (toluene, benzene, THF). Hexane was dried by using CaH₂. CH₂Cl₂ and CH₃CN were distilled from P₄O₁₀ and thoroughly degassed prior to use. $Cp'_2(CO)_4Mo_2$ was synthesized by the established method.¹² Organic reagents were purchased from Aldrich and purified by standard methods. Infrared spectra were recorded on a Perkin-Elmer 257 spectrometer (compensation method). Multinuclear NMR spectra were recorded on a Bruker WM360 FT spectrometer with a low-temperature probe. Temperatures were calibrated by using methanol. X-ray diffraction data were collected on a Syntex P21 automated four-circle diffractometer. Elemental analyses were determined by Galbraith Laboratories, Inc., Knoxville, TN

Preparation of HC=CCH₂OCH₃. Synthesis of methyl propargyl ether was accomplished by the literature method of Reppe.¹³ The colorless liquid was dried over Na₂SO₄ and distilled (60-65 °C, 1 atm); yield 33%.

Preparation of CH_2=C=CHOCH₃. Methoxyallene was prepared by the literature procedure.¹⁴ Methyl propargyl ether (37.14 g, 0.53 mol) was added to 7.32 g (0.065 mol) potassium tert-butoxide. The mixture was refluxed for 2 h and distilled (50-51 °C, 1 atm).

Preparation of Cp'₂(CO)₄Mo₂(CH₂=C=CHOMe) (3). Methoxyallene (0.30 g, 4.32 mmol) was slowly added via syringe to a solution of $Cp'_2(CO)_4Mo_2$ (2.0 g, 4.32 mmol) in CH_2Cl_2 (20 mL). The solution was stirred for 0.5 h at room temperature. Hexane (15 mL) was then added, and CH₂Cl₂ was removed in vacuo until a precipitate of 3 formed. The solution was filtered and the precipitate washed with hexane $(3 \times 5 \text{ mL})$ and dried in vacuo. The red solid (1.6 g, 70%) is soluble in toluene, CH_2Cl_2 ,

⁽¹⁾ Review: Curtis, M. D. Polyhedron 1987, 0, 000.

^{(2) (}a) Curtis, M. D.; Klingler, R. J. J. Organomet. Chem. 1978, 17, 2324. (b) Bailey, W. I., Jr.; Chisholm, M. H.; Cotton, F. A.; Rankel, L. A. J. Am. Chem. Soc. 1978, 100, 5764. (c) Beck, J. A.; Knox, S. A. R.;
 Stansfield, R. F. D.; Stone, F. G. A.; Winter, M. J.; Woodward, P. J.
 Chem. Soc. Dalton Trans. 1982, 195. (d) Gerlach, R. F.; Duffy, D. N.;
 Curtis, M. D. Organometallics 1983, 2, 1172.
 (a) Bailey, W. I., J.; Chisholm, M. H.; Cotton, F. A.; Murillo, C. A.;

Rankel, L. A. J. Am. Chem. Soc. 1978, 100, 802. (4) (a) Goddard, R.; Knox, S. A. R.; Stansfield, R. F. D.; Stone, F. G.

<sup>A.; Winter, M. J.; Woodward, P. J. Chem. Soc., Dalton Trans. 1982, 147.
(b) Griffiths, M.; Knox, S. A. R.; Stansfield, R. F. D.; Stone, F. G. A.; Winter, M. J.; Woodward, P. Ibid. 1982, 159.</sup>

 ^{(5) (}a) Curtis, M. D.; Messerle, L.; D'Errico, J. J.; Butler, W. M.; Hay,
 M. S. Organometallics 1986, 5, 2283. (b) Curtis, M. D.; Messerle, L.;
 D'Errico, J. J.; Solis, H. E.; Barcelo, I. D.; Butler, W. M. J. Am. Chem.
 Soc. 1987, 109, 0000.

⁽⁶⁾ Thompson, S. J.; Webb, G. J. Chem. Soc., Chem. Commun. 1976, 526

Biloen, P.; Sachtler, W. M. H. Adv. Catal. 1981, 30, 165.
 Nijs, H. H.; Jacobs, P. A. J. Catal. 1980, 65, 328; 1980, 66, 401.
 Henrici-Olive, G.; Olive, S. J. Mol. Catal. 1983, 18, 367.
 Gibson, E. J.; Clarke, R. W. J. Appl. Chem. 1961, 11, 293.

⁽¹¹⁾ Hofer, L. J. E.; Sterling, E.; McCartney, J. T. J. Phys. Chem. 1955,

^{59, 1153.}

⁽¹²⁾ Curtis, M. D.; Fotinos, N. A.; Messerle, L.; Sattelberger, A. P. Inorg. Chem. 1983, 22, 1559.

 ⁽¹³⁾ Reppe, W. Justus Liebigs Ann. Chem. 1955, 596, 74.
 (14) (a) Ghalamkar-Moazam, M.; Jacobs, T. L. J. Polym. Sci., Polym. Chem. Ed. 1978, 16, 615. (b) Hoff, S.; Brandsma, L.; Arens, J. F. Recl. Trav. Chim. Pays-Bas 1986, 87, 1179.

and CHCl₃: mp 127–129 °C (sealed capillary); molecular mass calcd m/e 534, found m/e 534 (⁹⁸Mo, mass spectrum); IR (C₆H₁₄) 1958 m, 1924 vs, 1880 s, 1860 w, cm⁻¹; ¹H NMR (benzene- d_6) δ 5.67 (dd, J = 1.8 Hz, J = 1.2 Hz, —CHOMe), 4.69 (m, MeC₅H₄), 3.55 (dd, J = 1.2 Hz, J = 2.4 Hz, —CH₂), 3.45 (s, -OCH₃), 2.32 (dd, J = 1.8 Hz, J = 2.4 Hz, —CH₂), 1.72, 1.55 (s, CH₃Cp); ¹³C NMR (benzene- d_6) δ 242.51, 236.56, 234.03, 232.47 (CO), 176.34 (—C, J = 11.4 Hz), 108.67, 108.29 (ipso-C), 101.19 (—CHOMe, J = 201 Hz), 94.86, 94.64, 94.05, 93.36, 93.16, 91.85, 81.60, 91.39 (MeC₅H₄), 57.79 (OCH₃, J = 142 Hz), 38.33 (—CH₂, J = 157 Hz, J = 171 Hz), 13.69, 13.14 (CH₃Cp, J = 128 Hz). Anal. Calcd for C₂₀H₂₀Mo₂O₅: C, 45.13; H, 3.79; Mo, 36.05. Found: C, 44.79; H, 3.79; Mo, 35.66.

Preparation of Cp'₂(**CO**)₄**Mo**₂(**CH**=**CCH**₂**OCH**₃) (4). Propargyl methyl ether (0.160 g, 2.34 mmol) was added via syringe to a solution of Cp'₂(**CO**)₄**Mo**₂ (1.0 g, 2.34 mmol) in 20 mL of CH₂Cl₂. The solution was stirred for 15 min at room temperature. The solvent was removed in vacuo to yield the dark red solid, 4, which was recrystallized from hexane at -78 °C (0.820 g, 71%). The product is soluble in toluene, CH₂Cl₂, and CH₃CN: mp 84-85 °C (sealed capillary); molecular mass calcd m/e 534, found m/e 534 (⁹⁸Mo, mass spectrum); IR (C₆H₁₄) 1990 s, 1963 m, 1918 vs, 1864 s cm⁻¹; ¹H NMR (benzene-d₆) δ 5.47 (t, J = 0.72 Hz, =CH), 4.88 (m, MeC₆H₄), 4.42 (d, J = 0.72 Hz, CH₂OMe), 3.16 (s, -OCH₃), 1.78 (s, CH₃Cp); ¹³C NMR (benzene-d₆) δ 233.53, 229.03 (CO), 107.0 (ipso-C), 91.91, 91.26, 91.04, 90.68 (MeC₅H₄), 85.55 (=CH), 76.39 (-CH₂OCH₃), 58.22 (-OCH₃), 56.02 (=C--), 13.99 (CH₃Cp). Anal. Calcd for C₂₀H₂₀MoO₅: C, 45.13; H, 3.78. Found: C, 45.36; H, 3.82.

Preparation of [Cp'₂(CO)₄Mo₂(C₃H₃)]BF₄ (2·BF₄). Method A. $Cp'_2(CO)_4Mo_2(CH_2=C=CHOCH_3)$ (1) (1.00 g, 1.88 mmol) was dissolved in 40 mL of CH_2Cl_2 and combined with an equivalent amount of HBF_4 ·OEt₂ (0.304 g, 1.88 mmol) at room temperature. The color of the solution immediately changed from red to yellow. After the solution was stirred for 10 min, 40 mL of Et₂O was slowly added. Bright yellow crystals of 2·BF₄ were filtered, washed with Et₂O (1 × 5 mL), and dried in vacuo (1.06 g, 96%). The product is soluble in CH₂Cl₂, CH₃CN, and acetone. This material is spectroscopically identical with that described in method B below.

Method B. At room temperature HBF₄·OEt₂ (0.130 g, 0.81 mmol) was added to a solution of Cp'₂(CO)₄Mo₂(CH=CCH₂OMe) (4) (0.400 g, 0.81 mmol) in 20 mL of CH₂Cl₂. The mixture was stirred for 15 min, during which time the solution turned yellow. The workup followed as in method A: mp 124–126 °C (sealed capillary); largest m/e 504 (M⁺ – BF₄, ⁹⁸Mo); $\Lambda_{\rm M}$ = 169 Ω⁻¹ cm² mol⁻¹ (c = 6.485 × 10⁻⁴ M); IR (CH₂Cl₂) 2080 s, 2000 vs, 1906 m ($\nu_{\rm str}$ (CO)), 1115 s (ν (BF)) cm⁻¹; ¹H NMR (acetone- d_6 , -50 °C) δ 6.76 (d, ⁴J_{HH} = 1.7 Hz, =CH), 5.78 (m, MeC₅H₄), 5.33 (d, ⁴J_{HH} = 1.7 Hz, -CH₂), 5.05 (s, -CH₂), 2.16, 2.04 (s, CH₃Cp); ¹³Cl¹H-gated} NMR (acetone- d_6 , 25 °C) 229.78, 228.06, 221.14, 218.31 (CO), 118.38 (=C⁻⁻), 112.39, 111.48 (ipso-C), 96.91, 95.83, 95.04, 93.63, 93.30, 92.87, 92.23 (MeC₅H₄), 80.77 (=CH, ¹J_{CH} = 270.1 Hz), 13.61, 13.45 (CH₃Cp, ¹J_{CH} = 129.4 Hz). Anal. Calcd for C₁₉H₁₇BF₄Mo₂O₄: C, 38.81; H, 2.91; F, 12.92. Found: C, 39.12; H, 2.90; F, 12.68.

Preparation of $[Cp'_{2}(CO)_{4}Mo_{2}(CHCCH_{2})]_{2}$ (11). Method A. A suspension of $[Cp'_{2}(CO)_{4}Mo_{2}C_{3}H_{3}]BF_{4}$ (2·BF₄) (0.500 g, 0.85 mmol) in 50 mL of THF was slowly added to a solution of Na- $[Fe(CO)_{2}Cp]$ (0.170 g, 0.85 mmol) in 30 mL of THF. The solution immediately changed from yellow to red. The solvent was removed in vacuo to yield a red solid. The solid was dissolved in $CH_{2}Cl_{2}$ (15 mL) and the solution filtered to remove NaBF₄. The filtrate was evaporated in vacuo and the red solid recrystallized from $CH_{2}Cl_{2}/CH_{3}OH$ (1:1) (0.370 g, 87%). The same reaction was found to occur in benzene. The crystalline solid is soluble in THF, $CH_{2}Cl_{2}$, toluene, and hexane and is spectroscopically identical with the sample prepared by method B below.

Method B. To a 2% Na/Hg amalgam prepared from 31 mg (1.35 mmol) of Na and 13.54 g (67.50 mmol) of Hg was added a solution of 200 mg (0.34 mmol) of $2 \cdot BF_4$ in 10 mL of THF. The mixture was stirred at room temperature for 10 min, during which time the reaction mixture turned red. The solution was transferred to another flask by means of a cannula and worked up as described in method A: highest m/e 543 {[Cp'(CO)₂Mo]₂[CH=

CCH₂CH₂C≡CH]]⁺; IR (C₆H₆) 1975 s, 1900 vs, br, 1825 s cm⁻¹; IR (KBr) 1980 s, 1920 s, 1900 s, 1820 s cm⁻¹; ¹H NMR (C₆D₆) δ 5.55 (s, ≡CH), 4.96 (m, MeC₅H₄), 2.67 (s, -CH₂-), 1.84 (s, CH₃C₅H₄); ¹³C NMR (C₆D₆) δ 234.6, 228.8 (CO), 108.0 (ipso-C), 92.1, 91.3 (MeC₅H₄), 87.2 (≡CH, J = 209.0 Hz), 59.5 (≡C−), 39.2 (-CH₂, J = 132.7 Hz), 14.80 (CH₃Cp, J = 128.2 Hz). Anal. Calcd for C₃₈H₃₄Mo₄O₈: C, 45.52; H, 3.41. Found: C, 45.44; H, 3.49. Needle-shaped crystals of 11 suitable for diffraction were grown from a saturated solution of 11 in a 1:1 mixture of CH₂Cl₂ and methanol.

Reactions of $[Cp'_{2}(CO)_{4}Mo_{2}(C_{3}H_{3})]BF_{4}$ (2·BF₄) with Nucleophiles. With NaOMe. A solution of NaOMe (0.6 mL, 1.56 M) in methanol was added via syringe to a solution of 2·BF₄ (0.55 g, 0.85 mmol) in 15 mL of CH₂Cl₂. The solution was stirred for 0.5 h, during which time the solution turned red. The solvent was evaporated in vacuo and the red solid extracted with 10 mL of hot hexane and filtered. The filtrate was cooled to -78 °C precipitating solid Cp'_{2}(CO)_{4}Mo_{2}(CH=CCH_{2}OCH_{3}) (4).

With *i*-Pr₂NLi. A solution of 2·BF₄ (0.500 g, 0.85 mmol) in 15 mL of toluene was allowed to react with a hexane solution of *i*-Pr₂NLi (1.73 mL, 0.5 M) at 0 °C. The solution immediately changed from yellow to red. The reaction was stirred for 2 h, and LiBF₄ was removed by filtration (Celite). The filtrate was evaporated in vacuo to yield a pure red oil, $Cp'_2(CO)_4Mo_2$ -(CH=CCH₂N(*i*-Pr)₂): IR (toluene) 1977 s, 1905 vs, 1840 s cm⁻¹; ¹H NMR (acetone-d₆) δ 6.32 (s, =CH), 5.45 (m, MeC₅H₄), 3.92 (s, -CH₂), 3.32 (quintet, J = 7.0 Hz, CHMe₂), 2.30 (s, CH₃C₅H₄), 1.16 (d, J = 7.0 Hz, CHCH₃).

With Pyridine. A solution of 2.BF₄ (0.200 g, 0.34 mmol) in 10 mL of CH₂Cl₂ was combined with a solution of pyridine (0.027 g, 0.34 mmol) in 2.7 mL of CH₂Cl₂ at room temperature and stirred for 20 min. Diethyl ether (40 mL) was added to the red solution to precipitate $[Cp'_2(CO)_4Mo_2CH \equiv CCH_2(NC_5H_5)BF_4$ (6). The solid was filtered, washed with Et_2O (3 × 3 mL), and dried in vacuo (0.600 g, 72%). The red crystals are soluble in CH₂Cl₂, CH₃CN, and acetone: mp 138–139 °C (sealed capillary); largest m/e 504 (M⁺ – py – BF₄, ⁹⁸Mo); IR (CH₂Cl₂) 1963 a, 1924 vs, 1855 s cm⁻¹; ¹H NMR (acetone- d_6) δ 9.0, 8.75, 8.22 (ABB'XX', NC₅H₅), 6.04 (s, =CH), 5.83 (s, $-CH_2$), 5.32 (m, MeC₅H₄), 2.07 (s, CH₃Cp); ¹³C NMR (CD₃CN) δ 232.87, 228.40 (CO), 146.89, 144.74, 129.40 (NC₅H₅), 109.93 (ipso-C), 92.62, 92.43, 92.34, 91.91 (MeC₅H₄), 85.23 $(=CH, J = 210.5 \text{ Hz}), 67.47 (-CH_2, J = 150 \text{ Hz}), 52.57 (=C-1000 \text{ Hz}), 52.57 (=C-10000 \text{ Hz}), 52.57 (=C-100000 \text{ Hz}), 52.57 (=C-10000 \text{ Hz}), 52.57 (=C-10$ 14.31 (CH_3Cp , J = 128.3 Hz). Anal. Calcd for $C_{24}H_{22}BF_4Mo_2NO_4$: C, 43.21; H, 3.32; N, 2.09; Mo, 28.65. Found: C, 43.03; H, 3.34; N, 1.98; Mo, 28.49.

With Dimethylphenylphosphine. Freshly distilled PMe₂Ph (0.564 g, 0.41 mmol) was added to a CH_2Cl_2 (5 mL) solution containing 0.240 g (0.41 mmol) of $2 \cdot BF_4$ at room temperature. The solution immediately turned red. After the solution was stirred for 10 min, 10 mL of hexane was slowly added to form a precipitate. The solid was filtered, washed with hexane $(2 \times 5 \text{ mL})$, and dried in vacuo (0.180 g, 61%). The product $[Cp'_2$ - $(CO)_4Mo_2(CH \equiv CCH_2PMe_2Ph)]BF_4$ (8) is a pale red crystalline solid soluble in CH₂Cl₂, CH₃CN, and acetone: mp 140-142 °C (sealed capillary); largest m/e 641 (M⁺ – BF₄, ⁹⁸Mo); $\Lambda_{\rm M} = 139$ $\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1} (c = 6.646 \times 10^{-4} \text{ M}); \text{ IR (CH}_2\text{Cl}_2) 1994 \text{ s}, 1915 \text{ vs},$ 1840 s cm⁻¹; ¹H NMR (acetone- d_6 , -60 °C) δ 7.94 (m, Ph), 5.96 (dt, $J_{PH} = 1.9$ Hz, $J_{HH} = 0.7$ Hz, \equiv CH), 5.13 (m, MeC₅H₄), 4.29 $(dd, J_{PH} = 13.1 \text{ Hz}, J_{HH} = 0.7 \text{ Hz}, -CH_2), 2.46 (d, J_{PH} = 14.4 \text{ Hz}, -CH_2)$ PCH_3), 2.25 (d, $J_{PH} = 14.3 \text{ Hz}$, PCH_3), 1.81 (s, CH_3Cp); ¹³C NMR (acetone-d₆, -60 °C) δ 235.59, 232.96, 232,74, 224.43 (CO), 135.08, 132.49, 130.29, 120.85 ($J_{\rm PC}$ = 9.6, 12.1, 81.8 Hz, Ph), 111.94, 107.19 (ipso-C), 96.64, 94.70, 93.69, 92.99, 92.40, 91.39, 90.67, 88.44 (MeC_5H_4) , 85.79 (J = 212.7 Hz, =CH), 43.68 (J = 11.9 Hz, =C), 31.39 (J_{PC} = 39.6 Hz, $-CH_2$) [in the low-temperature NMR, this signal was obscured by the CD₃CN signal; J and δ were taken from the room temperature spectrum], 14.11, 13.67 (J = 128 Hz, $CH_{3}Cp$), 8.16 ($J_{PC} = 52.1$ Hz, $J_{CH} = 136.5$ Hz, PCH), 6.64 ($J_{PC} = 54.10$, $J_{CH} = 136.5$ Hz, PCH₃); ³¹P{¹H} NMR (acetone- d_{6}) 40.02 ppm. Anal. Calcd for $C_{27}H_{28}BF_4Mo_2O_4P$: C, 44.53; H, 4.15; F, 10.44. Found: C, 44.42; H, 4.02; F, 10.22.

With Trimethyl Phosphite. A solution of $P(OCH_3)_3$ (0.228 g, 1.84 mmol) in 5 mL of CH_2Cl_2 was added to a solution of $2\cdot BF_4$ (1.08 g, 1.84 mmol) in 25 mL of CH_2Cl_2 . The red solution was stirred for 45 min at room temperature. The solution was then concentrated to a volume of 2 mL and chromatographed on Florisil

	$2 \cdot BF_4$	11		
chem formula	$C_{19}H_{17}BF_4Mo_2O_4$	C ₃₈ H ₃₄ Mo ₄ O ₈		
a, Å	8.663 (2)	8.897 (2)		
b, Å	35.652 (10)	18.643 (11)		
C, Å	13.746 (3)	11.457 (4)		
β , deg	92.92 (2)	108.72 (2)		
$V, Å^3$	4240 (2)	1800 (1)		
Z	8	2		
$\rho_{\rm obsd}$, g cm ⁻³	1.843			
$\rho_{\rm relad}$, g cm ⁻³	1.842	1.850		
space group	$P2_1/n$	$P2_1/n$		
cryst dimens, mm	$0.20 \times 0.06 \times 0.25$	$0.1 \times 0.15 \times 0.49$		
radiatn	Mo K α (graphite)	Mo K α (graphite)		
abs coeff (μ) , cm ⁻¹	12.106	13.80		
scan speed, deg min ⁻¹	2.5-12	2.5 - 12		
scan range	Mo K α_1 - 0.8 to Mo K α_2 + 0.8	Mo K α_1 – 0.8 to Mo K α_2 + 0.8		
bkgd ratio	0.8	0.8		
20 limit, deg	40	45		
reflctn collected	4318	2805		
reflctns with $I > 3\sigma(I)$	2589	2062		
R_1	0.054	0.025		
R_2	0.059	0.024		
$w = k/(\sigma^2(F_o) + pF_o^2)$ (last cycle)	p = 0.003 (refined each cycle, $k = scale factor$)	p = 0.001		
largest peak in final diff map, e/Å ³	0.65	0.39		

Table I. Crystal and Data Statistics

with CH_2Cl_2 as the eluent. Three bands developed. The red one was collected by elution with CH₃CN. After removal of the solvent and drying the red residue for 24 h in vacuo, $Cp'_{2}(CO)_{4}Mo_{2}$ - $(CH \equiv CCH_2P(O)(OMe)_2)$ (10) was obtained in 30% yield (380) mg) as a dark red crystalline solid, soluble in toluene, CH₂Cl₂ and CH₃CN: mp 65-67 °C (sealed capillary); largest m/e 612 (M⁺, ⁹⁸Mo); $\Lambda_{\rm M} = 5.74 \ \Omega^{-1} \ {\rm cm}^2 \ {\rm mol}^{-1} \ (c = 1.55 \times 10^{-3} \ {\rm M})$; IR (hexane) 1989 s, 1928 sh, 1915 vs, 1845 s cm⁻¹ (ν (CO)); IR (KBr) 1249 m (ν (PO)), 1016 m (P–O–C) cm⁻¹; ¹H NMR (CD₃CN, room temp) 60.2 (dt, $J_{\rm PH}$ = 2.1 Hz, $J_{\rm HH}$ = 0.8 Hz, =CH), 5.25 (m, MeC₅H₄), $3.62 (d, J_{PH} = 10.8 Hz, POCH_3), 3.11 (dd, J_{PH} = 18.8 Hz, J_{HH} =$ 0.8 Hz, -CH₂), 2.04 (s, CH₃Cp); ¹H NMR (acetone-d₆, -78 °C) 6.18 (=CH), 5.34 (m, MeC₅H₄), 3.62 (t, J_{PH} = 11.0 Hz, POCH₃), 3.17 (m, -CH₂), 2.03, 2.00 (s, CH₃Cp); ¹³C NMR (CD₃CN) 234, 230 (CO), 109.48 (ipso-C), 93.47, 92.18 (MeC_5H_4), 89.87 (J = 214.3Hz, ==CH), 52.73 (J_{PC} = 6.6 Hz, J_{CH} = 147.3 Hz, POCH₃), 31.30 $(J_{PC} = 129.1 \text{ Hz}, J_{CH} = 129.1 \text{ Hz}, -CH_2), 14.36 (J = 127.9 \text{ Hz}, -CH_2)$ CH₃Cp); ³¹P{¹H} NMR (CD₃CN) 29.86 ppm. Anal. Calcd for C₂₁H₂₅Mo₂O₇P: C, 41.19; H, 4.11; P, 5.06. Found: C, 41.28; H, 3.98; P, 5.01.

A reptition of the reaction with 500 mg (0.85 mmol) of 2.BF₄ and 105 mg (0.85 mmol) of P(OMe)₃ in 20 mL of CH₂Cl₂ showed that initially $[Cp'_{2}(CO)_{4}Mo_{2}(CH \equiv CCH_{2}P(OMe)_{3})]BF_{4}$ (9) was formed. This compound was isolated as follows: The solution was filtered and 35 mL of Et₂O added very slowly with stirring to the filtrate, yielding a red crystalline precipitate which was separated, washed with 2×5 mL portions of hexane, and dried in vacuo: yield 480 mg (80%) of $[Cp'_2(CO)_4Mo_2(CH=CCH_2P (OMe)_3)]BF_4$ (9), soluble in CH_2Cl_2 and CH_3CN ; mp 96-98 °C (sealed capillary); largest m/e 612 (M⁺ – Me – BF₄, ⁹⁸Mo); $\Lambda_{\rm M}$ = $155 \ \Omega^{-1} \ \text{cm}^2 \ \text{mol}^{-1} \ (c = 7.62 \times 10^{-4} \text{ M})$. The product was unstable in solution, so that no satisfactory NMR spectra could be obtained. IR (KBr): 1978 s, 1900 vs, 1824 s cm⁻¹. Anal. Calcd for C₂₂H₂₆BF₄Mo₂O₇P: C, 37.10; H, 3.67; P, 4.35; F, 10.67. Found: 36.02; H, 3.99; P, 5.22; F, 11.96. Treatment of [Cp'2- $(CO)_4Mo_2(CH \equiv CCH_2P(OMe)_3)]BF_4$ in acetone- d_6 with MeI formed Cp'₂(CO)₄Mo₂(CH=CCH₂P(O)(OMe)₂) (10) as shown by the NMR spectrum.

With t-BuNC. A CH₂Cl₂ solution (10 mL) containing 0.770 g (1.31 mmol) of 2·BF₄ and 0.545 g (6.55 mmol) t-BuNC was stirred for 24 h at room temperature. The solvent was removed in vacuo to yield a red residue. Diethyl ether (30 mL) was added, and a yellow solid was filtered from the red solution. The solid was washed with Et₂O (3×10 mL) and dried in vacuo. The yellow solid has no absorbances assignable to $v_{str}(CO)$ and no resonances due to Cp' in the NMR. The red filtrate was taken to dryness, washed with hexane (3×5 mL), and dried in vacuo: yield 300 mg (43%) of Cp'₂(CO)₂Mo₂(CH=CCH₂CN) (7) as a red powder, soluble in toluene, Et₂O, and CH₂Cl₂; mp 86–88 °C (sealed capillary); largest m/e 529 (M⁺, ⁹⁸Mo); IR (hexane) 1996 s, 1933 s,

1920 vs, 1851 s cm⁻¹; ¹H NMR (benzene- d_6) δ 5.24 (t, J = 0.8 Hz, \equiv CH), 4.79 (m, MeC₅H₄), 3.01 (d, J = 0.8 Hz, -CH₂), 1.70 (s, CH₃Cp); ¹³C NMR (acetone- d_6) δ 233.28, 229.09 (CO), 120.00 (C \equiv N), 109.46 (ipso-C), 92.99, 92.76, 91.98, 91.78 (MeC₅H₅), 88.40 (\equiv C—), 86.69 (J = 209.2 Hz, \equiv CH), 24.64 (J = 138.0 Hz, -CH₂), 14.33 (J = 128.3 Hz, CH₃Cp). Anal. Calcd for C₂₀H₁₇Mo₂NO₄: C, 45.56; H, 3.25; N, 2.65. Found: C, 45.38; H, 3.49; N, 2.73.

With NaCN. Purified 15-crown-5 (0.131 g, 0.60 mmol) was added to a solution of $2\cdot BF_4$ (0.350 g, 0.60 mmol) in 10 mL of CH_2Cl_2 , followed by addition of 0.030 g (0.61 mmol) of NaCN at room temperature. The mixture was stirred for 2 days at room temperature, during which time the NaCN gradually dissolved. The reaction mixture was poured into a separatory funnel containing 15 mL of H₂O and 10 mL of CH_2Cl_2 . The organic layer was collected and the water layer washed with CH_2Cl_2 (2 × 10 mL). The combined organic layers were dried over anhydrous MgSO₄. The solution was concentrated to a volume of 2 mL and chromatographed on Al_2O_3 with CH_2Cl_2 as the eluent. Evaporation of the solvent in vacuo gave a product identical with that formed from the reaction of $2\cdot BF_4$ with t-BuNC as described above.

Structure Determination of 2.BF₄. Crystals of 2.BF₄ were grown from CH_2Cl_2/Et_2O at room temperature. A crystal was mounted on a Syntex $P2_1$ diffractometer (see Table I for relevant statistics). Initial rotation photographs and counter data indicated that crystal to be monoclinic, space group $P2_1/n$ (No. 14),¹⁵ and the measured density gave Z = 8. Thus, there are two independent molecules in the asymmetric unit. The positions of the four Mo atoms were obtained by MULTAN-78.16 All other non-hydrogen atoms were located in subsequent different Fourier maps. Refinement of all positional and isotropic parameters (full matrix) leads to convergence at R = 0.103. The two BF₄⁻ anions were found to be disordered. A suitable model of the BF_4 disorder is represented by intermeshing two tetrahedrons with the same central boron. The occupancy factors for the fluorines were set to 0.7 and 0.3 for one BF_4^- and to 0.6 and 0.4 for the other. A refinement was carried out in which x, y, z, U, and the occupancy factor were allowed to vary. This model refined satisfactorily. A full-matrix refinement in blocks on 59 atoms with anisotropic

⁽¹⁵⁾ The International Tables for X-Ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch: Birmingham, England, 1974; Vol. IV, Table 2.2 and Table 2.3.1.

⁽¹⁶⁾ Computations were carried out on an Amdahl 5860 computer. Computer programs used during the structural analysis were from the SHELX program package by George Sheldrick, Institute fur Anorganische Chemie der Universitate Gottingen, Federal Republic of Germany. Other programs used include ORTEP, a thermal ellipsoidal drawing program by C. K. Johnson, and the direct methods program MULTAN78 by P. Main, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq, and M. M. Woolfson.

1494 Organometallics, Vol. 6, No. 7, 1987

temperature factors, one C atom (C32) isotropic, and both BF_4 groups isotropic gave the final *R* values shown in Table I. The occupancy factors for the fluorine atoms converged to 0.48, 0.52 and 0.53, 0.47 for the two BF_4^- , respectively. The anisotropic temperature factors for C32 would not refine properly (went nonpositive definite) so C32 was refined isotropically.

Structure Determination of 11. Single crystals of 11 were grown from a methylene chloride/methanol solution and mounted on a Syntex $P2_1$ diffractometer. Table I contains a summary of data collection conditions and results. Lattice parameters were determined from a least-squares refinement of 15 reflection settings obtained from an automatic centering routine.

Intensity data were obtained by using Mo K α radiation monochromatized from a graphite crystal whose diffraction vector was in the same plane as the diffraction vector of the sample. Three standard reflections were measured every 50 reflections. The data were reduced by procedures previously described.¹⁶ An absorption correction was unnecessary.

The structure was solved by using MULTAN.¹⁶ In the subsequent refinement the function $\sum w(|F_o| - |F_c|)^2$ was minimized, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively. The agreement indices $R_1 = \sum ||F_o| - |F_c||/\sum |F_o|$ and $R_2 = [\sum w(|F_o| - |F_c|)^2 / \sum w|F_o|^2]^{1/2}$ were used to evaluate the results. The atomic scattering factors are from ref 15. Hydrogen positions were located from a difference Fourier map and their positions refined. All hydrogens were given fixed U values (isotropic temperature factors) of 0.05.

Figure 2 shows the structure of 11. Final positional parameters with estimated standard deviations are shown in Table IV. Anisotropic thermal parameters with their estimated standard deviations are available in the supplementary material. Table V lists the crystallographically determined bond distances and angles. Listings of observed and calculated structure factor amplitudes are available as supplementary material.

Results and Discussion

Our synthetic strategy for forming the hydrogen-poor, carbon-rich C_3H_2 fragment involved the removal of the elements HX from a C_3H_3X ligand. Two C_3H_3X ligands were chosen: methoxyallene, $CH_2 = C = CH(OMe)$, and methyl propargyl ether, $HC = CCH_2OMe$. These ligands readily formed adducts with $Cp'_2Mo_2(CO)_4$ (1', $Cp' = C_5H_4Me)$ according to eq 1 and 2, respectively (M = Mo- $(CO)_2Cp'$).

$$M \equiv M + CH_2 = C = CH(OMe) \xrightarrow{MeO}_{M \to M} H \xrightarrow{MeO}_{M \to M} H$$
(1)

$$M \equiv M + HC \equiv C - CH_2 OMe \xrightarrow{CH_2 OMe} M \xrightarrow{CH_2 OMe}_{H} (2)$$

The allene adduct 3 is a deep red, crystalline solid and has spectral properties similar to those of the known compound $Cp_2Mo_2(CO)_4(H_2C=-C=-CHMe)$.³ Five absorptions are observed in the range 2000–1800 cm⁻¹ in the IR spectrum of 3. There is a maximum of four ν_{CO} bands for 3 if only one isomer is present in solution, as is indicated by the NMR spectrum of 3. Therefore, one of the bands may be tentatively assigned to a ν_{CCC} mode of the coordinated allene, but in the absence of isotopic labeling, a definite assignment cannot be made. The ¹³C{¹H}NMR spectrum of 3 reveals four carbonyl resonances at room temperature. Four ¹³CO resonances were also observed in the spectra of $Cp_2(CO)_4Mo_2(HRC=-C=CR'H)$ when the allene ligand was unsymmetric ($R \neq R'$).³

Spectroscopic data for 4 suggest a tetrahedrane structure as shown in eq 2. Four absorption bands assigned to ν_{CO} , in the 2000–1800 cm⁻¹ region, are observed in the solution

Figure 1. ORTEP plot of the cation $M_2(\mu - \eta^2, \eta^3 - HCCCH_2)$ (2, M = $M_0(CO)_2Cp'$).

infrared spectrum of 4. The lowest frequency band (1864 $\rm cm^{-1}$) has been attributed to a semibridging carbonyl ligand.^{2b} At room temperature, the ¹H NMR spectrum displays a singlet for the two sets of methyl protons on the methylcyclopentadienyl ligands, an observation consistent with the known fluxionality of this type of complex.²

Complexes 3 and 4 both react with HBF₄·OEt₂ to give the same product: a $(\mu-\eta^2,\eta^3$ -allenyl)dimolybdenum cation (2) resulting from loss of methanol from the parent compounds (eq 3).

The composition of $2 \cdot BF_4$ is supported by elemental analysis ¹H NMR, ¹³C NMR, and infrared spectroscopies, mass spectroscopy, and conductivity measurements. The structure was verified by single-crystal X-ray diffraction analysis, the results of which are presented in Figure 1 and in Tables I–III. The Cp-containing analogues of $2 \cdot BF_4$ have been prepared (but not characterized) previously.¹⁷

The key features to emerge from the crystal structure determination are (a) a Mo1–Mo2 distance of 3.015 ± 0.003 Å, (average for the two independent molecules) consistent with a single bond, (b) a semibridging carbonyl group of the charge-accepting type, and (c) all carbon atoms of the C₃H₃ linkage are bound to molybdenum: C1 and C2 are attached to both Mo1 and Mo2, whereas C3 interacts with Mo1 exclusively.

Complex 2 can be regarded as a cationic μ - η^2 , η^3 -allenyl complex. In this model, the bonding of the three carbon atoms to Mo1 resembles that in a π -allyl complex (Figure 1). The second, orthogonal π -component of the C1-C2 bond in the allenyl fragment is available for bonding to Mo2:

If each Mo is assigned a formal 2+ oxidation state, this model requires a formal dative bond from Mo1 to Mo2 to attain an 18e count at each metal atom. The dative bond places more negative charge on Mo2. The observation of a charge-accepting, semibriding CO interaction with Mo2

⁽¹⁷⁾ Sokolov, V. I.; Barinov, I. V.; Reutov, O. A. Isv. Akad. Nauk SSSR, Ser. Khim. 1982, 1992.

Table II. Fractional Atomic Coordinates for 2.BF4

atom	x	У	2	$U, Å^2$
Mo1	0.1447 (2)	0.5912 (1)	0.0924 (1)	0.0496
Mo2	0.3769 (2)	0.6419 (0)	0.1962 (1)	0.0503
C1	0.3933 (18)	0.5883 (5)	0.1280 (13)	0.0602
C2	0.3789 (20)	0.6139 (5)	0.0559 (15)	0.0645
C3	0.3077 (20)	0.6173 (6)	-0.0329 (13)	0.0726
C11	-0.0618 (20)	0.5531 (5)	0.0419 (20)	0.0655
C12	-0.0105 (37)	0.5413 (7)	0.1334(17)	0.1007
C13	0.1408(40)	0.5291(7)	0.1216(35)	0.1535
C14 C15	0.1714(41) 0.0408(20)	0.0020 (0)	-0.0260(32)	0.1227
C16	-0.0498 (39)	0.5452 (1)	-0.0208(10)	0.0657
C17	0.0867(20)	0.6092(5)	0.2177(14)	0.0557
017	0.0316(16)	0.6158(4)	0.2926(10)	0.0911
C18	0.0237 (22)	0.6346 (6)	0.0437 (13)	0.0700
018	-0.0506 (16)	0.6601 (4)	0.0140 (11)	0.0905
C21	0.4595 (23)	0.7035 (5)	0.1566 (13)	0.0624
C22	0.4534 (23)	0.6987 (5)	0.2631 (16)	0.0776
C23	0.2968 (23)	0.6935 (5)	0.2905 (13)	0.0679
C24	0.2060 (23)	0.6925 (5)	0.2004(16)	0.0726
C25	0.2977(22)	0.6982(4)	0.1182(13)	0.0579
C26	0.5971(24)	0.7126(6)	0.1052 (15)	0.0955
097	0.3773 (24)	0.0100(0)	0.3142(10) 0.2820(11)	0.0010
C28	0.3711(17) 0.6054(26)	0.0917 (0)	0.3639 (11)	0.1131
028	0.7337(18)	0.6299 (6)	0.2064(13)	0.1521
Mo3	-0.0769(2)	0.5965(0)	0.5911(1)	0.0495
Mo4	-0.2591 (2)	0.6545 (0)	0.6972 (1)	0.0478
C4	-0.2073 (21)	0.5969 (5)	0.7289 (11)	0.0553
C5	-0.0791 (22)	0.6188(5)	0.7471 (10)	0.0506
C6	0.0844(21)	0.6161 (5)	0.7354(11)	0.0586
C31	-0.1638 (40)	0.5454 (9)	0.5035 (32)	0.1401
C32	-0.0197 (53)	0.5576 (7)	0.4722 (20)	0.0378
C33	0.0930(25)	0.5499(8) 0.5265(7)	0.3484(38) 0.6335(31)	0.1472
C25	-0.0140(00)	0.0000 (7)	0.6255 (21)	0.1121
C36	-0.1325(44) -0.3336(35)	0.5322(0)	0.4718(34)	0.2400
C37	0.0562(22)	0.6380 (5)	0.5406 (12)	0.0534
037	0.1354 (16)	0.6595 (4)	0.5091 (10)	0.0868
C38	-0.2365 (20)	0.6226 (4)	0.5102 (12)	0.0533
O38	-0.3189 (16)	0.6345 (4)	0.4478 (9)	0.0878
C41	-0.3467 (20)	0.7107(4)	0.6242(14)	0.0559
C42	-0.1950 (21)	0.7040 (4)	0.5904 (13)	0.0602
C43	-0.0923 (22)	0.7032 (5)	0.6802(14)	0.0650
044	-0.1772(24)	0.7107(0) 0.7151(4)	0.7029 (13)	0.0700
C40	-0.3320(23) -0.4821(24)	0.7161(4) 0.7165(5)	0.7269(13) 0.5555(14)	0.0030
C40 C47	-0.4634(24)	0.6315(5)	0.6515(15)	0.0731
D47	-0.5777 (17)	0.6192 (4)	0.6256 (11)	0.0994
C48	-0.3368 (19)	0.6478 (5)	0.8301 (13)	0.0589
D48	-0.3735 (16)	0.6450 (4)	0.9071 (10)	0.0923
B 1	0.2243 (35)	0.2274 (9)	0.6588(21)	0.0295
F11	0.2319 (28)	0.2215(10)	0.7521 (19)	0.0315
F12	0.1240 (38)	0.2036(12)	0.6147(21)	0.0425
F13	0.2186(46)	0.2650(11)	0.6466 (34)	0.0007
F14 F11/	0.3001 (31)	0.2103(11) 0.2562(14)	0.0120(10) 0.7060(43)	0.0304
F12'	0.1564(03) 0.3501(34)	0.2303(14) 0.2341(11)	0.6168 (19)	0.0368
F13'	0.2235(34)	0.1982(12)	0.7334(22)	0.0410
F14'	0.0845 (27)	0.2247 (8)	0.6012 (15)	0.0240
B 2	0.5656 (70)	0.4810 (19)	0.2202 (41)	0.0559
F21	0.7094 (38)	0.4703 (10)	0.2098 (20)	0.0444
F22	0.6250 (50)	0.5151 (13)	0.2401 (33)	0.0640
F23	0.5216 (39)	0.4888 (10)	0.1148 (26)	0.0520
F24	0.4393(46)	0.4877(10)	0.2482 (26)	0.0556
F21 F00/	0.0300 (73)	0.4401 (17)	0.2120 (37)	0.0743
F23/	0.4597 (62)	0.4545(17)	0.1734(38)	0.0769
F24'	0.5661(76)	0.5108 (18)	0.1703 (50)	0.0827

is consistent with this interpretation. However, the metrical parameters associated with the semibridging carbonyl suggest that its interaction with Mo2 is very weak,¹⁸ and

Table III. Selected Bond Distances (Å) and Angles (deg) in

the 1 wo independent Molecules of 2 off				
	molecule 1	molecule 2		
Bond Distances (Å)				
Mo1-Mo2	3.01 (1)	3.02 (1)		
Mo1-C1	2.19 (2)	2.26 (2)		
Mo1-C2	2.27 (2)	2.29 (2)		
Mo1-C3	2.47 (2)	2.47 (2)		
Mo1-C17	1.93 (2)	1.96 (2)		
Mo1-C18	1.97 (2)	2.02 (2)		
Mo1-C(Cp' av)	2.3 [4]	2.3 [4]		
Mo2-C1	2.14 (2)	2.14 (2)		
Mo2-C2	2.17 (2)	2.10 (2)		
Mo2-C27	1.97 (2)	2.02 (2)		
Mo2-C28	2.00 (2)	1.99 (2)		
Mo2-C(Cp' av)	2.4 [6]	2.3 [4]		
C1-C2	1.35 (3)	1.37 (3)		
C2-C3	1.35 (3)	1.44 (3)		
C17-017	1.18 (2)	1.13 (2)		
C18-018	1.18 (2)	1.17 (2)		
C27-O27	1.17 (3)	1.12 (3)		
C28-O28	1.12 (3)	1.12 (3)		
B-F (av)	1.4 [9]	1.3 [10]		
Bo	ond Angles (deg)			
Mo2-Mo1-C1	45.2 (5)	45.1 (4)		
Mo2-Mo1-C2	46.0 (5)	44.0 (4)		
Mo2-Mo1-C3	73.2 (4)	73.0 (4)		
Mo1-Mo2-C1	46.6 (4)	48.2 (4)		
Mo1-Mo2-C2	48.6 (5)	49.1 (4)		
Mo1-C1-Mo2	88.2 (6)	86.7 (6)		
Mo1-C2-Mo2	85.4 (7)	86.9 (5)		
Mo1-C3-C2	65.0 (10)	65.7 (8)		
Mo1-C1-C2	76.0 (10)	74.0 (10)		
Mo2-C1-C2	73.0 (10)	70.0 (10)		
C1-C2-C3	139 (2)	137 (2)		
Mo1-C17-O17	169 (2)	167 (2)		
Mo1-C18-O18	179 (2)	176 (2)		
Mo2-C27-O27	177 (2)	179 (2)		
Mo2-C28-O28	178 (2)	176 (2)		
Mo2-Mo1-C17	64.9 (5)	65.1 (5)		
F-B-F(av)	109 (2)	106 (3)		

^a In this table, the atom numbering scheme for molecule 2 has been transposed to follow that of molecule 1 to facilitate comparison.

the lack of a $\nu_{\rm CO}$ band below 1900 cm⁻¹, typical of semibridging carbonyls, also suggests a very weak interaction. Formation of the bonds to Mo2 causes the C1--C2--C3 angle in 2 to open up to 139° compared to 120° in unstrained η^3 -allyl complexes.¹⁹ This large angle is indicative of the sp-hybrid character made to the electronic structure by the resonance extreme (II) shown below.

Further support for formulating the bonding of the C_3H_3 ligand in 2 as an unsymmetric π -allylic interaction comes from a comparison of the bond lengths determined in 2 (averaged for the two crystallographically independent molecules), Mo1-C1 = 2.22 (2) Å, Mo1-C2 = 2.28 (2) Å, and Mo1-C3 = 2.47 (3) Å, with the bridging alkylidene complex $[Cp_2(CO)_4Mo_2(\mu-C(C_6H_4CH_3)_2)]$,^{55,20} the η^3 -benzyl complex $Cp(CO)_2Mo(CH_2C_6H_4CH_3)$,²¹ the η^3 -allyl complex

^{(18) (}a) Klingler, R. J.; Butler, W. M.; Curtis, M. D. J. Am. Chem. Soc. 1978, 100, 5034. (b) Curtis, M. D.; Han, K. R.; Butler, W. M. Inorg. Chem. 1980, 19, 2096. (c) Horwitz, D. P.; Shriver, D. F. Adv. Organomet. Chem. 1984, 23, 219.

⁽¹⁹⁾ Faller, J. W.; Chodosh, D. F.; Katahira, D. J. Organomet. Chem.

⁽¹⁹⁾ Faller, S. W., Schedenberg, D. F., Richard, D. St. St. Stranding, D. St. St. Stranding, Conf. 1980, 187, 227 and references therein.
(20) Messerle, L.; Curtis, M. D. J. Am. Chem. Soc. 1980, 102, 7789.
(21) (a) King, R. B.; Fronzaglia, A. J. J. Am. Chem. Soc. 1966, 88, 709.
(b) Cotton, F. A.; LaPrade, M. D. Ibid. 1968, 90, 5418.

 $Cp(CO)_2Mo(C_3H_5)$ ¹⁹ and the μ -vinyl complex [Cp_2Mo_2 - $(CO)_4(\mu$ -CHCHPh) $(H_2)^+$][BF₄-].^{2d} The Mo2-C1 and Mo2-C2 distances, both 2.14 (3) Å, are in the range expected for sp² C-Mo bonds.²²

In solution, 2 is fluxional on the ${}^{1}H$ NMR time scale $(\Delta G^* = 16.9 \text{ kcal/mol at } 338 \text{ K})$. At -60 °C, the spectrum of 2 is consistent with the solid-state structure and consists of two singlets (CH_3) , two overlapping sets of ABCD multiplets ($C_5H_4CH_3$), two sets of doublets (H_c and H_a), and a singlet (H_b) (see below). The difference in coupling constants $({}^{4}J_{\rm HH})$ observed between the methylene protons and the methine proton may be geometry related, much like the dependence of ${}^{3}J_{\rm HH}$ of vicinal protons on the dihedral angle.²³ At higher temperatures, the signals for $-CH_3$ and $C_5H_4CH_3$ broaden and coalesce. The $-CH_3$ resonances appear as a single, sharp line at 75 °C. The lines due to the CHCCH₂ protons (H_a, H_b, H_c) do not alter their shape or position with temperature.

The observed temperature dependence of the ¹H NMR spectra may be rationalized by the dynamical process shown below which interconverts enantiomers 2a and 2b via intermediate 2c (Scheme I). In this scheme, the plane of the $CHCCH_2$ group in 2c is perpendicular to the Mo-Mo bond. The proposed process time averages the $C_5H_4CH_3$ groups but not the methylenic $(H_a \text{ and } H_b)$ protons.

The variable-temperature ¹³C NMR spectra are also consistent with this proposed fluxional process. At 25 °C, four carbonyl resonances are observed which collapse to two singlets at elevated temperature. Similarly, ten resonances are observed for the $C_5H_4CH_3$ carbon atoms at 25 °C (nine reported due to apparent overlap at 95.83 ppm) which coalesce to five peaks at elevated temperature. This behavior is similar to the high-energy fluxional process proposed for acetylene adducts, $M_2(\mu$ -RCCR),^{2b} and μ -vinyl complexes, $M_2(\mu$ -CH=CHR).^{2d,24}

The ¹³C¹H NMR chemical shifts of the carbon atoms in the complexed C3 fragment show interesting variations among compounds 2, 3, and 4. If we label the carbons in the CH₃O-containing ligands as α , β , and γ (α being the carbon bearing the methoxide), then $C\alpha$ of 4 becomes C3 (i.e. $-CH_2$) in 2 upon loss of CH_3OH , but $C\gamma$ of 3 is transformed into C3 in 2. The list of corresponding carbons and their chemical shifts is

3		2		
38 (Cy)		76 (C3)		76 (Cα)
$176 (C\beta)$		118 (C2)		56 (Cβ)
101 (C α)	\rightarrow	81 (C1)	←	86 (Cγ)

It can be seen that the chemical shift of C2 (2) is near the average (116 ppm) of the C β 's of 3 and 4. The chemical shift of C1 (2) is very near to $C\gamma$ of 4, and both are considerably shielded with respect to $C\alpha$ of 3. Finally $C\gamma$ (3) is deshielded by 38 ppm upon formation of the cation.

Insofar as these ¹³C chemical shifts can be correlated with charge density, it would appear that the positive charge is transferred from $C\alpha$ to $C\gamma$ when the methoxyallyl complex 3 is converted into the cation 2 and that the charge distribution in 2 more closely resembles that in 4 than in 3. The pattern of ¹³C NMR chemical shifts observed here is very similar to that observed in $\text{Co}_2(\text{CO})_6$ - $(\mu$ -RCC-CRR')⁺ cations.²⁵

A comparison of the ¹³C chemical shifts of the C₃H₃ fragment in 2 with π -allyl complexes is also useful in describing the bonding mode of the hydrocarbyl ligand. The chemical shifts of terminal carbons of unsubstituted π -allyl ligands typically fall in the range δ 40–55 and those of the central carbons in the range δ 90–115.²⁶ In particular, the terminal carbons of $Mo(\pi-allyl)_4$ resonate at δ 48.8 and 66.4 and the central carbon resonates at δ 102.9.²⁶ The chemical shifts of C₁, C₂, and C₃ in 2, 81, 118, and 76 ppm, respectively, are thus similar to those of π -allyl complexes. The resonance for C1 (81 ppm) also falls in the range observed for molybdenum alkyne complexes, $M_2(\mu$ -RCCR).^{1,2}

The ${}^{1}J_{CH}$ coupling constants are also helpful in assessing the hybridization state of the carbon atoms in the bridging hydrocarbyl ligand. The ${}^{1}J_{CH}$ coupling constants for the CH_2 bonds in 2 are 163 and 170 Hz, values similar to those in π -allyl complexes.²⁶ The value of ${}^{1}J_{CH}$ for the methine group (CH) in 2 is 227 Hz, however. This large value may be compared to the values of 250 Hz in $C_2H_2^{27}$ and 216 Hz in $M_2(\mu$ -HCCH).^{2b} Thus, C1 in 2 appears to have a hybridization state very similar to that in μ -alkyne adducts. All these data are consistent with the formulation of the bonding as depicted above, with some positive charge localized on the CH_2 group.

The observed reactivity of the cation 2 with a variety of nucleophiles is entirely consistent with the proposed electronic structure of the complex. In all cases in which adducts were formed, the nucleophile displaced the C_3 -Mo bond and formed substituted alkyne adducts according to eq 4. No evidence for nucleophilic attack at C_1 or C_2 was

observed. In this respect, the reactivity of 2 resembles that the cobalt-stabilized cations $Co_2(CO)_6(\mu$ of RCCCRR')+.25,28,29

An EHMO analysis has shown that nucleophilic attack on metal π -allyl complexes is frontier orbital controlled and that the usual model of attack is at a terminal carbon of the π -allyl.³⁰ The regioselectivity shown in eq 4 is undoubtedly determined not only by the preference for attack on a terminal carbon but also by the stability of the μ -alkyne adduct formed when the nucleophile attacks C₃.

The μ -alkyne adducts formed from 2 and various nucleophiles are listed in Table VI. Further physical characterization data of the complexes are found in the Experimental Section. The phosphite adduct 9 underwent the Michaelis-Arbuzov rearrangement³¹ on attempted chromatography on silica gel. This rearrangement to complex 10 was also readily induced by the addition of MeI to a solution of 9. The reaction of 2 with $[Bu_4N]Br$ or MeLi led to intractable mixtures of products.

The C_3H_3 ligand in 2 is extremely resistant to deprotonation. The cation 2 failed to react with "proton sponge" (1,8-bis(dimethylamino)naphthalene), and the hindered base i-Pr₂N⁻ underwent simple nucleophilic addition.

⁽²²⁾ Lupan, S.; Kapon, M.; Cais, M.; Herbstein, F. H. Angew. Chem., Int. Ed. Engl. 1972, 11, 1025.

⁽²³⁾ Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds; Wiley: New York, 1981; p 209.
(24) Beck, J. A.; Knox, S. A. R.; Riding, G. H.; Taylor, G. E.; Winter, M. J. J. Organomet. Chem. 1980, 202, C49.
(25) Pradmanabhan, S.; Nicholas, K. M. J. Organomet. Chem. 1983, 002 C000

^{268,} C23.

⁽²⁶⁾ Jolly, P. W.; Mynott, R. Adv. Organomet. Chem. 1981, 19, 257 - 304.

 ⁽²⁷⁾ Günther, H. NMR Spectroscopy; Wiley: New York, 1980; p 376.
 (28) Schreiber, S. L.; Sammakia, T.; Crowe, W. E. J. Am. Chem. Soc. 1986, 108, 3128.

⁽²⁹⁾ Nicholas, K. M.; Pettit, R. J. Organomet. Chem. 1972, 44, C21.

⁽³⁰⁾ Curtis, M. D.; Eisenstein, O. Organometallics 1984, 3, 887.
(31) Emsley, J.; Hall, D. The Chemistry of Phosphorus; Harper and Row: London, 1976; p 117.

Table IV. Fractional Atomic Coordinates for 11

_					
	atom	x	У	z	U, Å ²
	Mo1	-0.08754 (4)	0.11664 (2)	0.71713 (3)	0.0215
	Mo2	0.17900 (4)	0.18866(2)	0.65900 (3)	0.0244
	C1	-0.2913 (6)	0.0949 (2)	0.5865 (5)	0.0357
	01	-0.4102 (4)	0.0836 (2)	0.5128 (4)	0.0596
	C2	-0.1751 (5)	0.2155(2)	0.7032 (4)	0.0314
	O 2	-0.2264 (5)	0.2723 (2)	0.6981 (3)	0.0546
	C3	0.1604 (6)	0.2181 (3)	0.8185 (5)	0.0376
	O3	0.1659 (5)	0.2446 (2)	0.9114 (3)	0.0642
	C4	0.3140 (6)	0.1085 (3)	0.7376 (5)	0.0394
	04	0.3945 (5)	0.0606 (2)	0.7818 (4)	0.0647
	C5	-0.0421 (5)	0.1469 (2)	0.5459 (4)	0.0249
	C6	0.0442(5)	0.0884 (2)	0.5908 (4)	0.0236
	C7	0.0759 (5)	0.0188 (2)	0.5384 (5)	0.0308
	C8	-0.2556 (12)	-0.0481 (4)	0.7441 (7)	0.0807
	C9	-0.1447 (6)	0.0109 (2)	0.8072(4)	0.0402
	C10	-0.1873 (6)	0.0717(3)	0.8652 (4)	0.0433
	C11	-0.0479 (7)	0.1094 (3)	0.9260 (4)	0.0417
	C12	0.0802 (6)	0.0731(3)	0.9079 (4)	0.0423
	C13	0.0197 (7)	0.0131 (3)	0.8334 (5)	0.0457
	C14	0.1079 (11)	0.3722(3)	0.6532 (9)	0.0983
	C15	0.1871 (6)	0.3129 (2)	0.6083 (5)	0.0410
	C16	0.3422 (6)	0.2874 (3)	0.6656 (5)	0.0452
	C17	0.3731 (8)	0.2350 (3)	0.5869 (8)	0.0746
	C18	0.2410 (10)	0.2275 (3)	0.4854 (6)	0.0755
	C19	0.1265(8)	0.2750 (3)	0.4976 (5)	0.0518

Table V. Selected Bond Distances (Å) and Angles (deg) for

				_	
Bond Distances					
Mo1-Mo2	2.981 (1)	Mo2-C3	1.965 (5)		
Mo1-C5	2.200 (4)	Mo2-C4	1.947 (5)		
Mo1–C6	2.198 (4)	C1-O1	1.141 (5)		
Mo2–C5	2.126 (4)	C2-O2	1.146 (5)		
Mo2–C6	2.222 (4)	C3-O3	1.160 (6)		
C5-C6	1.337 (6)	C4-O4	1.156 (6)		
C6-C7	1.495 (6)	Mo1-C(Cp' av)	2.34 [1]		
C7–C7′	1.520 (8)	Mo2-C(Cp' av)	2.35 [1]		
Mo1-C1	1.987 (5)				
Mo1-C2	1.987 (5)				
	Bond Angles (deg)				
C5-Mo1-C6	35.4 (2)	C5-C6-C7	135.4 (4)		
C5-Mo2-C6	35.7 (2)	Mo1-C1-O1	178.3 (4)		
Mo1-C5-Mo2	2 87.1 (2)	Mo1-C2-O2	178.2 (4)		
Mo1-C6-Mo2	2 84.8 (1)	Mo2-C3-O3	168.7 (4)		
Mo1-C5-C6	72.2 (2)	Mo2-C4-O4	178.5 (5)		
Mo1-C6-C5	72.4 (2)	Mo1-Mo2-C3	66.9 (1)		
Mo2-C5-C6	76.1 (3)				
Mo2-C6-C5	68.2 (3)				

The reaction of 2 with t-BuNC gave the cyanide adduct 7. Presumably, the isocyanide coordinates to form the adduct 7a, which loses isobutene and H^+ (eq 5).

We were especially interested in the reactions of 2 with metal carbonyl anions since the resulting metal-substituted

Scheme I

alkyne complexes could be precursors to interesting bimetallic clusters. However, $Co(CO)_4^-$ reacted with 2 to give a complex mixture of products, while $CpFe(CO)_2^-$ reacted in a redox manner according to eq 6. Complex 11 was also obtained by reduction of 2 with sodium amalgam.

The structure of complex 11 was established by a single-crystal X-ray determination. The dimer 11 lies on an inversion center in the solid state so the two halves of the molecule are identical. Figure 2 is a PLUTO drawing of the molecule. Atomic coordinates and selected bond distances and angles for 11 are in Tables IV and V, respectively.

The bond distances in the M_2C_2 core are virtually identical with those obtained in previous studies of M_2 -(μ -RCCR') complexes.^{2b,c} The Mo-Mo distance 2.981 (1) Å is indicative of a Mo-Mo single bond. Three of the Mo-C (alkyne) distances are close to 2.2 Å, while the fourth is shorter, 2.126 (4) Å. Similar distortions have been noted

Table VI. Reactions of 2 with Various Nucleophiles ($M = (\eta - CH_3C_5H_4)(CO)_2Mo$)

	nucleophile	conditns	product (selected phys consts)
1	MeO ⁻	MeOH/CH ₂ Cl ₂ , 25 °C, 30 min	$M_2(\mu - HC = CCH_2OMe) (4)$
2	<i>i</i> -Pr ₂ NLi	toluene, 0 °C, 5 min	$M_{9}(\mu-HC \equiv CCH_{9}N-i-Pr_{9})$ (5)
3	$C_5 H_5 N$	CH ₂ Cl ₂ , 0 °C, 5 min, 72%	$[\mu_2(\mu-HC = CCH_2NC_5H_5)]BF_4$ (6) (mp 138–139 °C)
4	CN-	NaČN, [15]-crown-5, CH ₂ Cl ₂ , 2 days, 68%	$M_2(\mu - HC = CCH_2CN)$ (7) (mp 86-88 °C; δ (¹³ CN) 120)
5	t-BuNC (5 equiv)	CH ₂ Cl ₂ , 25 °C, 3 h	7 (as above)
6	PhMe ₂ P	CH ₂ Cl ₂ , 25 °C, 10 min, 61%	$[M_2(HC = CCH_2PMe_2Ph)]BF_4$ (8) (mp 140-142 °C; $\Lambda = 139 \ \Omega^{-1} \ cm^2 \ mol^{-1}; \ \delta^{(31P)}$ 40.0)
7	P(OMe) ₃	CH_2Cl_2 , 25 °C, 5 min	$[M_2(HC = CCH_2P(OMe)_3)]BF_4$ (9) (mp 96–98 °C, $\Lambda = 155 \ \Omega^{-1} \ cm^2 \ mol^{-1}; \ \delta^{(31}P)$ 96.5)
8	9	[MeI] or SiO ₂	$M_2(CH = CCH_2P(O)(OMe)_2)$ (10) (mp 65-67 °C; $\Lambda = 5.7 \ \Omega^{-1} \ cm^2 \ mol^{-1}$; $\delta(^{31}P)$ 29.6)

previously and have been ascribed to steric crowding in the M_2C_2 core.^{2b} The C5-C6-C7 angle 135.4 (4)° is consistent with a change in the hybridization of the alkyne carbons from sp toward sp^2 as a result of bonding to the metal atoms. It is interesting to note that this angle is close to the central C-C-C angle (139°) in cation 2. The lowfrequency IR band at 1820 cm⁻¹ observed for 11 shows that the semibridging carbonyl (C3-O3) is maintained in solution.

¹H and ¹³C NMR of 11 demonstrate that complex 11 is fluxional as are all the μ -alkyne adducts of 1 investigated to date.² At room temperature, all four Cp' environments are identical, and the eight carbonyls give rise to only two ¹³C NMR resonances. Similar behavior has been noted previously for $M_2(\mu$ -RC=CR') adducts (R \neq R').²

Further investigations of carbon-rich hydrocarbyl ligands are in progress.

Acknowledgment. This work was supported by donors of the Petroleum Research Fund, administered by the American Chemical Society, and by the National Science Foundation (Grant CHE-8305235).

Supplementary Material Available: Tables of thermal parameters and complete bond distances and angles (8 pages); lists of F_0 vs. F_c for 2-BF₄ and 11 (21 pages). Ordering information is given on any current masthead page.

Organometallic Compounds. 41.¹ [2]Metacyclo[2](1,1')ferrocenophane

Masao Hisatome, Masamichi Yoshihashi, Kenji Masuzoe, and Koji Yamakawa

Faculty of Pharmaceutical Sciences, Science University of Tokyo, Ichigaya-Funagawara, Shinjuku-ku, Tokyo 162, Japan

Yoichi Iitaka

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Received September 10, 1986

[2]Metacyclo[2](1,1')ferrocenophane (1), a standard organometallic system, was synthesized, and its crystal structure was determined by X-ray diffraction. Compound 1 crystallizes in the monoclinic system, space group $P2_1/a$, with unit-cell parameters a = 17.547 (9) Å, b = 5.914 (3) Å, c = 14.499 (7) Å, $\beta = 92.3$ (5)°, and Z = 4. The bond lengths and angles of the aromatic rings and methylene chains are normal. However, the two cyclopentadienyl (Cp) rings are tilted (dihedral angle 9.0°), and the bridge-carbon atoms linked directly to the Cp rings deviate considerably from the planes of the Cp rings (0.288 (9), 0.151 (9) Å) in the direction opposite to the iron atom. The benzene ring is situated to the side of the ferrocene nucleus, and the 9-hydrogen atom of the benzene ring is close to the iron atom of the ferrocene. The 9-proton signal in the ¹H NMR spectrum appears unusually downfield (δ 8.80) due to an anisotropic effect of the ferrocene nucleus. The electronic spectrum exhibits a large bathochromic shift of the d-d absorption band of the iron atom ($\lambda_{max} = 470$ nm). Attempted synthesis of [2]paracyclo[2](1,1') ferrocenophane, which is more strained than 1, was unsuccessful.

Introduction

A large number of monobridged (1,1') ferrocenophanes^{2,3} have been studied⁴⁻⁶ since the discovery of ferrocene. Most of these are [m](1,1') ferrocenophanes⁴⁻⁶ which are intramolecularly linked with a carbon chain and [m.n](1,1')ferrocenohanes⁴⁻¹⁰ which are intermolecularly bridged

between two ferrocene nuclei. Recently, several (1,1')ferrocenophanes containing aromatic rings in the bridge were synthesized,^{11,12} but there has been no report on [2]meta- and [2]paracyclo[2](1,1')ferrocenophanes (1 and 2). By inspection of a Dreiding molecular model, the benzene ring of 1 is situated to the side of the ferrocene nucleus and the 9-hydrogen of the ring is unusually close to the iron atom of the ferrocene (ca. 2.4 Å). A space-filling (CPK) molecular model reveals that the 9-hydrogen and the ferrocene nucleus repel each other. This situation should cause a high strain and/or some distortion in the molecule. The ¹H NMR spectrum and the d-d absorption band in the electronic spectrum of 1 should reflect such an unusual molecular structure and show characteristic shifts. The magnetic anisotropy of ferrocene nucleus was

⁽¹⁾ Part 40: Hisatome, M.; Watanabe, J.; Yamakawa, K.; Kozawa, K.; Uchida, T. Nippon Kagaku Kaishi 1985, 572

⁽²⁾ The nomenclature of ferrocenophanes in this paper is according to that presented by Vögtle and Neumann.³

Vögtle, F.; Neumann, P. Tetrahedron 1970, 26, 5847.
 Watts, W. E. Organomet. Chem. Rev. 1967, 2, 231.
 Kasahara, A. Kagaku 1983, 38, 859.

⁽⁶⁾ Mueller-Westerhoff, U. T. Angew. Chem., Int. Ed. Engl. 1986, 25, 702

⁽⁷⁾ Katz, T. J.; Slusarek, W. J. Am. Chem. Soc. 1980, 102, 1058.
(8) Barr, T. H.; Lentzner, H. L.; Watts, W. E. Tetrahedron 1969, 25,

⁶⁰⁰¹

^{(9) (}a) Rosenblum, M.; Brawn, N. M.; Clappenelli, D.; Tancrede, J. J. Organomet. Chem. 1970, 24, 469. (b) Kasahara, A.; Izumi, T. Chem. Lett.
1978, 21. (c) Kasahara, A.; Izumi, T.; Shimizu, I. Ibid. 1979, 1317. (10) (a) Biernat, J. F.; Wilczewski, T. Tetrahedron 1980, 36, 2521. (b)

Sato, M.; Kubo, M.; Ebine, S.; Akabori, S. Tetrahedron Lett. 1982, 23, 185. (c) Czech, B.; Ratajczak, A.; Nagraba, K. Monatsch. Chem. 1982, 113, 965. (d) Izumi, T.; Tezuka, T.; Yusa, S.; Kasahara, A. Bull. Chem. Soc. Jpn. 1984, 57, 2435.

^{(11) (}a) Tanner, D.; Wennerstrom, O. Acta Chem. Scand. 1980, B34, 529. (b) Kauffmann, K.; Ennen, J.; Lhotak, H.; Rensing, A.; Steinseifer, F.; Woltermann, A. Angew. Chem., Int. Ed. Engl. 1980, 19, 328. (c) Shimizu, I.; Umezawa, H.; Kanno, T.; Izumi, T.; Kasahara, A. Bull. Chem. Soc. Jpn. 1983, 56, 2023.

^{(12) (}a) Tanaka, S.; Sato, M.; Ebine, S.; Morinaga, K.; Akabori, S. 16th Symposium on Structural Organic Chemistry, Urawa, Japan, 1983; The Symposium Papers, p 289. (b) Sato, M.; Tanaka, T.; Ebine, S.; Morinaga, K.; Akabori, S. J. Organomet. Chem. 1985, 289, 91.