Reactions of Coordinatively Unsaturated Platinum(II)- η^1 **-Allyl Complexes with the Electrophilic Reagents Sulfur Dioxide, Chlorosulfonyl Isocyanate, and Hexafluorophosphoric Acid Etherate**

Yeh-Rom Hu and Andrew Wojcicki*

Department of Chemistty, The Ohio State Universiv, Columbus, Ohio 43210

Mario Calligaris[†] and Giorgio Nardin

Dipartimento di Scienze Chimiche, Università di Trieste, 34127 Trieste, Italy

Received November 24, 1986

New platinum(II)- η ¹-allyl complexes of the type *trans*-(η ¹-C₃H₅)Pt(PR₃)₂Cl (PR₃ = PMe₂Ph, P(*i*-Pr)₃, $P(t-Bu)$ ₃) have been synthesized by reaction of $[(C_3H_5)PtC1]_4$ with 8 equiv of PR₃. These and known complexes *trans*-(η ¹-C₃H₅)Pt(PR₃)₂Cl (PR₃ = PE_{t₃}, PC_{y₃}) and *trans*-(η ¹-CH₂CH=CHMe)Pt(PEt₃)₂Cl have been investigated with respect to their behavior toward the electrophiles SO_2 , CISO₂NCO, and HPF₆.Et₂O. The complexes $trans-(\eta^1-C_3H_5)Pt(PR_3)_2Cl$ react with SO_2 in benzene solution at 25 °C to afford *trans-* $(\text{CH}_2=\text{CHCH}_2\text{S}(\text{O})_2)\text{Pt}(\text{PR}_2)_2$ CI, the order of reactivity as a function of PR_3 being PEt_3 , $\text{PMe}_2\text{Ph} > \text{P}(i\text{-Pr})_3$ $> P(t-Bu)$ ₃ (no reaction). The crotyl isotopomers *trans*- $\left(CH_2CH=C^*HMe\right)P(tPEt_3)_2C1$ (*H = H, D) insert SO₂ with rearrangement of the η^1 -allyl fragment to give *trans*-(CH₂=CHC*H(Me)S(O)₂)Pt(PEt₃)₂Cl. These sulfinato-S products were characterized by chemical analysis and IR and 1 H and $^{31}P(^{1}H)$ NMR spectroscopy, and the structure of $trans_(CH_2=CHCH_2S(O)_2)Pt(PMe_2Ph)_2Cl$ was determined by X-ray crystallography. T reatment of $trans-(\eta^1-C_3H_5)Pt(PR_3)_2Cl$ $(PR_3=PEt_3, PCy_3)$ and $trans-(\eta^1-CH_2CH=CHMe)Pt(PEt_3)_2Cl$ $(\eta^2\text{-CH}_2\text{=CHMe})\text{Pt}(\text{PR}_3)_{2}\text{Cl} \text{IPF}_6$ and $[\text{trans} \cdot (\eta^2\text{-CHEt})\text{Pt}(\text{PEt}_3)_{2}\text{Cl} \text{IPF}_6$, respectively. The reactions with $S\overline{O}_2$ and $HPF_6E_6\overline{O}$ have been rationalized to proceed by attack of the electrophile at the allyl C=C; they appear to be analogous to the corresponding reactions of the 18-electron transition-metal- η^1 -allyl carbonyls and of related complexes. Treatment of $trans-(\eta^1-C_3H_5)Pt(PR_3)_2Cl$ (PR₃ = PEt₃, P(i-Pr)₃, PCy₃) with CISO₂NCO in toluene at 25 °C affords trans-Pt(PR₃)₂C1₂; in contrast, when these reactions are conducted at -78 °C with gradual warming, trans-Pt(PR₃)₂Cl₂ and/or another product, tentatively formulated as the \overline{N} with HPF₆.Et_nO in diethyl ether or toluene affords the n^2 -propene and n^2 -l-butene complexes [trans-

cycloadduct trans-CH₂N(SO₂Cl)C(O)CH₂CHPt(PR₃)₂Cl, are obtained. The presumed cycloadduct could not be separated from $trans-Pt(PR_{3})_2Cl_2$ and was only characterized by $^{31}P(^{1}H)$ NMR spectroscopy and FAB mass spectrometry in the mixture. When $L = PEt_3$, a precursor of trans-Pt(PEt_3)₂Cl₂, possibly $(\eta^1-C_3H_5)Pt(PEt_3)_2Cl_2(SO_2NCO)$, is observed. The reactions with CISO₂NCO are provisionally explained by competing $[3 + 2]$ cycloaddition and oxidative addition-reductive elimination pathways. Crystallographic data: monoclinic, space group $P2_1/n$, $a = 10.633$ (2) Å, $b = 16.830$ (4) Å, $c = 13.745$ (3) Å, $\beta = 112.77$ (2)°, $Z = 4$, $R = 0.032$, and $R_w = 0.038$.

Introduction

In a recent paper we reported¹ on reactions of 16-electron platinum(II)- η ¹-allyl complexes of the type $(\eta$ ¹- C_3H_5)PtL₂Cl (L = tertiary phosphine or ¹/₂diphosphine) with tetracyanoethylene (TCNE). These reactions afford products of **[3** + **21** cycloaddition of TCNE to the allyl $\frac{1}{2}$ $\frac{1}{2}$

fragment, $CH_2C(CN)_2C(CN)_2CH_2CHPL_2Cl$. Thus, they are analogous to the cycloadditions involving 18-electron transition-metal- η^1 -allyl complexes, e.g., $(\eta^5$ -C₅H₅)Fe- $(CO)₂(\eta^1-C₃H₅)$, and a variety of electrophilic reagents, including TCNE.2-4

To explore the scope of interaction of 16-electron platinum(II)- η ¹-allyl complexes with electrophiles, we have now extended these studies to SO_2 , CISO₂NCO, and $HPF₆·Et₂O$. An important goal of this investigation was to ascertain what reactions are operative for coordinatively unsaturated metal- n^1 -allyl complexes and to develop a comparison with corresponding reactions of 18-electron η ¹-allyl compounds. Reported here are results of our study.

Experimental Section

General Procedures and Measurements. Unless otherwise **stated, all** reactions and manipulations of air-sensitive compounds were carried out at ambient temperatures under an atmosphere of purified N₂ by using standard procedures.⁵ Elemental analyses were determined by Galbraith Laboratories, Inc., Knoxville, TN. Infrared (IR) spectra were recorded on a Perkin-Elmer Model 337 or 283B spectrophotometer and were calibrated with polystyrene. 'H NMR spectra were obtained on a Varian Associates EM-390, an IBM NR-80, or a Bruker AM-500 spectrometer. **2H** NMR spectra were recorded on a General Electric NT-300 spectrometer at 46.06 MHz and were standardized against the absolute frequency of the instrument. 13C NMR spectra were collected on the Bruker AM-500 at 125.70 MHz. All chemical shifts are given in parts per million downfield from Me₄Si. ³¹P NMR spectra were recorded on a Bruker HX-90 (at 36.43 MHz) or AM-500 (at 202.42 MHz) spectrometer. Chemical shifts are given with reference to 85% H₃PO₄. All high-field NMR spectra were obtained with the assistance of Dr. C. Cottrell. Mass spectral measurements were made by use of the fast atom bombardment (FAB) technique on a Kratos MS-30 spectrometer by Mr. C. R. Weisenberger.

Materials. Solvents were purified by distillation under an atmosphere of N_2 immediately before use as described previously.⁶

- **(4)** Rosenblum, M. *Acc. Chem. Res.* **1974, 7, 122. (5)** Shriver, D. F. *The Manipulation of Air-Sensitiue Compounds;*
- McGraw-Hill: New York, 1969. (6) Hu, Y.-R.; Leung, T. W.; Su, S.-C.H.; Wojcicki, **A.;** Calligaris, M.; Nardin, G. *Organometallics* **1985,** *4,* **1001.**

t Inquiries concerning the X-ray crystallographic work should be directed to the Trieste address.

⁽¹⁾ Calligaris, M.; Carturan, G.; Nardin, G.; Scrivanti, **A.;** Wojcicki, **A.** *Organometallics* **1983,2,** 865.

⁽²⁾ Wojcicki, **A.** *Ann. N. Y. Acad. Sci.* **1974,** *239,* **100.**

⁽³⁾ Wojcicki, **A.** In *Fundamental Research in Organometallic Chem-istry;* Tsutsui, M., Ishii, Y.; Huang, Y., **Eds.;** Van Nostrand-Reinhold: New York, 1982; **pp** 569-597.

Tertiary phosphines were purchased from Strem. Chlorosulfonyl isocyanate and p -toluenesulfonyl isocyanate were obtained from Alfa and Aldrich, respectively. Hexafluorophosphoric acid etherate (HPF_6E_2O) was purchased from Columbia Organic Chemical Co. All were used without further purification. Sulfur dioxide, from Matheson, was dried over P_4O_{10} and concentrated H2S04 before use. Other reagents were obtained from various commercial sources and used as received. The deuteriated crotyl chloride (Z)-ClCH₂CH==CDMe was prepared as described in the literature.⁷ The complexes $[(C_3H_5)PtCl]_4$,⁸ $Pt(PEt_3)_4$,⁹ $trans-$ The complexes $[(C_3H_5)PtCl]_4$,⁸ Pt(PEt₃)₄,⁹ trans- $(\eta^1$ -C₃H₅)Pt(PCy₃)₂Cl¹ and *trans*-(η^1 -CH₂CH=CHMe)Pt- $(PEt₃)₂C1¹⁰$ were synthesized by published procedures.

Preparation of *trans*- $(\eta^1$ -C₃H₅ $)$ Pt(PR₃ $)$ ₂Cl. All complexes containing an n^1 -CH₂CH=CH₂ ligand were prepared by reaction of $[(C_3H_5)PtCl]_4$ with appropriate tertiary phosphines.¹ General procedures employed and variations therein are described below. (i) **trans**- $(\bar{\eta}^1$ -C₃H₅)Pt(PEt₃)₂Cl. To a yellow suspension of 1.085 g (1.000 mmol) of $[(C_3H_5)PtCl]_4$ in 30 mL of diethyl ether at 0° C was added a solution of 1.08 g (9.19 mmol) of PE t_3 in 20 mL of diethyl ether, also at 0 °C, over 20 min. The reaction mixture turned into a colorless suspension, which was stirred at room temperature for 18 h and then was filtered. Solvent was removed from the filtrate to afford a white oily residue. This residue was crystallized from 4 mL of n-hexane at -78 °C to yield 1.41 g (69%) of white crystals. The product was identified by comparison of its IR and 'H NMR spectra with those reported in the literature:¹⁰ IR (Nujol) ν (C=C) 1607 (ms), ν (PtCl) 258 (m) cm⁻¹; ¹H NMR (C₆D₆) δ 6.17 (m, =CH), 5.23–4.62 (m, =CH₂), 2.31 (quartet + unresolved ¹⁹⁵Pt satellites, J (CH₂,=CH) $\approx J$ - $(CH_2,\tilde{P}) = 8$ Hz, PtCH₂), 1.81 (m, 6 PCH₂), 0.97 (quintet (overlapping tt), $J(Me,CH_2) \approx J(Me,P) = 8 Hz$, 6 Me); ³¹P{¹H} NMR $(\dot{C}_6H_6)\delta$ 13.32 $(J(P,195Pt) = 2902 \text{ Hz}).$

(ii) **trans**- $(\eta^1$ -C₃H₅)Pt(P(i-Pr)₃)₂Cl. Reaction of $[(C_3H_5)$ -PtCl_{l4} with 8 equiv of $P(i-Pr)$ ₃ was carried out similarly, except that the addition was made at 25 "C and the stirring continued for 24 h. The yield of a white solid was 87%: IR (Nujol) ν (C=C) 1609 (m), ν (PtCl) 260 (m) cm⁻¹; ¹H NMR (C₆D₆) δ 6.38–6.05 (m, $=$ CH), 5.28-4.68 (m, $=$ CH₂), 3.25-2.40 (m, 6 PCH), 2.38 (quartet + unresolved ¹⁹⁵Pt satellites, $J(CH_2=CH) \approx J(CH_2, P) = 7 Hz$, PPtCH₂), 1.26 (quartet (overlapping dt), $J(Me,CH) \approx J(Me, P)$ $= 7$ Hz, 12 Me); ³¹P{¹H} NMR (C₆H₆) δ 28.06 (J(P,¹⁹⁵Pt) = 2904 Hz); mass spectrum, m/e 558, $(M + H - Cl)^+$. Anal. Calcd for $C_{21}H_{47}C1P_2Pt: C, 42.61; H, 8.00. Found: C, 42.44; H, 8.14.$

(iii) $trans-(\eta^1-C_3H_5)Pt(PMe_2Ph)_2Cl$. A yellow suspension of 0.826 g (0.760 mmol) of $[(C_3H_5)PtCl]_4$ in 30 mL of CH_2Cl_2 at -78 °C was treated dropwise with a solution of 4 equiv (0.420 g, 3.05 mmol) of PMe_2Ph in 25 mL of CH_2Cl_2 at -30 °C over 30 min. The resulting mixture was stirred at room temperature for ca. 24 h and filtered to remove a small amount of an uncharacterized white solid. To the yellow filtrate was added 4 more equiv (0.420 g, 3.05 mmol) of $PMe₂Ph$ in 25 mL of $CH₂Cl₂$. The mixture was again stirred at room temperature for 24 h, concentrated to 10 mL, and treated with n-pentane to induce the precipitation of a pale yellow solid. The precipitate was dried in vacuo at 55 $\rm{^{\circ}C}$ for 24 h to yield 0.535 g (32%) of product: IR (Nujol) ν (C=C) 1614 (m), ν (PtCl) 265 (m) cm⁻¹; ¹H NMR (C₆D₆) δ 7.84–6.56 (m, 2 Ph), 5.79 (m br, ==CH), 4.83–4.27 (m, ==CH₂), 2.06 (m, PtCH₂), 1.49 (t br + unresolved ¹⁹⁵Pt satellites, 4 Me); ³¹P{¹H} NMR (C₆H₆) δ -4.57 ($J(P, {}^{195}\text{Pt}) = 2991 \text{ Hz}$).

(iv) **trans**- $(\eta^1$ -C₃H₅)Pt(P(t-bu)₃)₂Cl. To a suspension of 0.450 g (0.415 mmol) of $[(\dot{C}_3H_5)PtCl]_4$ in 30 mL of CH_2Cl_2 at -15 °C was slowly added a solution of 4 equiv (0.335 g, 1.66 mol) of $P(t-Bu)$ ₃ in 20 mL of CH_2Cl_2 with vigorous stirring over 30 min. The resulting mixture was set aside at -10 °C for ca. 24 h until most of the yellow solid dissolved. It was then filtered, and the filtrate was cooled to -78 °C and treated with 4 more equiv (0.335 g, 1.66 mmol) of $P(t-Bu)$ ₃ in 20 mL of CH_2Cl_2 , also at -78 °C, over 30 min. The mixture was kept at -78 "C for 12 h and then was stirred at -10 "C for an additional *5* h. The solvent was removed,

and the residue was extracted with 1:3 CH_2Cl_2 -n-pentane and filtered. The filtrate was evaporated to dryness, and the residue was washed with 1 mL of diethyl ether to yield 0.250 g (22%) of product as a white solid: IR (Nujol) ν (C=C) 1631 (w), ν (PtCl) 253 (m) cm⁻¹; ¹H NMR (C₆D₆) δ 6.15 (m, = CH), 5.40-4.90 (m br, $=CH_2$), 2.29 (m, PtCH₂), 1.55 (t, J(Me,P) = 6 Hz, 18 Me); ³¹P{¹H} NMR (C_6H_6) δ 75.21 $(J(P)^{195}Pt) = 2948$ Hz). Anal. Calcd for $C_{27}H_{59}ClP_2Pt \cdot CH_2Cl_2$: C, 44.18; H, 8.58. Found: C, 44.55; H, 8.44 (sample crystallized from CH_2Cl_2-n -pentane).

Preparation of *trans*- $(\eta^1$ -CH₂CH=CDMe)Pt(PEt₃)₂Cl. To an orange solution of 1.5 g (2.3 mmol) of $Pt(PEt₃)₄$ in 15 mL of n-hexane was added dropwise a solution of 0.23 g (2.5 mmol) of (Z) -ClCH₂CH=CDMe also in 15 mL of *n*-hexane. After being stirred at 25 "C for ca. 10 min, the resulting solution turned colorless. Stirring was continued for 20 min (30 min total), solvent was removed, and the residue was crystallized from 5 mL of n-hexane at -78 °C to yield 0.785 g (65%) of white product: <code>IR</code> (Nujol) ν (C=C) 1645 (w br), ν (PtCl) 263 (w) cm⁻¹; ¹H NMR (C₆D₆) δ 5.76 (m, =CH), 2.20 (quartet + unresolved ¹⁹⁵Pt satellites, $J(CH_2,=CH) \approx J(CH_2, P) = 6.6$ Hz, PtCH₂), 1.80 (m, 6 PCH₂), 1.73 (s, = CDMe), 0.96 (quintet (overlapping tt), $J(Me,CH₂) \approx$ $J(Me, P) = 8$ Hz, 6 CH₂Me); ³¹P{¹H} NMR (C_6H_6) δ 13.65 (*J*- $(P, {}^{195}Pt) = 2944$ Hz, relative intensity 7, *E* isomer), 13.48 *(J-* (P) ¹⁹⁵Pt) = 2925 Hz, relative intensity 1, *Z* isomer); ²H NMR (C_6H_6) δ 5.42 (s).

Preparation of *trans*- $(C_3H_4R'S(O)_2)Pt(PR_3)_2Cl (R' = H,$ **Me).** (i) **trans-(CH₂=CHCH₂S(O)₂)Pt(PEt₃)₂Cl. Dry SO₂ was** passed into a solution of 0.124 g (0.244 mmol) of *trans-* $(\eta^1$ - C_3H_5)Pt(PEt₃)₂Cl in 30 mL of benzene at room temperature for 5 min. The solution first turned deep yellow and then pale yellow. Volatile matter was removed under reduced pressure, and the oily residue was washed with 5 mL of n-hexane and dried in vacuo for 6 h to give 0.135 g (97% yield) of a solid product: IR (Nujol) v(C=C) 1639 (m), *v(SOz)* 1212 (s), 1076 (s), v(PtC1) 289 (m) cm-'; ¹H NMR (CDCl₃) δ 6.22 (m, = CH), 5.56–5.21 (m, = CH₂), 3.84 (d, $J(CH_2, = CH) = 7.7$ Hz, SCH₂), 2.15 (m, 6 PCH₂), 1.00 (quintet (d, $J(\text{CH}_2, \text{=CH}) = 7.7 \text{ Hz}, \text{SCH}_2$), 2.15 (m, 6 PCH₂), 1.00 (quintet (overlapping tt), $J(\text{Me}, \text{CH}_2) \approx J(\text{Me}, \text{P}) = 8 \text{ Hz}, 6 \text{ Me})$; ${}^{31}P\{{}^{1}H\}$
NMR (C₆H₆) δ 20.2 ($J(\text{P}, {}^{195}\text{Pt}) = 2705 \text{ Hz}$). Anal. Ca $C_{15}H_{35}ClO_2P_2PtS: S, 5.60.$ Found: S, 5.37.

(ii) $trans \cdot (CH_2=CHCH_2S(O)_2)Pt(PMe_2Ph)_2Cl$. The procedure was similar to that described above, except that *trans-* $(\eta^1$ -C₃H₅)Pt(PMe₂Ph)₂Cl and SO₂ were allowed to react for 30 min. The yield of a pale yellow solid was essentially quantitative. The product was crystallized from 1:6 benzene-n-hexane: IR (Nujol) v(C=C) 1634 (m), *v(S02)* 1223 (s), 1065 (s), v(PtC1) 299 (ms) cm-'; ¹H NMR (CDCl₃) δ 7.84-6.80 (m, 2 Ph), 5.68 (m, = CH), 5.15-4.70 (m, $=$ CH₂), 3.11 (d, J(CH₂, $=$ CH) = 6.8 Hz, SCH₂), 1.66 (t + ¹⁹⁵Pt)
(m, $=$ CH₂), 3.11 (d, J(CH₂, $=$ CH) = 6.8 Hz, SCH₂), 1.66 (t + ¹⁹⁵Pt) satellites, $J(Me, P) = 4 Hz$, $J(Me, {}^{195}\text{Pt}) = 26 Hz$, $4 Me$; ${}^{31}\text{P}{{}^{1}H}$ NMR (C_6H_6) δ -3.86 ($J(P,195Pt) = 2780$ Hz); mass spectrum, m/e 613, $(M + H)^+$. Anal. Calcd for $C_{19}H_{27}ClO_2P_2P$ tS: C, 37.36; H, 4.29. Found: C, 37.34; H, 4.36.

(iii) $trans\text{-}(CH_2=\text{-CHC*H}(Me)S(O)_2)Pt(PEt_3)_2Cl$ (*H = H, **D).** Reactions between *trans-(n*¹-CH₂CH=C*HMe)Pt(PEt₃)₂Cl and $SO₂$ in benzene were carried out for 15 min. Removal of the volatiles afforded a colorless oil in ca. 95% yield: IR (Nujol) v(C=C) 1634 (m), *v(S0,)* 1213 (s), 1065 (s), v(PtC1) 291 (ms) cm-'; ¹H NMR (CDCl₃) δ 6.18 (m, =CH), 5.27 (m, =CH₂), 3.50 (for *H = H only, m, CHMe), 1.95 (m, 6 PCH₂), 1.48 (for $*H = H$, d, $J(Me, CH) = 6.9$ Hz; for $*H = D$, s, $C*HMe$, 0.96 (quintet (overlapping tt), $J(Me, CH₂) \approx J(Me, P) = 8 Hz$, $6 CH₂Me$); ${}^{31}P(^{1}H)$ NMR (C_6H_6) δ 19.37 ($J(P,{}^{195}Pt) = 2726$ Hz); ²H NMR (C_6H_6) δ 3.43 (for $*H = D$ only, s). Anal. Calcd for $C_{16}H_{37}ClO_2P_2PtS$: C, 32.79; H, 6.36. Found: C, 32.68; H, 6.15.

 (iv) **trans**- $(CH_2=CHCH_2S(O)_2)Pt(P(i-Pr)_3)_2Cl$. Dry SO_2 was passed into a solution of 0.105 g (0.177 mmol) of *trans-* $(\eta^1$ -C₃H₅)Pt(P(*i*-Pr)₃)₂Cl in 30 mL of diethyl ether at room temperature. After 1 h, a ${}^{31}P{}_{1}{}^{1}H{}_{1}$ NMR spectrum of the solution revealed that ca. 50% of the starting material remained unreacted. The reaction was continued for an additional 3 h, the volatiles were removed, and the residue was dissolved in $3 \text{ mL of } CH_2Cl_2$. Addition of 10 mL of n-pentane precipitated an impurity, which was filtered off. The filtrate was evaporated to dryness to leave impure title complex as a pale yellow solid: IR (Nujol) $\nu({\rm C}{=}0)$ 1635 (w), *v*(PtCl) 291 (ms) cm⁻¹; ³¹P{¹H} NMR (CH₂Cl₂) δ 30.34 $(J(P, {}^{195}Pt) = 2766 Hz)$. Further crystallization did not remove the impurities.

⁽⁷⁾ Sato, F.; Ishikawa, H.; Watanabe, H.; Miyake, T.; Sato, M. J. Chem. Soc., Chem. Commun. 1981, 718. Hatch, L. F.; Nesbitt, S. S. J. Am. Chem. Soc. 1950, 72, 727.

⁽⁸⁾ Lukas, J. *Inorg. Synth.* **1974,** *15,* **79. (9)** Yoshida, T.; Matsuda, T.; Otsuka, S. *Inorg. Synth.* **1979,19,110. (10)** Pearson, R. G.; Laurent, M. *Isr. J. Chern.* **1976/1977,** *15,* **243.**

Attempted Reaction of $trans-(n^1-C_2H_5)Pt(P(t-Bu)_3)_{2}Cl$ with SO_2 . Dry SO_2 was passed into a solution of 0.04 g (0.06) mmol) of the title complex in 15 mL of benzene at room temperature for 2 h, and then the reaction mixture was kept under a slightly positive pressure of $SO₂$ for 16 h. The volatiles were removed, and the pale yellow residue was shown by ³¹P^{{1}H} NMR spectroscopy to be unreacted η^1 -allyl complex.

Preparation of $[trans-(\eta^2\text{-CHMe})\text{-}Pt(\text{PEt}_3)_2\text{Cl}]\text{PF}_6.$ To a solution of 0.230 g (0.453 mmol) of *trans-* $(\eta^1$ -C₃H₅)Pt(PEt₃)₂Cl in 15 mL of diethyl ether at -78 °C was added 0.10 g (0.45 mmol) of HPF₆.Et₂O. The resulting mixture was stirred at -78 °C for 30 min resulting in the formation of a white precipitate. Warming to room temperature over 1.5 h, filtration, and washing with diethyl ether (2 **X** 10 mL) afforded 0.170 g (72%) of product as a white solid: IR (Nujol) ν (C=C) 1509 (w), ν (PF₆) 842 (s br), $\delta(\text{PF}_6)$ 557 (m), $\nu(\text{PtCl})$ 326 (m) cm⁻¹; 500-MHz ¹H NMR¹¹ (CDCl₃) δ 5.42 (m, H_c), 4.08 (d + ¹⁹⁵Pt satellites, $J(H_a, H_c) = 13.8 \text{ Hz}$, $J(H_a, {}^{195}Pt) = 75$ Hz, H_a), 3.90 (d + ¹⁹⁵Pt satellites, $J(H_b, H_c) =$ PCH₂), 1.89 (d + ¹⁹⁵Pt satellites, $J(Me, H_c) = 5.9 \text{ Hz}, J(Me, {}^{195}\text{Pt})$ $= 28$ Hz, CHMe), 1.21 (m, 3 CH₂Me), 1.18 (m, 3 CH₂Me); ¹³C^{{1}H} NMR (CDCl₃) δ 93.00 (t, $J(C,$ ¹⁹⁵Pt) = 73.8 Hz, =CH₂), 63.43 (t, $J(C¹⁹⁵Pt) = 79.6$ Hz, $=$ CH), 22.35 (s, CHMe), 14.40 (m, 3 PCH₂). 12.20 (m, 3 PCH₂), 7.99 (s, 3 CH₂Me), 7.70 (s, 3 CH₂Me); ³¹P[¹H] NMR (C₆H₆) δ 18.80 (J(P,¹⁹⁵Pt) = 2056 Hz), 18.66 (J(P,¹⁹⁵Pt) = 2086 Hz), -145 ($J(P,F) = 712$ Hz); mass spectrum, m/e 655, (M + H)⁺. Anal. Calcd for $C_{15}H_{36}CIF_6P_3Pt: C$, 41.65; H, 6.74. Found: C, 41.33; H, 6.50. 7.3 Hz, $J(H_b, {}^{195}\text{Pt}) = 76$ Hz, H_b), 2.12 (m, 3 PCH₂), 2.00 (m, 3)

This reaction was also conducted in THF at -78 °C with warming to -15 °C. A $^{31}P(^{1}H)$ NMR spectrum showed the formation of mainly [trans-(η²-CH₂=CHMe)Pt(PEt₃)₂Cl]⁺ and some $[(\eta^3-C_3H_5)Pt(PEt_3)_2]^+$ (δ 10.37 ($J(P,$ ¹⁹⁵Pt) = 3713 Hz)). The products were not separated.

Preparation of [trans \cdot **(** η^2 **-CH₂=CHMe)Pt(PCy₃)₂Cl]PF₆.** A solution of 0.210 g (0.252 mmol) of *trans*- $(\eta^1$ -C₃H₅)Pt(PCy₃)₂Cl in 20 mL of toluene was treated with 0.070 g (0.32 mmol) of $HPF₆·Et₂O$. The resulting mixture was warmed to room temperature over 2 h, as a white precipitate formed at ca. -30 "C. The precipitate was filtered off at room temperature and washed with *n*-pentane $(2 \times 5 \text{ mL})$ to give 0.235 g (95%) yield) of product: IR (Nujol) v(C=C) 1510 (w), v(PtC1) 325 (m) cm-'; 31P(1H} NMR Hz), -145 ($J(P,F) = 712$ Hz). Anal. Calcd for $C_{39}H_{72}ClF_6P_3Pt$: P, 9.50. Found: P, 9.07. (C_6H_6) δ 20.92 ($J(P,{}^{195}Pt) = 2017$ Hz), 20.69 ($J(P,{}^{195}Pt) = 1998$

Preparation of $[trans-(\eta^2\text{-CHEt})Pt(PEt_3)_2Cl]PF_6.$ To a solution of 0.105 g (0.201 mmol) of trans- $(\eta^1$ -CH₂CH= CHMe)Pt(PEt₃)₂Cl in 5 mL of diethyl ether at -78 °C was added 0.045 g (0.20 mmol) of HPF_6E_6D . While the mixture was allowed to warm to ca. 25 $^{\circ}{\rm C}$ with stirring, a white solid precipitated from solution. Stirring was continued at room temperature (total reaction time 18 h), and the precipitate was filtered off, washed with diethyl ether $(2 \times 4 \text{ mL})$, and dried in vacuo to yield 0.089 g (66%) of product: ¹H NMR (C_6D_6 , lettering scheme as in ref 11) δ 5.45 (m, H_c), 4.21 (d, $J(H_a,H_c) = 14.6$ Hz, H_a), 3.98 (d + ¹⁹⁵Pt $CHCH₂$), 1.79 (m, 3 PCH₂), 1.61 (m, 3 PCH₂), 1.33 (t, $J(Me, CH₂)$ = 7.3 Hz, CCH₂Me), 0.87 (m, 3 PCH₂Me), 0.84 (m, 3 PCH₂Me); ${}^{31}P{}_{1}{}^{1}H$ } NMR (\bar{C}_6H_6 , upfield to δ -50) δ 17.67 ($J(P, {}^{195}Pt) = 2076$ Hz), 17.43 $(J(P, {}^{195}Pt) = 2096$ Hz) (also signals at δ 9.17 $(J(P, {}^{195}Pt)$ $= 3760 \text{ Hz}$), 9.07 ($J(P, {}^{195}\text{Pt}) = 3763 \text{ Hz}$), 8.81 ($J(P, {}^{195}\text{Pt}) = 3753$ Hz), and 8.71 $(J(P, ^{195}Pt) = 3750$ Hz) of the syn and anti isomers of $[(\eta^3-C_3H_4Me)Pt(PEt_3)_2]^+$ with $\leq 10\%$ intensity of the signals of $[trans-(\eta^2\text{-CHg}=\text{CHEt})\text{Pt}(\text{PEt}_3)_2\text{Cl}]^+$); mass spectrum, m/e satellites, $J(H_b, H_c) = 7.2 \text{ Hz}, J(H_b, {}^{195}\text{Pt}) = 73 \text{ Hz}, H_b$, 2.12 (m, $(M + H)^{+}$, $(M - PF_6)^{+}$, $(M - PF_6 - Cl)^{+}$.

Reactions of *trans* \cdot **(** η **¹** \cdot **C₃H₅)Pt(PR₃)₂Cl with ClSO₂NCO.** To a solution of 0.074 g (0.13 mmol) of trans- $(\eta^1$ -C₃H₅)Pt(P(i- $Pr_{3/2}Cl$ in 2 mL of toluene at -78 °C was added 0.018 g (0.13) mmol) of CISO₂NCO. The mixture was allowed to warm to room

Table I. Crystallographic Data

mol formula	$C_{19}H_{27}ClO_2P_2SPt$
mol wt	612
cryst system	monoclinic
space group	$P2_1/n$
a, A	10.633(2)
b, A	16.830(4)
c, À	13.745(3)
β , deg	112.77(2)
V, \mathring{A}^3	2268.0 (9)
z	4
$D(\text{calcd})$, g cm ⁻³	1.792
$\lambda(Mo K\alpha)$, A	0.71069 (graphite-monochromated)
$\mu(\text{Mo K}\alpha)$, cm ⁻¹	66.1
transmissn factors	$0.737 - 0.999$
cryst size, mm	$0.12 \times 0.28 \times 0.42$
scan type	$\omega/2\theta$
θ range, deg	$2 - 28$
orientatn monitors ^a	3
intensity monitors ^b	3
no. of collected data ^c	5857
unique data with $I > n\sigma(I)$;	3792; 3
\boldsymbol{n}	
final no. of variables	235
R^d	0.032
R_{w}^{e}	0.038
error in observn of unit wt	2.85
largest parameter shift	1.02

^aMeasured after each 800 reflections. New orientation matrix if angular change > 0.1. ^bMeasured after each hour. $c \pm h, k, l$. $dR =$ $\sum ||F_{\rm ol} - |F_{\rm cl}| / \sum |F_{\rm ol} - eR_{\rm w} = [\sum w(|F_{\rm ol} - |F_{\rm cl}|)^2 / \sum wF_{\rm o}^2]^{1/2}.$

temperature over 2 h, and a $^{31}P_{1}^{1}H_{1}^{1}NMR$ spectrum was recorded: δ 27.16 ($J(P, {}^{195}Pt) = 2782$ Hz, more intense signal), 26.96 (J - $(P, ¹⁹⁵Pt) = 2441 Hz$, less intense signal). The solvent was removed under reduced pressure to leave a yellow solid: mass spectrum, m/e 664, 587, among other peaks. All attempts at separation of this mixture by column chromatography on alumina or Florisil resulted in decomposition of the major component.

When this reaction was carried out similarly at room temperature, only the product with the 31P{1H] NMR at *6* 26.96, $trans-Pt(P(i-Pr)_3)_2Cl_2$, was observed. Likewise, reaction of each of *trans-* $(\eta^1$ -C₃H₅)Pt(PEt₃)₂Cl and *trans-* $(\eta^1$ -C₃H₅)Pt(PC_{Y₃)₂Cl} with 1 equiv of $CISO₂NCO$ in toluene at room temperature afforded only trans-Pt(PEt₃)₂Cl₂ (δ 11.64 ($J(P,$ ¹⁹⁵Pt) = 2434 Hz)) and trans-Pt(PCy₃)₂Cl₂ (δ 16.27 (J(P,¹⁹⁵Pt) = 2425 Hz)), respectively, **as** shown by 31P{1H} NMR spectroscopy. The complexes trans-Pt(PR₃)₂Cl₂ were characterized by comparison of their IR and ${}^{31}P{}_{1}{}^{1}H{}_{1}$ NMR spectra with those of authentic samples. 9,12,13

Attempted Reactions of $trans$ - $(\eta^1$ -C₃H₅)Pt(PR₃)₂Cl with p -MeC₆H₄SO₂SO₂NCO. A solution of 0.162 g (0.329 mmol) of $trans-(\eta^1-\text{C}_3\text{H}_5)\text{Pt}(\text{PEt}_3)_2\text{Cl}$ was treated with 0.063 g (0.32 mmol) of p-MeC₆H₄SO₂NCO in 5 mL of toluene, and the resulting mixture was stirred at room temperature for 3 days. Only unreacted *trans*- $(\eta^1$ -C₃H₅)Pt(PEt₃)₂Cl was observed in a ³¹P^{{1}H}</sub> NMR spectrum of the reaction solution.

Similarly, there was no observed reaction after a solution of 0.082 g (0.14 mmol) of *trans-* $(\eta^1$ -C₃H₅)Pt(P(*i*-Pr)₃)₂Cl and 0.044 g (0.22 mmol) of $p\text{-MeC}_6H_4SO_2NCO$ in 40 mL of benzene was stirred at 50 °C for 27 h.

Crystallographic Analysis of *trans* (CH₂=CHCH₂S-**(0)2)Pt(PMe2Ph)zC1.** Crystals of the title complex suitable for X -ray diffraction were grown from 1:2 benzene-n-pentane at room temperature.

Space group and cell parameters were obtained by using Weissenberg and precession photographs. Accurate unit cell parameters were obtained by a least-squares procedure applied to the setting angles of 20 reflections with $11.2 \le \theta \le 15.6^{\circ}$ on property Newing CADA different parameters were obtained by a least-squares procedure applied to the setting angles of 20 reflections with $11.2 \le \theta \le 15.6^{\circ}$ on an Enraf-Nonius CAD4 diffractometer using graphite-monochromated Mo K_{α} radiation. Intensity data were collected with the same diffractometer. Crystallographic data of interest are

⁽¹²⁾ Anderson, G. K.; **Clark,** H. C.; Davies, J. A. *Inorg. Chern.* 1981, 20, 944.

⁽¹³⁾ Goel, **R. G.;** Ogini, W. D.; Srivastava, R. C. *Inorg. Chern.* 1981,20, 3611.

Table **11.** Positional Parameters and Their Estimated Standard Deviations

atom	x	У	z	B , ^a \AA ²
Pt	0.03550(3)	0.10457(2)	0.16214(2)	2.646(4)
CI	$-0.1820(2)$	0.0470(1)	0.1077(2)	5.67(6)
$\bf S$	0.2419(2)	0.1607(1)	0.2300(1)	3.12(4)
P(1)	0.1276(2)	$-0.0219(1)$	0.2141(2)	3.30(4)
P(2)	$-0.0684(2)$	0.2270(1)	0.1017(1)	2.98(4)
O(1)	0.3353(6)	0.1141(4)	0.3180(4)	4.3(1)
O(2)	0.2352(6)	0.2447(3)	0.2534(4)	4.1(1)
C(1)	0.3116(8)	0.1580(6)	0.1258(6)	4.4(2)
C(2)	0.450(1)	0.198(1)	0.1694(9)	9.5(4)
C(3)	0.557(1)	0.170(2)	0.181(1)	17.2(8)
C(4)	0.2888(8)	$-0.0473(6)$	0.2030(7)	4.5(2)
C(5)	0.0190(9)	$-0.1027(5)$	0.1368(7)	4.5(2)
C(6)	0.1509(8)	$-0.0442(5)$	0.3498(6)	3.9(2)
C(7)	0.279(1)	$-0.0393(6)$	0.4313(7)	4.8(2)
C(8)	0.295(1)	$-0.0609(6)$	0.5346(8)	5.9(3)
C(9)	0.185(1)	$-0.0843(7)$	0.5543(8)	6.6(3)
C(10)	0.055(1)	$-0.0866(8)$	0.4760(8)	7.2(3)
C(11)	0.036(1)	$-0.0668(7)$	0.3699(8)	6.0(3)
C(12)	0.0138(8)	0.2910(5)	0.0364(6)	4.0(2)
C(13)	$-0.2431(8)$	0.2217(5)	0.0031(6)	4.1(2)
C(14)	$-0.0878(7)$	0.2861(4)	0.2065(6)	3.2(2)
C(15)	$-0.0669(8)$	0.2503(6)	0.3024(6)	4.0(2)
C(16)	$-0.0902(9)$	0.2952(7)	0.3795(7)	5.3(2)
C(17)	$-0.1301(9)$	0.3728(7)	0.3626(8)	5.6(2)
C(18)	$-0.150(1)$	0.4095(6)	0.2665(8)	5.8(3)
C(19)	$-0.1308(9)$	0.3655(5)	0.1872(7)	4.8(2)

Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as $\frac{4}{3}a^2B(1,1)$ + $b^2B(2,2) + c^2B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \beta)B(1,3)$ α) $B(2,3)$].

summarized in Table I. The intensities were corrected for Lorentz and polarization factors. Anomalous dispersion terms were also taken into account, and an empirical absorption correction was applied by using the ψ -scan data from close to axial (i.e., $\chi > 80\%$) reflections.

The structure was solved by the heavy-atom method; the position of the Pt atom was determined from the Patterson map **and** was then used to phase a Fourier map which revealed **all** other non-hydrogen atoms. No attempt was made to locate hydrogen atoms. Final anisotropic full-matrix least-squares refinement, with unit weights, converged to $R = 0.032$. Atomic scattering factors and anomalous dispersion terms were taken from the literature.¹⁴ All calculations were carried out on a PDP 11/44 computer by using programs from the Enraf-Nonius SDP package.15

The **final** positional parameters are listed in Table **11.** Listings of temperature factors and structure factors are available as supplementary material. **l6**

Results and Discussion

Preparation and Characterization of Platinum- (II)- η^1 **-Allyl Complexes.** All Pt- η^1 -C₃H₅ complexes used in this study were prepared by reaction of $[(C_3H_5)PtCl]_4$ with at least 8 equiv of appropriate $PR₃$ in diethyl ether¹

or
$$
CH_2Cl_2
$$
 (eq 1). This method has an advantage over that
\n
$$
[(C_3H_5)PtCl]_4 + 8PR_3 \rightarrow 4 \, trans \cdot (\eta^1 - C_3H_5)Pt(PR_3)_2Cl
$$
\nfor van
\n(1)

involving oxidative addition of allyl chloride to $Pt(PR_3)_4$ in that it requires only one platinum-containing starting material, which is air-stable and easy to make. 8 Nevertheless, some variations in procedure and special precautions are needed to ensure that at least a reasonable yield of pure product is obtained. Thus, the complexes *trans*- $(\eta^1$ -C₃H₅)Pt(PR₃)₂Cl with PR₃ = PEt₃ and P(*i*-Pr)₃ were prepared in good yield **(69** and **8770,** respectively) by slow addition of 8 equiv of PR_3 to a suspension of $(C_3$ - $H₅$)PtCl]₄ in diethyl ether followed by prolonged stirring. In contrast, the synthesis of pure $trans-(\eta^1-C_3H_5)Pt$ - $(PR_3)_2$ Cl with $PR_3 = PMe_2Ph$ and $P(t-Bu)_3$ even in modest yield (32 and 22%, respectively) required that the addition be conducted in two stages in CH_2Cl_2 suspension/solution. First, 4 equiv of $PR₃$ were introduced slowly, and the mixture was allowed to react for about **24** h; then the remaining 4 equiv of $PR₃$ were added, also followed by about **24** h of reaction time. The rate of addition of PR3 to $[(C_3H_5)PtCl]_4$ and the temperature control are very important in these preparations. Details are provided in Experimental Section.

By analogy to known reactions of $[(C_3H_5)PtCl]_4$ with organic isocyanides,¹⁷ the formation of trans- $(\eta^1$ -C₃H₅)- $Pt(PR₃)₂Cl$ is thought to proceed as shown in eq 2-4. However, no attempts were made at isolation and/or mportant in these preparations. Details are provided in
Experimental Section.
By analogy to known reactions of $[(C_3H_5)PtCl]_4$ with
organic isocyanides,¹⁷ the formation of $trans-(\eta^1-C_3H_5)-Pt(PR_3)_2Cl$ is thought to proceed

characterization of proposed intermediates in this study.
\n
$$
[(C_3H_5)PtCl]_4 + 4PR_3 \rightarrow 2[(\eta^1-C_3H_5)Pt(PR_3)Cl]_2
$$
\n(2)

$$
2[(\eta^1-C_3H_5)Pt(PR_3)Cl]_2 \xrightarrow{\text{dissolution}} 4(\eta^3-C_3H_5)Pt(PR_3)Cl
$$
\n(3)

$$
4(\eta^3-C_3H_5)Pt(PR_3)Cl + 4PR_3 \rightarrow 4trans.(\eta^1-C_3H_5)Pt(PR_3)_2Cl \quad (4)
$$

All complexes $trans-(\eta^1-C_3H_5)Pt(PR_3)_2Cl$ were characterized by a combination of elemental analysis and spectroscopic properties, reported in Experimental Section. Thus, their ³¹P(¹H) NMR spectra in C_6H_6 solution show only one signal that is flanked by $195Pt$ satellites. The position of this signal and the magnitude of $J(P,$ ¹⁹⁵Pt) **(2900-3000** Hz) accord with the corresponding values found for other complexes *trans-* $(\eta^1$ -C₃H₅)Pt(PR₃)₂Cl.¹ Moreover, the appearance of only one sharp set of ${}^{31}P{}_{1}{}^{1}H$ resonances (i.e. a singlet and ¹⁹⁵Pt satellites) shows that the equilibrium between η^1 - and η^3 -allyl complexes (eq 5), known to occur for several complexes $(\eta^1$ -C₃H₅)PtL₂Cl in polar solvents, $18-23$ lies far on the side of trans- $(\eta^1$ -C₃H₅)- $Pt(PR_3)_2Cl$ in C_6H_6 solution.

$$
trans.(\eta^{1} \text{-} C_{3}H_{5})Pt(PR_{3})_{2}Cl \rightleftharpoons [(\eta^{3} \text{-} C_{3}H_{5})Pt(PR_{3})_{2}]^{+} + Cl^{-}(5)
$$

¹H NMR spectra of all Pt- η^1 -C₃H₅ complexes show separate signals for the $=$ CH₂, $=$ CH, and PtCH₂ protons, the chemical shifts of which agree with the σ nature of the C_3H_5 fragment.^{1,21,22,24} In addition, the observed splitting patterns **of** the resonances of the Me groups of the four different PR_3 ligands, viz. PEt_3 , $P(i-Pr)_3$, PMe_2Ph , and $P(t-Bu)$ ₃, are those expected and, in some cases, reported for various trans-Pt(PR_3)₂XY complexes with these same phosphine ligands.25 The IR spectra of Nujol mulls show

⁽¹⁴⁾ *International Tables for X-ray Crystallography*; Kynoch: Birmingham, England, 1974; Vol. IV.

⁽¹⁵⁾ Frenz, B. **A.** and Associates, Inc.: College Station, TX. Enraf- Nonius: Delft, Holland.

⁽¹⁶⁾ **See** paragraph at end of paper regarding supplementary material.

⁽¹⁷⁾ Carturan, G.; Scrivanti, **A.;** Belluco, U. *Inorg. Chim. Acta* **1977, 21, 103.**

⁽¹⁸⁾ Kurosawa, H.; Yoshida, G. *J. Organornet. Chem.* **1976,120,** 297. (19) **Carturan,** G.; Scrivanti, **A.** Belluco, U.; Morandini, F. *Inorg. Chim. Acta* **1978, 26,** 1.

Chim. Acta **1978,27,** 37. (20) Carturan, G.; Scrivanti, A.; Belluco, **U.;** Morandini, F. *Inorg.*

⁽²¹⁾ Boap, N. M.: Green, M.: Spencer, J. L.: Stone, F. *G.* **A.** *J. Chem.* Soc., *Dalton Trans.* **1980,** 1208.

SOC., *Dalton Trans.* **1980,** 1200. (23) Clark, H. C.; Kurosawa, H. *Inorg. Chem.* **1973, 12,** 357. (22) Boag, N. M.; Green, M.; Spencer, J. L.; Stone, F. G. **A.** *J. Chem.*

⁽²⁴⁾ Numata, S.; Okawara, R.; Kurosawa, H. *Inorg. Chem.* **1977,** *16,* 1737.

Reactions *of* Platinum(II) - *9'- Allyl* Complexes

 ν (C=C) and ν (PtCl) absorption bands at 1631-1607 and **265-253** cm-l, respectively, as for related platinum- (II)- η ¹-allyl complexes.^{1,17-22,24}

The crotyl complex $trans-(\eta^1-C_4H_7)Pt(PEt_3)_2Cl$ was synthesized by reaction of $Pt(PEt_3)_4$ with $ClCH_2CH=$ CHMe as described by Pearson.¹⁰ The deuteriated analogue *trans*- $(\eta^1$ -CH₂CH=CDMe)Pt(PEt₃)₂Cl, prepared for a study of reaction with *SO,* (vide infra), was obtained similarly by using ClCH₂CH=CDMe (eq 6). Both iso- $Pt(PEt_3)_4 + CICH_2CH = CDMe \rightarrow$

 $trans-(\eta^1\text{-CH}_2\text{CH}=\text{CDMe})\text{Pt}(\text{PEt}_3)_2\text{Cl} + 2\text{PEt}_3$ (6)

topomers exhibit only σ -bonded platinum(II)-allyl species in C_6H_6 (C_6D_6) solution, as evidenced by their ³¹P^{{1}H}</sub> and ¹H NMR spectra. However, each shows two sets of ${}^{31}P{}^{1}H{}$ NMR signals at δ 13.65 $(J(P, {}^{195}Pt) = 2944 \text{ Hz})$ and 13.48 $(J(P, {}^{195}\text{Pt}) = 2925 \text{ Hz})$ in an approximate intensity ratio of **7:l** to indicate the presence of isomers. An examination of the ¹H NMR spectrum of the protio complex in C_6D_6 solution at 500 MHz in the δ 6.1-5.3 region corroborates this observation, which was not reported with the original preparation of $trans-(\eta^1-C_4H_7)Pt(PEt_3)_2Cl.^{10}$ The spectrum shows signals at 6 **5.99, 5.82, 5.45,** and **5.33** as multiplets with the relative intensities ca **1:7:7:1.** These resonances are unequivocally assigned with the aid of homonuclear decoupling. Thus, irradiation at the frequency of the 6 **1.73** (CHMe) signal collapses the 6 **5.45** multiplet to a doublet $(J = 14.7 \text{ Hz})$ and the δ 5.33 multiplet to an unsymmetrical doublet $(J = 11.0 \text{ Hz})$ owing to off-resonance effects. On this basis, the multiplets at δ 5.45 and 5.33 are assigned to the CHMe protons of the E and Z isomers, respectively, from the magnitude of the two coupling constants, $J(=$ CH, $=$ CH).²⁶ The remaining multiplets at δ 5.99 and 5.82 are those of the $CHCH₂$ protons of the *Z* and *E* isomers, respectively. Isomer E is the major species in the mixture.

Reactions of Platinum(II)-q'-Allyl Complexes with SO₂. Coordinatively saturated transition-metal- η^1 -allyl complexes react with $SO₂$ to yield sulfinato-S insertion products.27 These reactions have been reported for a variety of metal- η^1 -allyl complexes; they occur in liquid *SO2* as well as in solution of *SO2* in organic solvents.

In the present study, platinum(II)- η^1 -allyl complexes were allowed to react with SO_2 in nonpolar benzene to minimize the formation of the η^3 -allyl complexes according to eq 5. The reactions of *trans-* $(\eta^1$ -C₃H₅)Pt(PEt₃)₂Cl, $trans-(\eta^1-C_3H_5)Pt(PMe_2Ph)_2Cl$, and trans-($\eta^1-CH_2CH=$ C*HMe)Pt(PEt₃)₂Cl (*H = H, D) with SO_2 in C_6H_6 at room temperature all went to completion in less than **30** min and led to the isolation of sulfinato-S products in almost quantitative yields. With trans- $(\eta^1$ -C₃H₅)Pt(P(i- Pr_{3})₂Cl, the insertion of SO_2 was about 50% complete in **1** h under similar conditions, and the product isolated **after 4** h was impure and could be only partially characterized. No reaction was observed between $trans-(\eta^1-C_3H_5)Pt(P (t-Bu)_{3}$ ₂Cl and SO_2 in 18 h under comparable conditions. Thus, the rates of SO_2 insertion of these trans- $(\eta^1$ - C_3H_5)Pt(PR₃)₂Cl complexes decrease with increasing steric demands of the phosphine ligands as measured by the Tolman cone angle, $\theta^{2\delta}$ (given in parentheses), viz., $PR_3 = PMe_2Ph$ (122°), PEt_3 (132°) > $P(i-Pr)_3$ (160°) > $P(t-Bu)_3$ $(182^{\circ}).$

The sulfinato-S products have been characterized by a combination of elemental analysis and spectroscopic data

(Experimental Section), and the structure of trans- $(CH_2=CHCH_2S(O)_2)Pt(PMe_2Ph)_2Cl$ was elucidated by X-ray crystallography (vide infra). The complexes show IR *v(S02)* bands at **1223-1212** and **1078-1068** cm-', which compare well with those reported^{27,29} for various $MS(O)_2R$ metal sulfinates. The ν (C=C) absorptions at 1639-1634 cm-' indicate that the allyl fragment remains intact and rules out possible cycloaddition reactions.30 All 'H and ${}^{31}P{}_{1}{}^{1}H{}_{1}$ NMR data are also in complete accord with the assigned structures.

I

Of particular interest is the structure of the complexes derived from the reactions of trans- $(\eta^1$ -CH₂CH= $C*HMe$) $Pt(PEt_3)_2Cl$ (*H = H, D) with SO_2 , because of the possibility of rearrangement of the crotyl group during the insertion. $31 - 1$ H NMR spectra of the reaction products show the resonance of the C*HMe protons as a doublet (when $*H = H$, $J = 6.9$ Hz) or a singlet (when $*H = D$) at δ 1.48. The signal of the C*H proton occurs at δ 3.50 (multiplet), essentially in the same position as the signal of the C*H deuterium (singlet) in the 2H NMR spectrum. These and other **NMR** data given in Experimental Section indicate that the crotyl group underwent rearrangement and that the structure **of** the sulfinato-S products is as represented in I (see Scheme I).

The foregoing structure strongly suggests that the reactions of *trans*- $(\eta^1$ -CH₂CH=C*HMe)Pt(PEt₃)₂Cl, and most likely also of various *trans*- $(\eta^1$ -C₃H₅)Pt(PR₃)₂Cl, with SO_2 proceed by electrophilic attack of SO_2 at the allyl C=C to generate zwitterion II.32 This zwitterion then reacts by displacement of coordinated $C=C$ by the sulfinate sulfur to yield the sulfinato-S product I. The proposed pathway is depicted in Scheme I. It is very similar to that presented earlier^{27,30} for reactions of $S\ddot{O}_2$ with various complexes $(\eta^5\text{-}C_5H_5)Fe(CO)_2(\eta^1\text{-ally})$, except that dissociation of ligated C=C and formation of a sulfinato- O intermediate need not be invoked, since the platinum(I1) center is coordinatively unsaturated (16-electron). One should note that this mechanism differs from that suggested by Faraone et al.³³ for the reactions of trans-PtL₂RCl (R = alkyl, aryl) with SO_2 , where the formation

⁽²⁵⁾ Chatt, J.; Mingos, D. M. P. *J. Chem.* **SOC. A 1969, 1770. (26) Silverstein, R. M.; Bawler,** *G.* **C.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 4th ed.; Wiley: New York, 1981;**

D 205.

⁽²⁷⁾ Wojcicki, A. Adu. Organornet. *Chem.* **1974,** *12,* **31. (28) Tolman, C. A. Chem.** *Reu.* **1977, 77, 313.**

⁽²⁹⁾ Vitzthum, *G.;* **Lindner, E. Angew. Chem.,** *Int.* **Ed. Engl. 1971,10, 323.**

⁽³⁰⁾ Chen, L. S.; **Su,** S. **R.; Wojcicki, A. Inorg.** *Chin.* **Acta 1978, 27, 79.**

⁽³¹⁾ Hartman, F. A.; Wojcicki, A. Inorg. *Chim.* **Acta 1968, 2, 289.** (32) We cannot unequivocally rule out the possibility that *trans*-
 $(\eta^1$ -CH₂CH=C*HMe)Pt(PEt₃)₂Cl exists in rapid equilibrium with un-

known isomeric *trans*- $(\eta^1$ -C*H(Me)CH=CH₂)²F(PEt₃)₂Cl which is

pre **However, we consider such a mechanistic scenario rather unlikely, since** *SOz* **insertion reactions of platinum(I1)-alkyl and -aryl complexes of the type trans-PtL,RCl are appreciably slower33 than those of the allyl complexes under present study.**

⁽³³⁾ Faraone, F.; Silvestro, L.; Sergi, S.; **Pietropaolo,** R. *J.* **Organonet.** *Chem.* **1972,46, 379.**

Figure 1. ORTEP plot of $trans\text{-}(\text{CH}_2=\text{-} \text{CHCH}_2\text{S}(O)_2)$ Pt-(PMe₂Ph)₂Cl showing atom numbering scheme. Atoms are drawn at the 50% probability level. Hydrogen atoms are omitted.

of trans-PtL₂(S(O)₂R)Cl is thought to involve coordination of SO2 **to** platinum followed by migration of R onto sulfur.

Description of the Molecular Structure of *trans* (CH₂=CHCH₂S(O)₂)Pt(PMe₂Ph)₂Cl. The crystal structure of the title complex consists of discrete molecules which exhibit the expected trans-square-planar coordination at the platinum center, with a slight tetrahedral distortion. The deviations **(A)** from the best weighted least-squares plane, calculated through Pt, $P(1)$, $P(2)$, Cl, and S, are as follows: Pt, 0.002 (0); P(1), 0.039 (2); P(2), 0.034 (2); Cl, -0.147 (3); S, -0.080 (2).

An ORTEP drawing of the molecule is shown in Figure 1. Selected bond lengths and angles are given in Table 111.

The two phosphine ligands are slightly bent back away from the sulfinate ligand (mean P-Pt-S angle $= 91.67$ (8)^o, and mean P-Pt-Cl angle $= 88.4 \,(5)$ °). This is indicative of steric interactions among the ligands, confirmed by some close intramolecular contacts (e.g., $S \cdots C(4) = 3.576$ (6), $S \cdot C(12) = 3.575(5), O(1) \cdot C(4) = 3.084(7), O(2) \cdot C(12)$ $= 3.101 (6), C(1) \cdot C(4) = 3.649 (8), C(1) \cdot C(5) = 3.228 (6),$ $C(1) \cdots C(12) = 3.680$ (8), $C(1) \cdots C(13) = 3.226$ (5) Å).

The Pt-P distances of 2.334 (1) and 2.337 (1) **A** are, to our knowledge, the longest Pt-P distances so far observed in trans- $(P\overline{Me}_2Ph)_2Pt^{\overline{II}}$ complexes, which range from 2.282 (4) to 2.312 (4) $\mathbf{\hat{A}}$.³⁴ As expected, they are much longer than those found in related cis compounds, such as cis- $Pt(PMe₂Ph)₂Cl₂$, where they are 2.245 (1) and 2.248 (1) Å.³⁵ The Pt-P mean value of 2.336 (2) \AA is close to the Pt-P distance found in **tram-bis(trialkylphosphine)platinum(II)** complexes such as $trans-Pt(P(n-Bu)_{3})_{2}({\rm SPh})_{2}$ (2.329 (8) $A)^{36a}$ or trans-Pt(PCy₃)₂Cl₂ (2.340 (2) $A)$.^{36b}

The Pt-S distance of 2.235 (1) A is significantly longer than that in square-planar Pt complexes containing chelating disulfoxide ligands (2.192 (4)-2.217 (2) **A).37** It is closer to the values found in dialkyl sulfoxide complexes of platinum(II), which range from 2.220 (2) to 2.244 (2) \AA .^{38,39}

The Pt-Cl bond length of 2.347 (1) A appears longer than the mean value of 2.309 (4) \AA found in cis- $Pt(S(O)$ -

Table 111. Selected Bond Distances (A) and Angles (deg) and Their Estimated Standard Deviations

Bond Distances						
Pt –Cl	2.347(1)	$P(1) - C(5)$	1.834 (5)			
$Pt-S$	2.235(1)	$P(1)-C(6)$	1.823(5)			
$Pt-P(1)$	2.337(1)	$P(2)-C(12)$	1.827(5)			
$Pt-P(2)$	2.334(1)	$P(2)-C(13)$	1.830(5)			
$S - O(1)$	1.461(3)	$P(2) - C(14)$	1.826(5)			
$S - O(2)$	1.456(3)	$C(1) - C(2)$	1.519(9)			
$S-C(1)$	1.850(5)	$C(2)-C(3)$	$1.179(14)^a$			
$P(1)-C(4)$	1.829(5)					
Bond Angles						
$Cl-Pt-S$	174.24 (6)	$Pt-P(1)-C(5)$	113.8(2)			
$Cl-Pt-P(1)$	88.07 (5)	$Pt-P(1)-C(6)$	112.0(2)			
$Cl-Pt-P(2)$	88.78 (5)	$C(4)-P(1)-C(5)$	100.3(3)			
$S-Pt-P(1)$	91.72 (4)	$C(4)-P(1)-C(6)$	106.1(3)			
$S-Pt-P(2)$	91.61(4)	$C(5)-P(1)-C(6)$	104.3(3)			
$P(1) - Pt - P(2)$	176.33 (4)	$Pt-P(2)-C(12)$	116.4(2)			
$Pt-S-O(1)$	111.2(2)	$Pt-P(2)-C(13)$	115.2(2)			
$Pt-S-O(2)$	112.2(2)	$Pt-P(2)-C(14)$	112.5(2)			
$Pt-S-C(1)$	106.8(2)	$C(12)-P(2)-C(13)$	101.9(3)			
$O(1)$ -S- $O(2)$	114.5(2)	$C(12)-P(2)-C(14)$	106.8(2)			
$O(1)$ -S-C (1)	106.2(2)	$C(13)-P(2)-C(14)$	102.6(2)			
$O(2)$ -S-C(1)	105.3(2)	$S - C(1) - C(2)$	107.5 (4)			
$Pt-P(1)-C(4)$	118.8(2)	$C(1)-C(2)-C(3)$	128 (1)			

See text.

 $Me₂$, $2Cl₂$.³⁹ Thus, the Pt-Cl distance suggests that the $S(0)_2C_3H_5$ ligand has a greater trans influence than S- $(O)Me₂$.

The sulfur atom adopts a distorted tetrahedral geometry, similar to that found in $(\eta^5$ -C₅Me₅)Fe(CO)₂(S- $(0)_{2}CH_{2}CH=CHPh$.⁴⁰ The average S-O and S-C distances of 1.459 (4) and 1.850 (5) **A,** respectively, are comparable, within experimental error, with those found in the above iron compound.40

The $C(2)-C(3)$ distance of 1.179 (14) Å appears to be severely affected by thermal motion. Correction for this effect, assuming a "riding" motion, 41 yields a value of 1.30 Å, consistent with a $C=C$ bond. The S-C(1)-C(2) and C(1)-C(2)-C(3) bond angles are 107.5 (4) and 128 (1)°, respectively.

Reactions of Platinum(II)-ql-Allyl Complexes with $HPF_6E_2O.$ Addition of 1 equiv of HPF_6E_2O to a solution of trans- $(\eta^1$ -C₃H₅)Pt(PEt₃)₂Cl in diethyl ether at -78 "C results in the formation of a white precipitate of $[trans-(\eta^2-CH_{2}=. When this re$ action was carried out in THF at -78 °C with warming to -15 °C, the same product together with a smaller amount of $[(\eta^3-C_3H_5)Pt(PEt_3)_2]^+$ were obtained in solution. The latter species was prepared independently as the PF_6^- salt by treatment of trans- $(\eta^1$ -C₃H₅)Pt(PEt₃)₂Cl with AgPF₆ to aid its identification in the above reaction mixture. Similar protonation of *trans*- $(\eta^1$ -C₃H₅)Pt(PC_{y₃)₂Cl with} $HPF₆Et₂O$ in toluene afforded [trans- $(\eta^2$ -CH₂=CHMe)-Pt(PCy,),Cl]PF,, **also as** a white precipitate, at ca. -30 "C.

The product $[trans-(\eta^2\text{-CHM}_2=\text{CHM}_e)\text{Pt}(\text{PEt}_3)_2\text{Cl}] \text{PF}_6$ (111) was thoroughly characterized by elemental analysis, mass spectrometry, and IR and ¹H, ¹³C \langle ¹H, and ³¹P \langle ¹H) NMR spectroscopy. Its mass spectrum shows a peak corresponding to $(M + H)^+$ at m/e 655; such $(M + H)^+$ peaks are common to spectra obtained by fast atom bombardment.⁴² In the 500-MHz ¹H NMR spectrum, separate signals are observed for the three olefinic protons and the Me group of the propene ligand; they are listed in Experimental Section. Assignment of these resonances and

⁽³⁴⁾ Oliver, J. D.; Mullica, D. F.; Groasie, D. A,; Milligan, W. 0.; Perkins, H. 0. *Acta Crystallogr., Sect. C Cryst. Struct. Commun.* 1984, *C40,* 746 and references therein.

⁽³⁵⁾ Attia, W. M.; Balducci, G.; Calligaris, M., submitted for publica- tion.

^{(36) (}a) Fenn, R. H.; Segrott, G. R. *J.* Chem. *Soc* A 1970,2781. (b) Del

Pra, A.; Zanotti, G. *Inorg. Chim. Acta* 1980, 39, 137.
(37) Filgueiras, C. A. L.; Holland, P. R.; Johnson, B. F. G.; Raithby,
P. R. *Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.* 1982, *B38,* 954.

⁽³⁸⁾ Melanson, R.; Rochon, F. D. *Acta Crystallogr.,* Sect. *C: Cryst. Struct. Commun.* 1984, *C40,* 793 and references therein.

⁽³⁹⁾ Melanson, R.; Rochon, F. D. *Can. J.* Chem. 1975, 53, 2371.

⁽⁴⁰⁾ Churchill, M. R.; Wormald, J. *Inorg.* Chem. 1971, *10,* 572.

⁽⁴¹⁾ Busing, W. R.; Levy, H. A. *Acta Crystallogr.* 1964,17, 142. (42) Rinehart, K. L., Jr. *Science (Washington, DC)* 1982, *218,* 254.

determination of the coupling constants were aided by homonuclear decoupling experiments. For the $PEt₃$ ligands, two proton signals are observed for each of the CH₂ and Me fragments to demonstrate that the phosphines are not equivalent. This observation is corroborated by the $^{13}C(^{1}H)$ and $^{31}P(^{1}H)$ NMR spectra. The former spectrum also shows two signals for each of the $CH₂$ and Me fragments of the Et group, among the resonances that fully support the assigned structure. The latter spectrum exhibits two closely spaced resonance sets at 6 **18.80** and **18.66, with similar** $\hat{J}(P,^{195}Pt)$ **values of 2056 and 2086 Hz,** respectively. The magnitude of $J(P,195Pt)$ as well as the absence of detectable phosphorus-phosphorus coupling militate against a cis structure of the cation. The nonequivalence of the $PEt₃$ ligands is best rationalized by a trans-square-planar geometry in which the phosphines are on the same and opposite sides with reference to the Me group of the propene (see 111).

The proposed structure of $\{trans-(\eta^2-CH_2=CHMe)\}$ Pt- $(PCy_3)_2$ Cl]PF₆, similar to that of its PE t_3 analogue, receives support from spectroscopic data and chemical analysis. Again, particularly revealing is the 31P(1H) *NMR* spectrum which shows two sets of PCy_3 resonances at δ 20.92 and 20.69, with $J(P,{}^{195}Pt) = 2017$ and 1998 Hz, respectively. The complex is thermally less stable than that containing PEt₃ and requires storage at ca. 0 °C.

Two pathways for protonation reactions of platinum- $(II)-\eta^1$ -allyl complexes merit special consideration. First, addition of H^+ may occur to the allyl C=C with rearrangement to an η^2 -alkene structure as reported⁴³⁻⁴⁶ for a number of 18-electron transition-metal- η^1 -allyl complexes, including $(\eta^5$ -C₅H₅)Fe(CO)₂(η^1 -C₃H₅). Alternatively, HPF₆ may undergo oxidative addition to the platinum center in $trans-(\eta^1-\text{C}_3\text{H}_5)\text{Pt}(\text{PR}_3)_2\text{Cl}$ to furnish $(\eta^1-\text{C}_3\text{H}_5)\text{Pt}$ - $(PR_3)_2CH(\dot{F}P\dot{F}_5)$ (or $[(\eta^1-C_3H_5)Pt(PR_3)_2CH(\text{solvent})]^+$), which then reductively eliminates propene to leave Pt- $(PR_3)_2Cl(FPF_5)$ (or $[Pt(PR_3)_2Cl(solvent)]^+$). The latter process is precedented by the reactions of trans-Pt- $\overline{(PR_3)_2(Me)}X$ (X = Cl, I) with HCl to give trans-Pt- $(PEt₃)₂CIX$ and methane.⁴⁷ Those reactions are thought to proceed by the sequence oxidative addition of HC1 and reductive elimination of CH4.

The formation of $[trans-(\eta^2\text{-CHMe})\text{Pt}(\text{PR}_3)_2\text{Cl}]$ hose of trans- $\text{Pt}(\text{PR}_3)$ PF_6 upon treatment of *trans-(n¹-C₃H₅)Pt(PR₃)₂Cl with* HPF_6E_2O is entirely consistent with the former pathway, shown in Scheme 11. The possibility that the latter

pathway is operative and that the released propene replaces PF_6^- (or solvent) in $Pt(PR_3)_2Cl(FPF_6)$ (or [Pt- $(PR_3)_2Cl(solvent)]^+$ to afford the η^2 -alkene product must be considered unlikely. The protonation was conducted under a stream of N_2 , which would have removed at least a substantial amount of propene from the reacting mixture before its coordination to platinum. The high yield of isolated products indicates that the propene was very effectively retained in this system. Furthermore, the reactions in question proceed considerably faster than the protonation reactions of platinum(I1)-alkyl complexes that are initiated by oxidative addition of acid.47

The most definitive evidence for the protonation of the allyl C=C is derived from a study of the reaction of $trans-(\eta^1\text{-CH}_2\text{CH}=\text{CHMe})\text{Pt(PEt}_3)$ ₂Cl with $\text{HPF}_6\text{-Et}_2\text{O}$ in diethyl ether. The product of this reaction has been characterized as the 1-butene complex [trans- $(\eta^2\text{-CH}_2=$ $CHEt$) $Pt(PEt_3)_2Cl$] PF_6 . Accordingly, its ¹H NMR spectrum is very similar to that of $[trans-(\eta^2-CH_2=CH\bar{M}_e)]$ - $Pt(PEt₃)₂CI$]PF₆ but shows the presence of an Et rather than a Me group in the η^2 -alkene ligand. The ³¹P(¹H) **NMR** spectrum bears a strong resemblance to that of [trans- $(\eta^2\text{-CH}_2\text{=CHMe})\text{Pt(PEt}_3)_2\text{Cl} \text{PF}_6$ and shows nonequivalence of the $PEt₃$ ligands; this nonequivalence arises as illustrated in III. Oxidative addition of $H⁺$ to the platinum center and reductive elimination of H and n^1 -CH₂CH= CHMe would have afforded a mixture of (E) - and (Z) -2butene in ca. **7:l** ratio provided that no isomerization occurred. The ${}^{1}H$ and ${}^{31}P{}^{1}H{}$ NMR spectra of the isolated product are clearly inconsistent with the presence of coordinated 2-butene.

Reactions of $\text{Platinum(II)}-\eta^1-\text{Allyl Complexes with}$ $CISO_2NCO$. The complexes *trans-(n¹-C₃H₅)Pt(PR₃)₂Cl* with $\overline{PR}_3 = \overline{PEt}_3$, $P(i\text{-}Pr)_3$, and \overline{PCy}_3 react with $\overline{CISO}_2\overline{NO}$ in toluene at room temperature to afford trans-Pt- $(PR_3)_2Cl_2$. In contrast, no reaction was observed between $trans-(\eta^T-C_3H_5)Pt(PR_3)_2Cl$ $(PR_3 = PEt_3$ or $P(i-Pr)_3)$ and p-MeC6H4S02NC0 at **25-50** "C after at least **27** h.

The reactions of *trans*- $(\eta^1$ -C₃H₅)Pt(PR₃)₂Cl with ClS- O_2NCO were monitored at low temperature by ${}^{31}P(^{1}H)$ NMR spectroscopy to shed some light on their mechanism. Thus, when a toluene solution of equimolar amounts of *trans*- $(\eta^1$ -C₃H₅)Pt(P(*i*-Pr)₃)₂Cl and CISO₂NCO at -78 °C was gradually warmed to **-25** "C, a new set of signals appeared at δ 27.16 with $J(P,^{195}Pt) = 2782$ Hz. Further warming to **-15** "C resulted in a growth of these resonances and the appearance of another set of signals at 6 **26.96** with $J(P,$ ¹⁹⁵Pt) = 2441 Hz, which rapidly gained intensity with increasing temperature. This latter species was shown to be trans-Pt(P(i -Pr)₃)₂Cl₂ by comparison of its ³¹P{¹H} NMR data with those of an authentic sample. The initially appearing compound may be the cycloadduct trans- $CH₂N(SO₂Cl)C(O)CH₂CHPt(P(i-Pr)₃)₂Cl$ as suggested by a similarity of its $J(P,^{195}Pt)$ value to that of previously reported¹ $[3 + 2]$ cycloaddition products of *trans-* $(\eta^1 C_3H_5$)Pt(PR₃)₂Cl and TCNE. At ca. 25 °C, the signals of the starting material disappeared, and the signals of the presumed cycloadduct were somewhat more intense than those of trans-Pt($P(i-Pr)_{3}$)₂Cl₂. Attempts at separation of the two products by column chromatography proved unsuccessful owing to decomposition of the former species. A FAB mass spectrum of the reaction mixture showed (M + H)+ peaks of both products.

A similar study of the reaction of trans- $(\eta^1$ -C₃H₅)Pt-(PEt₃)₂Cl with CISO₂NCO in toluene showed that three sets of resonances were present at -75 °C: δ 19.9 ($J(P,$ ¹⁹⁵Pt) $=$ 2680 Hz), 11.9 $(J(P, {}^{195}Pt) = 2430 \text{ Hz}$, and -3.9 $(J (P,195Pt) = 1700 Hz$. When the solution was warmed to

⁽⁴³⁾ Green, M. **L. H.; Nagy, P. L. I.** *J. Organomet. Chem.* **1963,1,58.**

⁽⁴⁴⁾ Green, M. L. H.; Stear, A. N. J. Organomet. Chem. 1963, 1, 230.
(45) Cousins, M.; Green, M. L. H. J. Chem. Soc. 1963, 889.
(46) Green, M. L. H.; Nagy, P. L. I. J. Chem. Soc. 1963, 889.
(47) Belluco, U.; Giustiniani, M

^{89,} **6494.**

room temperature, the spectrum underwent the following changes. The signals (i.e. a singlet and 195 Pt satellites) at δ 19.9 remained essentially intact, whereas the intensity of the signals at δ 11.9 gradually increased and that of the signals at δ -3.9 gradually decreased. When the temperature reached 25 °C, only two resonance sets at δ 19.9 and 11.9 in a 1:3 intensity ratio were observed.

The species resonating at 6 11.9 was characterized **as** trans-Pt(PEt₃)₂Cl₂ by comparison of its ³¹P{¹H} NMR data with those of an independently prepared sample. The product with the signals at δ 19.9 may be a cycloadduct analogous to that with the $P(i-Pr)$, ligands (vide supra). The identity of the intermediate resonating at δ -3.9 appears less obvious; however, the low value of its $J(P, {}^{195}\text{Pt})$ (1700 Hz) suggests that it may be a platinum(N) complex, possibly $(\eta^1$ -C₃H₅)Pt(PR₃)₂Cl₂(SO₂NCO). In general, platinum(IV) complexes of the type $PtL_2R_2X_2$ show J - $(P, ^{195}Pt)$ in the range 1500-1900 $Hz. ^{48}$

A 31Pj1H) NMR spectrum of the reaction mixture of $trans-(\eta^1-C_3H_5)Pt(PCy_3)_2Cl$ and $CISO_2NCO$ in toluene at -75 °C showed a set of signals of the starting material at δ 16.20 ($J(P, {}^{195}Pt) = 2822$ Hz) and another, weak, set at δ 15.53 (J(P,¹⁹⁵Pt) = 2696 Hz). When the solution was warmed, the former resonances decreased and the latter increased in intensity. At -30 °C, all of trans- $(\eta^1-C_3H_5)$ -Pt(PCy₃)₂Cl was converted to the δ 15.53 product, which again may be a $[3 + 2]$ cycloadduct of ClSO₂NCO and the η^1 -allyl complex.

Results of these low-temperature studies are best generalized in terms of two parallel and independent processes. The lower energy process could entail cycloaddition between $trans-(\eta^1-C_3H_5)Pt(PR_3)_2Cl$ and $CISO_2NCO$, similar to that of 18-electron transition-metal- η^1 -allyl complexes, including $(\eta^5$ -C₅H₅)Fe(CO)₂(η^1 -C₃H₅).⁴⁹ The higher energy process may involve oxidative addition of CISO₂-NCO to the platinum center in *trans*- $(\eta^1$ -C₃H₅)Pt(PR₃)₂Cl, followed by reductive elimination of $C_3H_5SO_2NCO$. This would generate $trans-Pt(PR₃)₂Cl₂$, which was indeed either observed or isolated as a final product. Scheme I11 summarizes our tentative proposal of these reactions. Unfortunately, instability of the presumed cycloadducts and of what is thought to be a platinum (IV) intermediate prevented their complete characterization which would

have rendered this proposal more definitive. It is further noteworthy that the η^1 -allyl complexes with bulky PR_3 ligands, e.g., PCy,, exhibit a preference for the presumed cycloaddition over the proposed oxidative addition as would be expected.

Conclusions

The 16-electron platinum(II)- η^1 -allyl complexes of the type $trans-(n^1-CH_2CH=CHR')Pt(PR_3)$ ₂Cl $(R' = H, Me)$ react with the electrophilic reagents SO_2 and HPF_6E_2O to afford *trans*-(CH₂=CHCH(R')S(O)₂)Pt(PR₃)₂Cl and $[trans-(n^2-CH₂=CHR^{''})Pt(PR₃)₂ClIPF₆^{''} (R^{''} = Me, Et),$ respectively. These products are analogous to those of the corresponding reactions of 18-electron transition-metal n^1 -allyl carbonyls and related complexes. The two reactions of platinum(I1) are best rationalized to proceed by addition of the electrophile to the allyl C=C, **as** are those of the 18-electron compounds. Thus, the coordinative unsaturation of platinum(I1) apparently has little effect on the mechanism. Reactions of *trans*- $(\eta^1$ -C₃H₅)Pt(PR₃)₂Cl with $CISO₂NCO$ are more complex than the foregoing, probably owing to the presence of a reactive C1-S bond and the coordinative unsaturation of the metal. They are tentatively formulated to occur by two parallel pathways: (1) $[3 + 2]$ cycloaddition of ClSO₂NCO to the η^1 -C₃H₅ ligand and (ii) oxidative addition of $CISO₂NCO$ and reductive elimination of $C_3H_5SO_2NCO$ to yield trans-Pt- $(PR_3)_2Cl_2.$

Acknowledgment. We gratefully acknowledge the financial support of the National Science Foundation $(throught Grant CHE-8420806 to A.W.).$ Ministero Pubblica Istruzione (Rome), and NATO (through Grant 068.81 to A.W. and M.C.). We wish to thank Professor G. Carturan (Trento, Italy) for helpful suggestions during the early stages of this work and to Mr. David G. Schimpff for conducting one of the protonation reactions. High-field NMR and FAB mass spectra were obtained at the Ohio State University Chemical Instrument Center (funded in part by National Science Foundation Grant 79-10019).

Registry No. I, **108103-21-5; I11 (R** = Me), **108082-84-4; I11** $(R = Et)$, **108082-86-6**; trans- $(\eta^1-C_3H_5)Pt(PEt_3)_2Cl$, 65555-45-5; $[(C_3H_5)PtCl]_4$, 32216-28-7; trans- $(\eta^1-C_3H_5)\tilde{P}t(\tilde{P}(i-Pr)_3)_2Cl$, $108103-19-1$; $trans-(\eta^1-C_3H_5)Pt(PMe_2Ph)_2Cl$, $108082-78-6$; $trans-(\eta^1-C_6H_5)Pt(P(t-Bu)_3)_2Cl$, 108082-79-7; $trans-(\eta^1-$ CH₂CH=CDMe)Pt(PEt₃)₂Cl, 108082-80-0; Pt(PEt₃)₄, 33937-26-7; (Z)-CICH₂CH=CDMe, 108082-81-1; trans-(CH₂=CHCH₂S- $(O)_2Pt(PEt_3)_2Cl$, 108082-82-2; trans- $CH_2=CHCH_2SO_2Pt$ -(PMe2ph)2C1, **108103-20-4; trans-(?'-CH2CH=CHMe)Pt(PEt3),C1,** 65555-46-6; trans-(CH₂=CHCD(Me)S(O)₂Pt(PEt₃)₂Cl, 108103-**22-6; trans-(CH2=CHCH2S(0)2]Pt(P(i-Pr)3)2C1, 108103-23-7;** $[(\eta^3\text{-}C_3H_5)Pt(PEt_3)_2]^+, 31833-26-8; trans-(\eta^1\text{-}C_3H_5)Pt(PCy_3)_2Cl,$ **81111-59-3; [trans-(** η^2 **-CH₂—CHMe)Pt(PCy₃)₂C1]PF₆, 108103-25-9;** *syn-* **[(q3-C3H,Me)Pt(PEt3),1+, 108146-99-2;** *anti-[* (v3-C3H4Me)- Pt(PEt3)2]+, **108147-00-8;** ClSO,NCO, **1189-71-5;** trans-Pt(P(i-Pr)₃)₂Cl₂, 59967-54-3; *trans*-Pt(PEt₃)₂Cl₂, 13965-02-1; *trans*-Pt-(PCy3)2Cl2, **60158-99-8; trans-CH2N(S02C1)C(0)CH2CHPt((i-** $Pr_{3}P_{2}Cl$, **108103-26-0**; $(\eta^{1} - C_{3}H_{5})Pt(PEt_{3})_{2}Cl_{2}(SO_{2}NCO),$ **108103-27-1;** trans-CH₂N(SO₂Cl)C(O)CH₂CHPt(Et₃P)₂Cl, **108082-87-7;** trans-CH₂N(SO₂Cl)C(O)CH₂CHPt(Cy₃P)₂Cl, *I* , **i 108082-88-8.**

⁽⁴⁸⁾ Pregosin, P. **S.;** Kunz, R. *W. 31P and lSC NMR of Transition Metal Phosphine Complexes;* Springer-Verlag: New York, **1979;** p **98. (49)** Yamamoto, Y.; Wojcicki, A. *Inorg. Chem. 1973,12,* **1779.**

Supplementary Material Available: A listing of temperature factors for *trans*-($CH_2=CHCH_2S(O)_2)Pt(PMe_2Ph)_2Cl$ (2 pages); a listing of structure factors for $trans\text{-}(CH_2\text{---}CHCH_2S(O)_2)Pt$ -(PMe2Ph)2C1 **(16** pages). Ordering information is given on any current masthead page.