Hydride and Borohydride Derivatives of (Pentamethylcyclopentadienyl)(tertiary phosphine)ruthenium

Hiroharu Suzuki,* Dong Hwan Lee, Noriaki Oshima, and Yoshihiko Moro-oka

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan

Received November 4, 1986

Reaction of NaBH₄ with $(n^5-C_5Me_5)RuCl_2(PR_3)$ (1) in ethanol results in the formation of trihydrides $(\eta^5 - C_5 Me_5) RuH_3(PR_3)$ (2, R = PMe₃, PEt₃, P(*i*-Pr)₃, PCy₃, PPh₂Me, PPh₃), the last of which is structurally characterized by a single-crystal X-ray diffraction study. $(\eta^5-C_5Me_5)RuH_3(PPh_3)$ crystallizes in the triclinic space group $P\overline{I}$ with two molecules in a unit cell of dimensions a = 11.568 (2) Å, b = 13.012 (2) Å, c = 9.169(1) Å, $\alpha = 91.12$ (2)°, $\beta = 89.72$ (2)°, and $\gamma = 116.60$ (1)°. The molecule is shown to have pseudo C_s symmetry. The reaction of 1 with NaBH₄ in THF yields tetrahydroborate complexes $(\eta^5-C_5Me_5)Ru(PR_3)(BH_4)$ (4, $R = PMe_3$, PEt_3 , PCy_3 , PPh_2Me , PPh_3), which are converted to the trihydrides 2 by treatment with ethanol. Irradiation of 2c and 2f with UV light in C_6D_6 causes the H/D exchange reaction among the hydrides, the coordinated phosphine, and the solvent.

Introduction

The chemistry of middle- and late-transition-metal polyhydride complexes has recently received much attention due to the potential applications of these complexes as the precursors of the active catalysts for the H/D exchange reaction and the C-H bond activation.¹

Since the early 1970s polyhydridoruthenium complexes have been known and some of them were shown to catalyze the H/D exchange reaction with the deuteriated solvents in recent years.² In 1983, Davies et al. reported a synthetic method of a thermally stable ruthenium(IV) trihydride $(\eta^5-C_5Me_5)RuH_3(PPh_3)$ and proposed that the trihydride possessed the trigonal-bipyramidal structure on the basis of IR and ¹H NMR studies.³ Recently we reported the synthesis of a novel trihydridoruthenium(IV) complex, $(\eta^5-C_5Me_5)RuH_3(PPh_3)$, starting with the corresponding ruthenium(IV) phosphine complex $(\eta^5-C_5Me_5)RuBr_3(PPh_3)$ and the reducing agent NaBH₄;⁴ however, this method could not be applicable to the synthesis of trihydride complexes with the bulky phosphine ligand such as PCy₃. In a recent communication, Arliquie and Chaudret briefly reported a new route to the trihydrides $(\eta^5-C_5Me_5)RuH_3$ -(PR₃) (R = Ph, *i*-Pr, and Cy) by treatment of $(\eta^5$ - C_5Me_5)RuCl₂(PR₃) with LiBHEt₃ in tetrahydrofuran.⁵ Bercaw's group has also reported a synthesis of the trihydride $(\eta^5-C_5Me_5)RuH_3(\dot{P}Me_3)$ via hydrogenation of $(\eta^5-C_5Me_5)Ru(CH_2SiMe_3)(PMe_3)_2$.⁶ We established in-

(1) For example, see: (a) Crabtree, R. H.; Mihelcic, J. M.; Quirk, J. M. J. Am. Chem. Soc. 1979, 101, 7738. (b) Crabtree, R. H.; Mellea, M. F.; Mihelcic, J. M.; Quirk, J. M. Ibid. 1982, 104, 107. (c) Baudry, D.; Ephritikhine, M.; Felkin, H. J. Chem. Soc., Chem. Commun. 1980, 1243. (d) Hoyano, J. K.; Graham, W. A. G. J. Am. Chem. Soc. 1982, 104, 3723. (e) Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 352.
 (f) Wax, M. J.; Stryker, J. M.; Buchanan, J. M.; Kovac, C. A.; Bergman, R. G. Ibid. 1984, 106, 1121. (g) Periana, R. A.; Bergman, R. G. Ibid. 1984, 106, 7272. (h) Buchanan, J. M.; Stryker, J. M.; Bergman, R. G. Ibid. 1986, 108, 1537. (i) Jones, W. D.; Feher, F. J. Ibid. 1982, 104, 4240. (j) Jones, W. D.; Feher, F. J. Ibid. 1984, 106, 1650. (k) Crabtree, R. H. Chem. Rev.

W. D.; Feher, F. J. Ibid. 1984, 106, 1650. (k) Crabtree, R. H. Chem. Rev. 1985, 85, 245 and references cited therein.
(2) For example, see: (a) Morris, R. H.; Shiralian, M. J. Organomet. Chem. 1984, 260, C47. (b) Chaudret, B. Ibid. 1984, 268, C33. (c) Chaudret, B.; Poilblanc, R. Organometallics 1985, 4, 1722. (d) Kletzin, V. H.; Werner, H. Angew. Chem. 1983, 95, 916. (e) Tolman, C. A.; Ittel, S. D.; English, A. D.; Jesson, J. P. J. Am. Chem. Soc. 1979, 101, 1742.
(a) Davies, S. G.; Moon, S. D.; Simpson, S. J. J. Chem. Soc., Chem. Commun. 1983, 1278. (b) Baird, G. J.; Davies, S. G.; Moon, S. D.; Simpson, S. J.; Jones, R. H. J. Chem. Soc., Dalton Trans. 1985, 1479. (4) Oshima, N.; Suzuki, H.; Moro-oka, Y.; Nagashima, H.; Itoh, K. J. Organomet. Chem. 1986, 314, C46.
(5) Arliguie, T.; Chaudret, B. J. Chem. Soc., Chem. Commun. 1986,

(5) Arliguie, T.; Chaudret, B. J. Chem. Soc., Chem. Commun. 1986, 985.

dependently a versatile synthetic method of the trihydridoruthenium(IV) complexes with a variety of phosphine ligands via a reaction of $(\eta^5-C_5Me_5)RuCl_2(PR_3)$ with $NaBH_4$ in ethanol.⁷ We present here the preparation of the ruthenium(IV) trihydrides $(\eta^5 - C_5 M e_5) R u H_3 (PR_3)$ (2) and the ruthenium(II) tetrahydroborate $(\eta^5-C_5Me_5)Ru$ - $(PR_3)(BH_4)$ (3). The molecular structure of $(\eta^5-C_5Me_5)$ - $RuH_3(PPh_3)$ (2f) by single-crystal X-ray diffraction and the photoinduced H/D exchange reaction with the trihydrides 2 are also mentioned.

Experimental Section

General Methods. All manipulations were carried out under an dry argon by using standard Schlenk techniques. All solvents were dried by conventional techniques⁸ prior to use. Unless otherwise noted, all reagents were obtained from commercial suppliers. Proton and phosphorus-31 NMR spectra were recorded on a JEOL FX-100 or GX-500 spectrometers. All proton chemical shifts are reported as δ values in parts per million relative to internal tetramethylsilane. Infrared spectra were recorded on a Hitachi 260-50 grating spectrophotometer. Photolyses of $\mathbf{2c}$ and 2f were conducted with an Eiko-sha 300-W high-pressure mercury lamp (Model EHB-W1-300). Elemental analyses were performed by the analytical facility in the Research Laboratory of Resources Utilization at Tokyo Institute of Technology. Ruthenium(III) complexes $(\eta^5 - C_5 Me_5) RuCl_2(PR_3)$ (1) were prepared by the reaction of $[(\eta^5-C_5Me_5)RuCl_2]_{\eta}^9$ with the corresponding tertiary phosphines.¹⁰

 $(\eta^{5}-C_{5}Me_{5})RuH_{3}(PMe_{3})$ (2a). A slurry of 0.496 g (1.29 mmol) of $(\eta^5-C_5Me_5)RuCl_2(PMe_3)$ (1a) and 0.343 g (9.07 mmol) of NaBH₄ in 15 mL of ethanol was allowed to react with stirring for 3 h at ambient temperature. After evaporation of solvent, the brown residue was extracted with the mixed solvent of diethyl ether and pentane (2:1 v/v). Removal of solvents from the extract afforded 0.373 g (92%) of 2a as an ivory semisolid: IR (KBr) 2970, 2900, 1960, 1479, 1421, 1379, 1279, 950, 932, 746, 589, 372 cm⁻¹. Anal. Calcd for C₁₃H₂₇PRu: C, 49.51; H, 8.63. Found: C, 49.69; H, 8.74.

⁽⁶⁾ Paciells, R.; Bercaw, J. E. Abstracts of Papers, 191st National

⁽⁶⁾ Paciells, R.; Bercaw, J. E. Abstracts of Papers, 191st National Meeting of the American Chemical Society, New York; American Chemical Society, New York; American Chemical Society: Washington, DC, 1986; INORG 82.
(7) Suzuki, H.; Lee, D. H.; Oshima, N.; Moro-oka, Y. J. Organomet. Chem., 1986, 317, C45.
(8) Perrin, D. D.; Armargeo, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals, 2nd ed.; Pergamon: Oxford, 1980.
(9) Oshima, N.; Suzuki, H.; Moro-oka, Y. Chem. Lett. 1984, 1161.
(10) We have prepared (η⁵-C₅Me₅)RuCl₂(PR₃) (1) by treatment of [(η⁵-C₅Me₅)RuCl₂]_n with PR₃; Abstracts of Papers, 33rd Symposium on Organometallic Chemistry, Osaka, Japan, 1985; A119. Suzuki, H.; Lee, D. H.; Oshima, N.; Narasaka, S.; Xi, Z.; Moro-oka, Y., manuscript in preparation. preparation.

		vield.		IR ^d		
	\mathbf{PR}_3	%	C ₅ Me ₅ ^b	Ru–H ^c	other assignmts	ν (Ru-H), cm ⁻¹
2a	PMe ₃	92	2.00 (1.0)	-10.50 (22.5)	1.10 (d, 9 H, ${}^{2}J_{\rm PH} = 9.3$ Hz, P–CH ₃)	1960 ^e
2b	PEt ₃	94	1.99 (1.3)	-10.76 (21.1)	0.89 (dt, 9 H, ${}^{3}J_{PH} = 15$ Hz, ${}^{3}J_{HH} = 7.8$ Hz, P-C-CH ₃), 1.19 (dq, 6 H, ${}^{2}J_{PH} = 7.5$ Hz, P-CH ₂ -)	1976, 1966
2c	P- <i>i</i> -Pr ₃	85	2.01 (1.3)	-11.05 (21.7)	1.03 (dd, 18 H, ${}^{3}J_{PH} = 12.9$ Hz, ${}^{3}J_{HH} = 7.0$ Hz, P-C-CH ₃), 1.57 (d of sept, 3 H, ${}^{2}J_{PH} = 8.8$ Hz, P-CH-)	1999, 1986
2d	PC _{v₃}	65	2.07(1.3)	-11.01 (22.0)	$1.21-1.98 (m, 33 H, P-C_6H_{11})$	1991 ^e
2e	PPh_2Me	58	1.84 (1.3)	-9.98 (20.3)	1.71 (d, 3 H, ${}^{2}J_{PH} = 8.9$ Hz, P-CH ₃), 6.91-7.70 (m, 10 H, P-C ₆ H ₅)	1965 ^e
2f	PPh_3	85	1.84 (1.3)	-9.72 (20.5)	6.95-7.82 (m, 15 H, P-C ₆ H ₅)	1975, 1960 (1974, 1960) ^e

^aShifts are in ppm, relative to SiMe₄ at 100 MHz and 30 °C in C_6D_6 . ^bNumber in parentheses is ⁴J_{PH} in Hz. ^cNumber in parentheses is ²J_{PH} in Hz. ^dMeasured in C_6H_6 . ^eMeasured in KBr.

 $(\eta^5-C_5Me_5)RuH_3(PEt_3)$ (2b). The complex was prepared by the same method for 2a, starting from $(\eta^5-C_5Me_5)RuCl_2(PEt_3)$ (1b) (0.414 g, 0.97 mmol). The complex was isolated in 94% (0.328 g) yield as a pale brown oil: IR (C_6H_6) 2963, 2899, 1976, 1966, 1455, 1444, 1377, 1069, 766 cm⁻¹. Anal. Calcd for $C_{16}H_{33}PRu$: C, 53.76; H, 9.31. Found: C, 54.03; H, 9.27.

 $(\eta^5-C_5Me_5)RuH_3[P(i-Pr)_3]$ (2c). The preparation is analogous to that for 2a, using $(\eta^5-C_5Me_5)RuCl_2[P(i-Pr)_3]$ (1c) (0.176 g, 0.38 mmol) as a starting material. The yield of the colorless prisms (mp 58 °C) was 85% (0.127 g): IR (KBr) 2972, 2952, 2905, 2864, 2032, 1999, 1986, 1459, 1378, 1030, 886, 789, 602 cm⁻¹. Anal. Calcd for $C_{19}H_{39}PRu$: C, 57.11; H, 9.84. Found: C, 57.21; H, 10.01.

 $(\eta^5 - C_5 Me_5) RuH_3(PCy_3)$ (2d). The complex was prepared in a similar manner to that for 2a, using $(\eta^5 - C_5 Me_5) RuCl_2(PCy_3)$ (1d) (0.387 g, 0.66 mmol) as a starting material. The colorless prisms (mp 102 °C) were isolated in 65% (0.221 g) yield: IR (KBr) 2908, 2844, 1991, 1446, 1374, 1188, 1025, 1002, 887, 850, 765, 524 cm⁻¹. Anal. Calcd for $C_{28}H_{51}PRu$: C, 64.71; H, 9.89. Found: C, 64.58; H, 10.13.

 $(\eta^5-C_5Me_5)RuH_3(PPh_2Me)$ (2e). The complex was prepared by the same method for 2a, using $(\eta^5-C_5Me_5)RuCl_2(PPh_2Me)$ (1e) (0.532 g, 1.05 mmol) as a starting material. The colorless prisms (mp 82 °C) were isolated in 58% (0.268 g) yield: IR (KBr) 3065, 3047, 2950, 2904, 1976, 1956, 1946, 1480, 1435, 1098, 883, 738, 519 cm⁻¹. Anal. Calcd for $C_{23}H_{31}PRu$: C, 62.85; H, 7.11. Found: C, 62.63; H, 7.13.

 $(\eta^5 \cdot C_5 Me_5) RuH_3(PPh_3)$ (2f). A slurry of 0.480 g (0.84 mmol) of $(\eta^5 \cdot C_5 Me_5) RuCl_2(PPh_3)$ (1f) and 0.128 g (3.40 mmol) of NaBH₄ in 10 mL of ethanol was stirred for 24 h at ambient temperature. After evaporation of the solvent, the pale brown residual solid was extracted with three portions of 10 mL of benzene. Removal of the solvent from the combined extract under reduced pressure afforded the ivory microprisms. Recrystallization from 5 mL of diethyl ether at -30 °C gave 0.358 g (85%) of 2f as the colorless prisms: mp 136 °C dec; IR (KBr) 3051, 2976, 2951, 2898, 1974, 1960, 1480, 1435, 1375, 1093, 744, 699, 540, 518 cm⁻¹; ³¹Pl¹H] NMR (C₆D₆, external PPh₃) δ 79.3. Anal. Calcd for C₂₈H₃₃PRu: C, 67.05; H, 6.63. Found: C, 66.92; H, 6.80.

 $(\eta^5-C_5Me_5)Ru(PMe_3)(BH_4)$ (3a). A suspension of 0.455 g (1.19 mmol) of $(\eta^5-C_5Me_5)RuCl_2(PMe_3)$ (1a) and 0.317 g (8.37 mmol) of NaBH₄ in 15 mL of tetrahydrofuran was stirred for 12 h at ambient temperature. After evaporation of the solvent, the red residual solid was extracted with two portions of 20 mL of pentane. The pentane solution was concentrated to 10 mL and cooled to -30 °C. The orange-red needles that formed were collected on a glass frit and dried under vacuum. The yield was 0.254 g (65%): mp 96-97 °C; IR (KBr) 2979, 2957, 2902, 2436, 2363, 2282, 1479, 1379, 1285, 1151, 956, 935, 731, 673, 592, 373 cm⁻¹. Anal. Calcd for $C_{13}H_{28}BPRu: C, 47.72; H, 8.62.$ Found: C, 47.44; H, 8.57. $(\eta^6-C_5Me_5)Ru(PEt_3)(BH_4)$ (3b). The complex was prepared

 $(\eta^{5}-C_{5}Me_{5})Ru(PEt_{3})(BH_{4})$ (3b). The complex was prepared by the same method for 3a, starting from $(\eta^{5}-C_{5}Me_{5})RuCl_{2}(PEt_{3})$ (1b) (0.847 g, 1.99 mmol). The orange-red prisms were isolated in 65% (0.475 g) yield: mp 143–145 °C; IR (KBr) 2965, 2910, 2874, 2433, 2352, 2284, 1453, 1155, 1028, 764, 723, 634, 580, 424 cm⁻¹. Anal. Calcd for $C_{16}H_{34}BPRu$: C, 52.03; H, 9.28. Found: C, 51.80; H, 9.11.

 $(\eta^5-C_5Me_5)Ru[P(i-Pr)_3](BH_4)$ (3c). The complex was prepared in a similar manner to that for 3a, using $(\eta^5-C_5Me_5)$ -RuCl₂[P(i-Pr)₃] (1c) (0.548 g, 1.17 mmol) as a starting material.

The red prisms were isolated in 84% (0.294 g) yield: mp 128 °C; IR (KBr) 2955, 2897, 2870, 2393, 2318, 1458, 1379, 1276, 1183, 1023, 888, 645, 539, 429 cm⁻¹. Anal. Calcd for $C_{19}H_{40}BPRu: C$, 55.47; H, 9.80. Found: C, 55.61; H, 10.15.

 $(\eta^5-C_5Me_5)Ru(PCy_3)(BH_4)$ (3d). The preparation is analogous to that for 3a, using $(\eta^5-C_5Me_5)RuCl_2(PCy_3)$ (1d) (0.329 g, 0.559 mmol) as a starting material. The yield of the orange-red prisms was 98% (0.290 g): mp 132 °C; IR (KBr) 2927, 2849, 2408, 2326, 1449, 1267, 1184, 1024, 1003, 847, 729, 670, 588, 518 cm⁻¹. Anal. Calcd for $C_{28}H_{52}BPRu$: C, 63.27; H, 9.86. Found: C, 62.98; H, 10.05.

 $(\eta^5 \cdot C_5 Me_5) Ru(PPh_2Me)(BH_4)$ (3e). The complex was prepared by the same method for 3a, using $(\eta^5 \cdot C_5 Me_5) RuCl_2(PPh_2Me)$ (1e) (0.542 g, 1.07 mmol) as a starting material. The red prisms were isolated in 74% (0.359 g) yield: mp 151–152 °C; IR (KBr) 3051, 2980, 2900, 2387, 2297, 2223, 1484, 1434, 1178, 1098, 881, 699, 512 cm⁻¹. Anal. Calcd for $C_{23}H_{32}BPRu$: C, 61.20; H, 7.15. Found: C, 60.97; H, 7.33.

 $(\eta^5-C_5Me_5)Ru(PPh_3)(BH_4)$ (3f). The complex was prepared by the same method for 3a, using $(\eta^5-C_5Me_5)RuCl_2(PPh_3)$ (1f) (0.323 g, 0.57 mmol) as a starting material. The complex was isolated in 97% (0.331 g) yield as the orange-red prisms: mp 156 °C; IR (KBr) 3051, 2980, 2900, 2450, 2388, 2326, 1479, 1433, 1179, 1089, 1025, 750, 743, 697, 533, 516, 502, 453, 424 cm⁻¹. Anal. Calcd for $C_{28}H_{34}PBRu$: C, 65.51; H, 6.63. Found: C, 65.36; H, 6.87.

X-ray Data Collection and Structure Determination for 2f. Crystals of 2f obtained from diethyl ether as described above proved suitable for an X-ray crystal structure determination. Single crystal of 0.15 × 0.38 × 0.55 mm was sealed in a thin-walled glass capillary under argon. Final lattice parameters were determined from a least-squares refinement of $((\sin \theta)/\lambda)^2$ values for 50 reflections (20° < 2 θ < 30°). The crystals are triclinic, space group $P\bar{1}$, with a = 11.568 (2) Å, b = 13.012 (2) Å, c = 9.169 (1) Å, $\alpha = 91.12$ (2)°, $\beta = 89.72$ (2)°, $\gamma = 116.60$ (1)°, V = 1233.8 (0) Å³, and Z = 2. Data were collected at 25 °C on a Rigaku AFC-5 diffractometer with graphite-monochromated Mo K α ($\lambda = 0.71073$ Å) radiation using the ω -2 θ scan technique (2° < 2 θ < 60°).

The structure was solved by Patterson method and refined via standard least-squares and Fourier techniques. Solution and refinement were performed by using the UNICS III system for unique 4648 reflections with $F_o > 3\sigma(F_o)$. The positions of the ruthenium and the phosphorus atoms were revealed by the inspection of a Patterson map. In a difference Fourier map, calculated following refinement of all non-hydrogen atoms with the anisotropic thermal parameters, the peaks corresponding to the positions of all hydrogen atoms including the hydridic hydrogens bound to the ruthenium atom were found. Final cycle of block-diagonal least-squares refinement of the structure including the anisotropic thermal parameters for the non-hydrogen atoms and isotropic ones for all hydrogen atoms converged at R = 0.0283 for 404 variables.

Results and Discussion

Synthesis of Trihydride Complexes. Initial attempt to prepare $(\eta^5-C_5Me_5)RuH_3(PR_3)$ (2) starting from the corresponding ruthenium(IV) tribromide $(\eta^5-C_5Me_5)$ -RuBr₃(PR₃) met with little success. Whereas treatment Hydride and Borohydride Derivatives of $(C_5Me_5)Ru(PR_3)$

Figure 1. ¹H NMR spectra (500 MHz) for 2f measured in the mixed solvent of THF- d_8 and toluene- d_8 at various temperatures: (a) at 25 °C, (b) at -80 °C, (c) at -97.2 °C, and (d) at -117.5 °C.

-10.3

-10.4

-10.2

-10.1

of $(\eta^5-C_5Me_5)RuBr_3(PPh_3)$ with excess NaBH₄ in ethanol afforded the trihydride $(\eta^5-C_5Me_5)RuH_3(PPh_3)$ in 18% yield, the tribromides coordinating bulky phosphines such as PCy₃ or P(*i*-Pr)₃ could not be converted to the trihydrides by reaction with NaBH₄.⁴ The bulky ligands might prevent the access of the hydridic agent to the ruthenium(IV) center. Therefore this reaction was not investigated further, and the reaction of the sterically less congested ruthenium(III) dichlorides $(\eta^5-C_5Me_5)RuCl_2$ -(PR₃) (1) with NaBH₄ was attempted.

The reaction between $(\eta^5-C_5Me_5)RuCl_2(PPh_3)$ (1f) and NaBH₄ in ethanol proceeds smoothly to produce the colorless trihydride complex $(\eta^5-C_5Me_5)RuH_3(PPh_3)$ (2f) in high yield (eq 1). This method is widely applicable for

$$(C_5Me_5)RuCl_2(PR_3) \xrightarrow{\text{NaBH}_4} (C_5Me_5)RuH_3(PR_3)$$
(1)

$$\underline{1} \xrightarrow{\underline{2}}$$

$$PR_3 = PMe_3, PEt_3, P'Pr_3, PCy_3, PPh_2Me, PPh_3$$

Figure 2. ORTEP drawing of 2f. Hydrogen atoms are not shown except for metal hydrides, HR1-HR3.

Figure 3. ORTEP drawing of 2f, viewing approximately along the Ru-Cp' centroid vector.

the synthesis of the trihydridoruthenium(IV) complexes having a variety of phosphine ligands. Even in the reaction of $(\eta^5-C_5Me_5)RuCl_2(PCy_3)$ with NaBH₄, trihydride $(\eta^5-C_5Me_5)RuH_3(PCy_3)$ (2d) was isolated in 65% yield. Trihydrides 2a-f were characterized by standard analytical and spectroscopic methodology. The yields and the selected spectroscopic data of trihydrides 2a-f are listed in Table I.

The key spectral features of 2 that characterize its structural type are the IR and ¹H NMR parameters associated with the hydride ligands. The IR spectra of the trihydrides reveal the sharp absorptions attributable to the stretching vibration of Ru–H bond in the region of 1960–1999 cm⁻¹. In the ¹H NMR of 2, the resonances due to ruthenium-bound hydrogen atoms appear at -9.7 to -11.1 ppm as doublet (${}^{2}J_{\rm PH} = 20-22$ Hz). In addition, the hydride resonances shift by substitution of the phosphine ligands and the order of the chemical shifts seemed to be consistent with that of electronic parameters of the tertiary phosphines, PPh₃ < PPh₂Me < PMe₃ < PEt₃ < P(*i*-Pr)₃ < PCy₃, reported by Tolman.¹¹

For the seven-coordinate trihydrides $(\eta^5-C_5Me_5)MH_3(L)$ the following two idealized structures are possible: "four-legged piano stool (C_s) " (A) and the "trigonal bipyramid (C_{3v}) " (B). The hydride ligands in the "pianostool" trihydride A should be distinguished between the magnetically equivalent two cis hydrides and the nonequivalent trans one. Such a structure has been predicted

Table II. Final Positional Parameters with EstimatedStandard Deviations for 2f at 25 °Ca

atom	x	У	z
Ru	0.0073 (0)	0.1760 (0)	0.2538 (0)
P	0.2026(1)	0.2947(1)	0.3476(1)
C(1)	0.3308 (2)	0.2480(2)	0.3381(3)
C(2)	0.3419 (3)	0.1907 (3)	0.2129(3)
C(3)	0.4407 (3)	0.1586 (3)	0.2005 (3)
C(4)	0.5287(3)	0.1816 (3)	0.3121(4)
C(5)	0.5172(3)	0.2372(3)	0.4371(4)
C(6)	0.4204 (3)	0.2712(2)	0.4501 (3)
C(7)	0.2853(2)	0.4389(2)	0.2679 (3)
C(8)	0.4079 (3)	0.4834(3)	0.2087(4)
C(9)	0.4617(3)	0.5915(3)	0.1450 (4)
C(10)	0.3953 (3)	0.6555(3)	0.1423(4)
C(11)	0.2738(3)	0.6131(3)	0.2034 (3)
C(12)	0.2196 (3)	0.5054(2)	0.2644(3)
C(13)	0.2024(2)	0.3306(2)	0.5430 (3)
C(14)	0.1329 (3)	0.2411(3)	0.6366 (3)
C(15)	0.1291(3)	0.2633(3)	0.7858(3)
C(16)	0.1934(3)	0.3742(3)	0.8400(3)
C(17)	0.2620(3)	0.4629(3)	0.7494(3)
C(18)	0.2686(3)	0.4415(3)	0.5998 (3)
C(19)	-0.2058 (2)	0.0659(2)	0.2448(3)
C(20)	-0.1791(2)	0.1251(2)	0.3824(3)
C(21)	-0.1274(2)	0.2449(2)	0.3563 (3)
C(22)	-0.1216(2)	0.2605(2)	0.2022(3)
C(23)	-0.1698(2)	0.1493(2)	0.1329 (3)
C(24)	-0.2779 (3)	-0.0626(3)	0.2213(4)
C(25)	-0.2141(3)	0.0708(3)	0.5293(4)
C(26)	-0.1017(3)	0.3354(3)	0.4723(4)
C(27)	-0.0928 (3)	0.3694(3)	0.1246(4)
C(28)	-0.1965 (3)	0.1246(3)	-0.0268(4)
HR(1)	0.037(3)	0.094(2)	0.348 (3)
HP(2)	0.095(3)	0.219(2)	0.112(3)
nn(3)	0.038 (3)	0.091(3)	0.181(3) 0.191(3)
п2 Ц9	0.260(3)	0.176(2)	0.131(3) 0.109(2)
пз Ц/	0.440(3) 0.505(2)	0.110(3) 0.156(2)	0.100(3)
114 115	0.555(3)	0.150 (3)	0.307(4) 0.507(4)
HG	0.074(3)	0.252(3)	0.507(4)
110 118	0.410 (3)	0.314(2)	0.000 (3)
HQ	0.549 (3)	0.440(3)	0.203(3)
H10	0.0434(3)	0.022(3)	0.103(4) 0.097(3)
H11	0.227(3)	0.661(2)	0.001(0) 0.204(3)
H12	0.138(3)	0.480(2)	0.307(3)
H14	0.086(3)	0.164(2)	0.601(3)
H15	0.076 (3)	0.195(3)	0.842(3)
H16	0.187(3)	0.393 (3)	0.942 (3)
H17	0.307 (3)	0.540 (3)	0.784(3)
H18	0.320 (3)	0.503(2)	0.536 (3)
H24(1)	-0.246 (3)	-0.087 (3)	0.132(4)
H24(2)	-0.258(3)	-0.099 (3)	0.307 (4)
H24(3)	-0.373 (4)	-0.084 (3)	0.235 (4)
H25(1)	-0.205 (3)	0.004 (3)	0.529 (3)
H25(2)	-0.161(3)	0.122(3)	0.601 (4)
H25(3)	-0.305 (3)	0.051 (3)	0.543 (4)
H26(1)	-0.040 (3)	0.341(3)	0.540 (4)
H26(2)	-0.178 (3)	0.338 (3)	0.500 (4)
H26(3)	-0.057 (3)	0.419 (3)	0.438 (4)
H27(1)	-0.054 (3)	0.433 (3)	0.182 (4)
H27(2)	-0.177 (3)	0.365 (3)	0.081(4)
H27(3)	-0.039 (3)	0.381(3)	0.043 (4)
H28(1)	-0.188 (3)	0.057 (3)	-0.057 (3)
H28(2)	-0.287(3)	0.114(3)	-0.045(3)
п2ð(3)	-0.141 (3)	0.184(3)	-0.081 (4)

^a Numbers in parentheses are errors in the last significant digit.

previously for $(\eta^5-C_5Me_5)OsH_3(CO)^{12}$ on the basis of the ¹H NMR study and observed crystallographically for $(\eta^5-C_5Me_5)IrH_3(SnPh_3)$.¹³ On the other hand, Davies et al. concluded on the basis of the NMR study that $(\eta^5-C_5Me_5)IrH_3(\eta^5-Q_5Me_5)IrH_3(\eta^5-Q_5Me_5)$.

 C_5H_5)RuH₃(PPh₃) presumably favored the C_{3v} structure B by the steric requirement of the bulky triphenylphosphine ligand.³

The ¹H NMR parameter for the hydride ligands of 2f measured in the mixed solvent of THF- d_8 and toluene- d_8 (5:1 v/v) at -80 °C was essentially identical with that measured at 25 °C though the signal was broadened to some extent (Figure 1a,b). When the solution was cooled to -97.2 °C, decoalescence of the signal of the three hydrides was observed (Figure 1c). Although the resonances for the three hydrides could not be well resolved even at -117.5 °C (Figure 1d), these data are in conflict with the C_{3v} structure B of complex 2f.

X-ray Crystal Structure Analysis of 2f. Trihydride complex 2f was prepared by reacting $(\eta^5-C_5Me_5)RuCl_2$ -(PPh₃) (1f) with excess NaBH₄ in ethanol as described in the Experimental Section. Recrystallization of the crude product from diethyl ether upon cooling at -30 °C yielded the colorless prisms suitable for a structure determination by X-ray diffraction. Complex 2f crystallizes in the space group $P\overline{1}$. Two different ORTEP views of the molecule appear in Figures 2 and 3. Final atomic coordinates and anisotropic thermal parameters are given in Tables II and III, respectively. Important bond lengths and angles are given with estimated standard deviations in Table IV according to the atom labeling scheme in Figures 2 and 3.

The molecule adopts a piano-stool configuration in analogy with that of $(\eta^5 \cdot \hat{C}_5 Me_5)$ IrH₃(SnPh₃)¹³ or $(\eta^5 \cdot \hat{C}_5 Me_4 Et)$ RuBr₃(CO).¹⁴ The Ru, P, and HR3 atoms and the Cp' centroid lie in a molecular pseudomirror plane within experimental error. The parameters associated with the $(\eta^5$ -C₅Me₅)Ru fragment of **2f** are unexceptional. Thus, the Ru-Cp' centroid distance of 1.91 Å and the average Ru-C(ring) distance of 2.26 Å are typical of the opensandwich Cp' complexes of group VIII (8-10¹⁸) metals. The five-membered ring is effectively planar, and the substituent carbon atoms are lying out of the mean plane in a direction away from the ruthenium atom, by an average distance of 0.17 Å. The average Ru-H distance of 1.53 Å is comparable with the values of 1.49 Å in RuH- $(BH_4)(PMe_3)_{3,}^{15}$ 1.594 Å in $(\eta^5-C_5Me_5)IrH_2(SiEt_3)_2$,¹⁶ and 1.53 Å in $(\eta^5-C_5Me_5)IrH_3(SnPh_3)$.¹³ As observed in the structure of the analogous iridium trihydride (η^5 -C₅Me₅)-IrH₃(SnPh₃), the Ru-H bond length of 1.46 Å for the hydrides trans to the phosphine ligand is significantly shorter than those of 1.54 and 1.60 Å for the hydrides cis to the phosphine ligand. Elongation of the Ru-H bond cis to the phosphine ligand would possibly be explained due to the relative trans influence order of $PR_3 < H$.

Preparation of Tetrahydroborate Complexes 3. We attempted the reaction of 1 with $NaBH_4$ in tetrahydrofuran to clarify the mechanism of formation of the trihydrides 2. Treatment of 1 with an excess of $NaBH_4$ in

⁽¹²⁾ Hoyano, J. K.; Graham, W. A. G. J. Am. Chem. Soc. 1982, 104, 3722.

⁽¹³⁾ Gilbert, T. M.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1985, 107, 3508.

⁽¹⁴⁾ Nowell, I. W.; Tabatabaian, K.; White, C. J. Chem. Soc., Chem. Commun. 1979, 547.

⁽¹⁵⁾ Statler, J. A.; Wilkinson, G.; Thornton-Pett, M.; Hursthouse, M.
B. J. Chem. Soc., Dalton Trans. 1984, 1731.
(16) Ricci, J. S., Jr.; Koetzle, T. F.; Fernandez, M.; Maitlis, P. M. Acta

⁽¹⁶⁾ Ricci, J. S., Jr.; Koetzle, T. F.; Fernandez, M.; Maitlis, P. M. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1984, A40, C301.

Table III. Anisotropic temperature factors of the Non-Hydrogen Atoms	s in 2	2f
--	--------	----

		inisotropic remper	ature ractors of	the non-ityuro	gen Atoms in 21		
 atom	$10^4 B_{11}$	$10^4 B_{22}$	$10^4 B_{33}$	$10^4 B_{12}$	10 ⁴ B ₁₃	$10^4 B_{23}$	
Ru	50 (0)	47 (0)	78 (0)	21 (0)	-8 (0)	-5 (0)	
Р	49 (1)	50 (0)	62 (1)	21 (0)	-3 (0)	0 (0)	
C(1)	49 (2)	55 (2)	84 (3)	22 (2)	0 (2)	2 (2)	
C(2)	71 (3)	84 (3)	100 (4)	42 (2)	-4 (2)	-9 (2)	
C(3)	82 (3)	87 (3)	134 (4)	44 (2)	12 (3)	-12 (3)	
C(4)	63 (3)	80 (3	199 (6)	40 (2)	5 (3)	6 (3)	
C(5)	94 (3)	97 (3)	147 (5)	42 (2)	-22(3)	-3 (3)	
C(6)	62 (2)	74 (2)	99 (4)	29 (2)	-12 (2)	-5 (2)	
C(7)	57 (2)	55 (2)	63 (3)	16 (2)	-5 (2)	-2(2)	
C(8)	70 (3)	78 (3)	148 (5)	29 (2)	24 (3)	27 (3)	
C(9)	94 (4)	91 (3)	190 (6)	22 (3)	50 (4)	45 (3)	
C(10)	121 (4)	64 (2)	122 (4)	19 (2)	2 (3)	26 (3)	
C(11)	114 (4)	66 (2)	113 (4)	40 (2)	-6 (3)	14(2)	
C(12)	79 (3)	65 (2)	103 (4)	31 (2)	5 (3)	10 (2)	
C(13)	55 (2)	71 (2)	67 (3)	32 (2)	-4 (2)	1 (2)	
C(14)	74 (3)	91 (3)	83 (3)	31 (2)	1 (2)	12 (2)	
C(15)	98 (3)	135 (4)	77 (4)	53 (3)	17 (3)	23 (3)	
C(16)	122 (4)	160 (4)	70 (3)	90 (4)	1 (3)	-11 (3)	
C(17)	114 (4)	112 (3)	96 (4)	66 (3)	-24 (3)	-37 (3)	
C(18)	81 (3)	81 (2)	84 (3)	38 (2)	-9 (2)	-12 (2)	
C(19)	54 (2)	51 (2)	129 (4)	13 (2)	-13(2)	-1 (2)	
C(20)	50 (2)	72 (2)	105 (4)	18 (2)	7 (2)	10 (2)	
C(21)	50 (2)	71 (2)	118 (4)	29 (2)	-3 (2)	-14(2)	
C(22)	56 (2)	57 (2)	120 (4)	27 (2)	-7 (2)	4 (2)	
C(23)	56 (2)	69 (2)	105 (4)	28 (2)	-21(2)	-4 (2)	
C(24)	107 (4)	58 (2)	207 (6)	9(2)	-24 (4)	-5 (3)	
C(25)	107 (4)	123 (4)	131 (5)	25 (3)	24 (3)	33 (3)	
C(26)	86 (3)	95 (3)	168 (5)	41 (3)	8 (3)	-52 (3)	
C(27)	118 (4)	75 (3)	183 (6)	50 (3)	-27 (4)	20 (3)	
C(28)	108 (4)	108 (3)	119 (4)	41 (3)	-40 (3)	-16 (3)	

Table IV. Selected Lengths (Å) and Angles (deg) for 2f

Bond Lengths							
Ru-HR(1)	1.54 (4)	P-C(13)	1.843 (3)				
Ru-HR(2)	1.60 (3)	C(19)-C(24)	1.510 (4)				
Ru-HR(3)	1.46 (4)	C(20)-C(25)	1.502 (5)				
Ru-C(19)	2.230 (2)	C(21)-C(26)	1.500 (5)				
Ru-C(20)	2.282 (3)	C(22)–C(27)	1.497 (5)				
Ru-C(21)	2.306 (3)	C(23)-C(28)	1.497 (4)				
Ru-C(22)	2.270 (3)	C(19)-C(20)	1.426 (4)				
Ru–C(23)	2.218 (3)	C(20)-C(21)	1.422 (4)				
Ru–P	2.252 (1)	C(21)-C(22)	1.428 (4)				
P-C(1)	1.839 (3)	C(22)-C(23)	1.433 (4)				
P-C (7)	1.846 (3)	C(23)-C(19)	1.428 (4)				
Bond Angles							
HR(1)-Ru-HR(2)) 114.2 (18)	Ru-P-C(1)	118.0 (1)				
HR(1)-Ru-HR(3) 61.1 (18)	Ru-P-C(7)	116.5 (1)				
HR(2)-Ru-HR(3)) 64.5 (17)	Ru-P-C(13)	114.9 (1)				
P-Ru-HR(1)	78.3 (9)	C(1) - P - C(7)	101.1 (1)				
P-Ru-HR(2)	77.3 (9)	C(1)-P-C(13)	102.2 (1)				
P-Ru-HR(3)	100.0 (12)	C(7)-P-C(13)	101.6 (1)				

tetrahydrofuran at ambient temperature produced a redorange solution from which the novel tetrahydroborate complexes $(\eta^5-C_5Me_5)Ru(PR_3)(BH_4)$ (3a-f) could be isolated in high yields as the air- and moisture-sensitive orange needles (eq 2). The tetrahydroborate complexes 3

were characterized by spectroscopic and analytical methodology. The yields and the selected spectroscopic data of the tetrahydroborate complexes 3a-f are given in Table V

The IR and ¹H NMR spectra of 3 strongly suggested the incorporation of the tetrahydroborate anion into the com-

Figure 4. ¹H NMR spectrum (500 MHz) for 3a in C₆D₆ at 25 °C.

plex. Absorption around 2450–2300 cm⁻¹ in the IR spectra of 3a-f are assigned to the B-H(terminal) stretching bands. The coordination of the tetrahydroborate ion via two Ru-H-B bridges in 3 was established by the characteristic ¹H NMR signals. The ¹H NMR spectrum of 3a measured in C₆D₆ at 25 °C reveals three resonance peaks for hydride ligands at δ 2.14 (1 H, $w_{1/2}$ = 180 Hz), -3.50 (1 H, $w_{1/2} = 145$ Hz), and -11.05 (2 H, $w_{1/2} = 115$ Hz) (Figure 4). The resonances at δ 2.14 and -3.50 are due to two nonequivalent B-H nuclei, and the resonance at δ -11.05 is due to two equivalent Ru-H-B bridges.

Protonolysis of a solution of 3a-f, either by reaction with ethanol or by filtration through alumina (Merck Aluminium oxide 90 (Art. 1097)), yields quantitatively the corresponding trihydride complexes 2a-f (eq 3). Alcoholysis of 3a with EtOD instead of EtOH affords the monodeuteriated complex $(\eta^5 - C_5 Me_5) Ru H_2 D(PMe_3)$ (2a-d₁).

Table V. Yields and Selected Spectral Data of $(\eta^5 - C_5 Me_5) Ru(PR_3)(BH_4)$ (3)

		vield		IR ^e			
	PR_3 %		$\% C_5 Me_5^b$	^b Ru-H-B ^c other assignmts		$\nu(\mathrm{RuH}_{2}\mathrm{BH}_{2}), \mathrm{cm}^{-1}$	
3a	PMe ₃	65	1.67 (1.2)	$-11.05 (-3.50, 2.06)^d$	$0.85 (d, 9 H, {}^{2}J_{PH} = 9.2 Hz, P-CH_{3})$	2438, 2363, 228i	
3b	PEt_3	65	1.69 (1.2)	$-11.63 (-3.22, 2.10)^d$	0.84 (dt, 9 H, ${}^{3}J_{PH} = 15.4$ Hz, ${}^{3}J_{HH} = 7.5$ Hz, P-C-CH ₃), 1.55	2433, 2352, 2284	
	Ť				$(dq, 6 H, {}^{2}H_{PH} = 7.8 Hz, P-CH_{2}-)$		
3c	$P-i-Pr_3$	84	1.68(1.2)	-12.56	1.09 (dd, 18 H, ${}^{3}J_{\rm PH} = 12.3$ Hz)	2393, 2318	
3d	PC _{v3}	99	1.73(1.3)	-12.36	$1.20-2.00 \text{ (m, 33 H, P-C_6H_{11})}$	2408, 2329	
3e	PPh_2Me	74	1.52 (1.5)	-12.00	1.89 (d, 15 H, ${}^{2}J_{PH} = 8.1$ Hz, P–CH ₃), 6.80–7.70 (m, 10 H,	2387, 2292, 2223	
	-				$P-C_{6}H_{5}$)		
3f	PPh_3	97	1.51(1.5)	-12.05	$6.90-7.80 \text{ (m, 15 H, P-C_6H_5)}$	2450, 2388, 2326	

^aShifts are in ppm, relative to SiMe₄ at 100 MHz and 30 °C in C_6D_6 . ^bNumbers in parentheses is ⁴J_{PH} in Hz. ^cNumber in parentheses is ²J_{PH} in Hz. ^dTerminal hydrides. ^eMeasured in KBr.

Figure 5. ¹H NMR spectra (100 MHz) for **2f** at 25 °C under irradiation of UV light (300 nm): (a) in C_6D_6 without irradiation, (b) after irradiation for 15 min, (c) after irradiation for 1 h, and (d) after irradiation for 1 h in C_6H_6 .

(

$$C_{5}Me_{5}Ru(PR_{3})(BH_{4}) \xrightarrow{\text{EtOH or alumina}} (C_{5}Me_{5})RuH_{3}(PR_{3}) (3)$$

$$\underline{3} \xrightarrow{2}$$

Mechanism of the Formation of Trihydrides 2. Two possible mechanisms for the formation of the ruthenium-(IV) trihydride complexes 2 starting from the ruthenium-(III) dichloride are shown in Scheme I.

The first mechanism (mechanism A) includes the disproportionation of ruthenium(III) dihydride 4, giving 2 and monohydride 5, which would be lead to trihydride 2 either by the oxidative addition of dihydrogen evolved in reaction A-1 or by successive addition of hydride and proton (eq A-2). We have examined the oxidative addition of H₂ to a ruthenium(II) monohydride and the reaction of the monohydride with NaBH₄ in ethanol. The reaction of $(\eta^5-C_5Me_5)RuH(PPh_2Me)_2$ with H₂ (5 atm) in ethanol in a pressure bottle gave trihydride 2e in a 2% yield at most (eq 4). Treatment of $(\eta^5-C_5Me_5)RuH(PPh_2Me)_2^{17}$ with

$$(C_{5}Me_{5})RuH(PPh_{2}Me)_{2} \xrightarrow{H_{2}(5 \text{ atm})} (C_{5}Me_{5})RuH_{3}(PPh_{2}Me) (4)$$

$$\xrightarrow{rt, 50 h} C_{5}Me_{5}(RuH_{3}(PPh_{2}Me) (4)$$

excess NaBH₄ in ethanol resulted in the recovery of the starting monohydride. We cannot yet rule out conclusively the mechanism A from these results because the reactivities of $(n^5-C_5Me_5)RuH(PPh_2Me)_2$ might be different from those of the intermediary coordinatively unsaturated monohydride 5.

The most reasonable pathway from complex 1 to 2 would appear to involve an initial reduction of 1 to the

⁽¹⁷⁾ Monohydride (η^5 -C₅Me₅)RuH(PPh₂Me)₂ was derived from the corresponding monochloride by treatment with NaBH₄ in ethanol. Suzuki, H.; Lee, D. H.; Oshima, N.; Narasaka, S.; Xi, Z.; Moro-oka, Y., manuscript in preparation.

⁽¹⁸⁾ In this paper the periodic group notation in parentheses is in accord with recent actions by IUPAC and ACS nomenclature committees. A and B notation is eliminated because of wide confusion. Groups IA and IIA become groups 1 and 2. The d-transition elements comprise groups 3 through 12, and the p-block elements comprise groups 13-18. (Note that the former Roman number designation is preserved in the last digit of the new numbering: e.g., III \rightarrow 3 and 13.)

ruthenium(II) species (η^5 -C₅Me₅)RuCl(PR₃) (7). We previously showed that complex 1 was easily reduced to the ruthenium(II) complexes in ethanol in the presence of varieties of ligands.¹⁰ A nucleophilic displacement of a chloride ion by a tetrahydroborate ion gives 3, which is immediately converted to trihydride 2 by protonolysis with ethanol as shown above.

H/D Exchange Reaction under UV Irradiation. While the thermal stability of the trihydride complexes 2 is remarkably high with little or no decomposition occurring over a period of hours at 70 °C in toluene, the irradiation of 2c and 2f in C_6D_6 solution with ultraviolet light caused the H/D exchange reaction among the solvent, the hydride ligands, and the coordinated phosphine.

The photolysis (>300 nm) of **2f** $(1.05 \times 10^{-1} \text{ M in } \text{C}_6\text{D}_6)$ was conducted in a sealed NMR sample tube at 25 °C and monitored by means of ¹H NMR spectroscopy (Figure 5). After 1 h of irradiation, the resonance signals of the coordinated triphenylphosphine and the hydride ligands completely disappeared. Photolysis of **2f** in C₆H₆ in a sealed NMR sample tube at 25 °C for 1 h caused no apparent change in the ¹H NMR spectrum. The result suggests that the product of photolysis in C₆D₆ in a sealed tube is the trideuteride $(\eta^5 - \text{C}_5\text{Me}_5)\text{RuD}_3[\text{P}(\text{C}_6\text{D}_5)_3]$.

The following two paths, a and b, are possibly proposed for the deuteriation of the meta and para positions of the coordinated triphenylphosphine in 2f: (a) via intermolecular metalation of PPh₃ (Scheme II) and (b) via phosphidoruthenium intermediates. Path a includes intermolecular metalation of coordinated triphenylphosphine at the meta and para positions. Path b proceeds via an oxidative cleavage of the P–C bond of triphenylphosphine. The photolysis of 2f was conducted in toluene at 25 °C for 5 h to elucidate the mechanism. The reaction path b could be ruled out since no formation of the tolylated or the benzylated phosphine in the photolysis products was confirmed by means of ¹³C NMR spectroscopy.

The H/D exchange reaction at the sp³ carbon atom is also observed in the photolysis of the trihydride having a trialkylphosphine ligand. The irradiation of **2c** with UV light (>300 nm) in C₆D₆ at 25 °C caused the H/D exchange among the solvent, the hydride ligands, and the distal hydrogens of the coordinated triisopropylphosphine to give $(\eta^5-C_5Me_5)RuD_3[P(CH(CD_3)_2)_3]$ (**2c**- d_{21}). The trihydride **2c** was recovered by the photolysis of the deuteriated complex **2c**- d_{21} in C₆H₆ at 25 °C (eq 5). The reaction

$$(C_{5}Me_{5})RuH_{3}[P(CH(CH_{3})_{2})_{3}] \xrightarrow[h\nu, C_{6}B_{6}]{} (C_{5}Me_{5})RuD_{3}[P(CH(CD_{3})_{2})_{3}] (5)$$

$$\frac{2c}{2c} \xrightarrow{} (c_{5}Me_{5})RuD_{3}[P(CH(CD_{3})_{2})_{3}] (5)$$

would proceed via the evolution of dihydrogen, giving a coordinatively unsaturated species, $(\eta^5-C_5Me_5)RuH[P(i-Pr)_3]$, followed by the metalation of sp³-hybridized terminal C-H bonds of the coordinated phosphine to form a pseudometalacyclobutane intermediate as postulated in the photolysis of $(\eta^6-C_6H_6)RuH_2[P(i-Pr)_3]^{2d}$ or the thermal H/D exchange by $RuH_4[P(i-Pr)_3]_3$.^{2b}

Acknowledgment. We thank the Instrument Center, Institute for Molecular Science, for the use of X-ray diffractometer (Rigaku AFC-5). We are grateful to Drs. T. Inabe and T. Mori at Institute for Molecular Science for aid of X-ray structural analysis. Financial support for this work was generously provided in part by grants from the Kawakami Memorial Foundation and the Ministry of Education, Science and Culture of the Japanese Government (No. 61225006).

Registry No. 1a, 105711-27-1; **1b,** 108083-33-6; **1c,** 105711-24-8; **1d,** 105711-25-9; **1e,** 108083-35-8; **1f,** 105711-26-0; **2a,** 105744-77-2; **2b,** 108083-32-5; **2c,** 105711-28-2; **2d,** 105711-29-3; **2e,** 108083-34-7; **2f,** 105744-76-1; **3a,** 108083-36-9; **3b,** 108083-37-0; **3c,** 108083-38-1; **3d,** 108083-39-2; **3e,** 108083-40-5; **3f,** 108083-41-6; (η^{5} -C5Me5)-RUH(PPh2Me)2, 108083-42-7.

Supplementary Material Available: Tables of crystal data, interatomic distances, angles, atomic coordinates, and thermal parameters (22 pages); a listing of observed and calculated structure factor amplitudes (24 pages). Ordering information is given on any current masthead page.