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Summary: The insertion of CO into Zr-C bond(s) within

—_

the 1-sila-3-zirconacylcobutane ring of Cp,Zr-
——————

(CH,SiMe,CH,) and Cp*,Zr(CH,SiMe,CH,), where Cp =
7°-CsH; and Cp* = 1°-C;Me;, has been examined. In
the former case, the insertion of 1 equiv of CO is followed
by an intramolecular 1,2-silyl shift and the formation of an

oligomeric zirconaoxirane species, Cp,Zr(OC(=CH,)-

—

SiMe,CH,),. Comparable studies of the carbonylation of
e ——)

Cp* ,Zr(CH,SiMe,CH,) have shown that this reaction can
lead to the formation of two entirely different di-insertion

products—a cyclic dienolate, Cp*,Zr(OC(==CH,)SiMe,-
(CH,=)CO0), and a bicyclic enediolate, Cp*,Zr(OC-
(CH,SiMe,CH,—=CO).

The migratory insertion of CO into a metal-carbon bond
represents one of the most fundamental reactions in or-
ganometallic chemistry.! Although this reaction has been
studied for a wide range of metal-alkyl complexes, it has
been examined for only a relatively few metallacyclic
compounds.>? - Previously, we demonstrated* that the

electron-deficient Zr center in Cp,Zr(CH,SiMe,CH,) can
induce the lateral insertion of a formaldehyde unit into
a Zr—C bond of the 1-sila-3-zirconacyclobutane ring. On
the basis of this result, subsequent studies of the reactivity
of CO with this and related 1-sila-3-zirconacyclobutane
complexes have been undertaken.

Quantitative gas measurements using a Toepler pump

demonstrate that Cp,Zr(CH,SiMe,CH,) readily inserts 1
equiv of CO at 25 °C within 30 min. The identity of this
metallacyclic product was established by elemental anal-
ysis, hydrolysis, and NMR measurements. A combination
of GC/MS and 'H NMR analyses® revealed that the sole
organic product generated upon hydrolysis is the ketone

(1) The general aspects of CO insertion into a metal-alkyl bond are
described in: Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G.
Principles and Applications of Organotransition Metal Chemistry;
University Science Books: Mill Valley, CA, 1987.

(2) (a) McDermott, J. X.; Wilson, M. E.; Whitesides, G. M. J. Am.
Chem. Soc. 1976, 98, 6529 and references cited therein. (b) Grubbs, R.
H.; Miyashita, A.; Liu, M.; Burk, P. J. Am. Chem. Soc. 1978, 100, 2418.
(c) Manriquez, J. M.; McAlister, D. R.; Sanner, R. D.; Bercaw, J. E. J.
Am. Chem. Soc. 1978, 100, 2716. (d) Blenkers, J.; deLiefde Meijer, H
J.; Teuben, J. H., Organometallics, 1983, 2, 1483. (e) Erker, G. Acc.
Chem. Res. 1984, 17, 103. (f) Meinhart, J. D.; Santarsiero, B. D.; Grubbs,
R. H. J. Am. Chem. Soc. 1986, 108, 3318. (g) Straus, D. A. Ph.D. Thesis,
California Institute of Technology, 1983.

(3) (a) Simpson, S. J.; Andersen, R. A. J. Am. Chem. Soc. 1981, 103,
4063. (b) Planalp, R. P.; Andersen, R. A. Organometallics 1983, 2, 1675.

(4) Tikkanen, W. R.; Petersen, J. L. Organmetallics 1984, 3, 1651,

(5) 'H NMR spectrum (CgHg-dg): 6 1.97 (CHg, 8), 0.03 (SiMe, s) (1:3).
Parent ion peak: m/e 1186.

0276-7333/87/2306-2007$01.50/0

I

/‘/’\
{ C/v Cﬂ/
i Ggen” @ ~
\ ‘\‘)
018’( c22 L~ (@’O N,
6
\/@\A /VO
q \/ Sl
~ ol 02— C3/ ¥<
%12\\@}2‘% N O*J'\;“
EB—ms ~ 5)
o o8 /019\ -0
A
C1s D s ')
g~ L

\/
Figure 1. Perspective view of the molecular configuration of
C£*2Zr(OC(=CH2)SiMez(CH2=)CO). Selected bond distances
(A) and bond angles (deg) for the 1,5-dioxa-3-sila-6-zircona-
cyclohexane ring: Zr-01, 1.990 (2); Zr-02, 1.987 (2); 01-C1, 1.361
(5); 02-C3, 1.363 (4); C1-C2, 1.318 (6); C3-C4, 1.316 (6); O1-
Zr-02, 89.7 (1); Zr-0-C, 139.6 (av); O-C-Si, 118.0 (av).

CH C(=0)SiMe;. The observation of a quartenary carbon
resonance at 6 180.7 and a resonance pattern for an exo-
cyclic methylene at 6 93.6 (dd, Jic_y = 152, 157 Hz) in the
gated nondecoupled *C NMR spectrum provided further
evidence indicating the presence of the five-membered
metallacyclic ring structure I. However, 'H and *C NMR

H

/0 H
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spectra® of the CO insertion product recorded within the
temperature range (70 to +75 °C) indicated the presence
of an equilibrium between two structurally similar species,
presumably oligomer A and monomer B, in solution. With
the assumption that the oligomer possesses a comparable
structure to several dimeric zirconaoxirane species linked
by Zr<—O-Zr bridges,’ the oligomer:monomer ratio as de-
termined from the relative intensities of the Cp ring proton
resonances is 0.125 at 25 °C. Unfortunately, the low

solubility of [CpyZr(OC(=CH,)SiMe,CH,)], has pre-
vented efforts to determine its molecular weight and thus
confirm its nuclearity, n

One approach that has been employed?® to inhibit the
formation of oligomeric species for early-transition-metal

(8) [Cp,Zr(OC(=CH,)SiMe,CH,)],: IR (KBr pellet) »(C=C) 1640,
»(CO) 1200 cm™. Anal. Caled for C,5H;00SiZr (empirical formula): C,
53.67; H, 6.02. Found: C, 53.69; H, 6.14. NMR spectra for species A: 'H
NMR spectrum (CsHe-de) & 5.89 (CsHj;, 8) 4.73, 4.36 (=CH,, 8) 1.27
(ZrCHZ, 8), 0.43 (SiCHj, s); gated nondecoupled l3C NMR spectrum (mult,
Juse-y in Hz) § 180.7 (OC=, s) 112.6 (C;H;, d qt, 172, 7), 93.6 (—CH,, dd,
157, 152), 32.9 (ZrCH,, t, 119), 3.0 (SiCH;, q, 119). NMR spectra for
species B: 'H NMR spectrum (CgHg-dg) 8 5.94 (C4Hj, 8), 4.68, 4.50 (=
CH,, 8), 1.27 (ZrCH,, s), 0.36 (SiCH,, s); gated nondecoupled *C NMR
spectrum (mult, Juisc.y in Hz) § 181.0 (OC=, s), 111.1 (C;H;, d qt, 172,
7), 100.8 (=CH,, dd, 157, 152), 22.8 (ZrCH,, t, 119), 2.3 (SiCHj, q, 119).

(7) (a) Takaya, H.; Yamakawa, M.; Mashima, K. J. Chem. Soc., Chem.
Commun. 1983, 1283. (b) Erker, G.; Dorf, U.; Czisch, P.; Petersen, J. L.
Organometallics 1986, 5, 668, (c) Bristow, G. S.; Hitchcock; P. B.; Lap-
pert, M. F. J. Chem. Soc., Chem. Commun. 1982, 462.

(8) Bercaw, J. E. Adv. Chem. Ser. 1978, No. 167, 136.
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metallocene systems involves the replacement of Cp by

Cp*. The synthesis of Cp*;Zr(CH,SiMe,CH,)® was ac-
complished by the metathetical reaction of Cp*,ZrCl, and
[MgCH,SiMe,CH,], in refluxing toluene (48 h). De-
pending on the reaction conditions, the carbonylation of

Cp*,Zr(CH,SiMe,CH,) as monitored by NMR measure-
ments can follow two entirely different reaction pathways.
At room temperature, carbonylation proceeds with the
stepwise insertion of 2 equiv of CO (eq 1).1° The first CO
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insertion step is complete within several hours whereas the
second insertion is substantially slower. During each stage
of reaction 1, CO insertion is followed by an intramolecular
1,2-silyl shift, analogous to that observed for the reaction

of CO with Cp,Zr(CH,SiMe,CH,). The added steric bulk
of the Cp* ligands apparently ensures the accessibility of

a vacant metal orbital in Cp*2Z?(OC(=CH2)SiMeZéH2)
for interacting with a second equivalent of CO. The mo-

lecular structure of the di-insertion product Cp*,Zr(OC-

(=CH,)SiMe,(CH,=)CO) has been established by an
X-ray structure determination.!! A perspective view of
this zirconacyclic dienolate (Figure 1) reveals the presence
of two exocyclic methylene groups. Alternatively, if the

carbonylation of Cp*,Zr(CH,SiMe,CH,) is performed at
-78 °C, reductive coupling of two carbonyls is chserved
with the subsequent formation of a bicyclic endiolate,

Cp*QZr(OC(CHQSiMeZCH2)=CO) (eq 2).2 This dark red

0
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Cpxzzf\/si:ze o Zr\ | s":”f 2
€ -78°C e

0

(9) Cp*,Zr(CH,SiMe,CH,): 'H NMR spectrum (CgHg-dg) 6 1.78
(CCHa, 8), 0.74 (ZrCH,, 8), 0.34 (SiCH,, s); gated nondecoupled °C NMR
spectrum (mult, Jisc.y in Hz) 6 116.8 (CCH,, s), 48.1 (ZrCH,, t, 123), 12.8
(CCHs, q, 125), 2.78 (SiCH,, q, 118).

(10) (a) Cp*;Zr(OC(—CH,)SiMe;CH,): 'H NMR spectrum (CoHy-dy)
6 4.72, 4.26 (=CH,, s), 1.85 (CCHj, s), 0.68 (ZrCH,, s), 0.51 (SiCHj, s);
gated nondecoupled *C NMR spectrum (mult, Jisc_y in Hz) 8 179.2
(OC=, s), 119.8 (CCH,, s), 97.2 (=CH,, dd, 151, 156), 38.5 (ZrCH,, t, 115),

12.1 (CCH,, g, 125), 5.80 (SiCH,, q, 118). (b) Cp*,Zr(OC(=CH,)-

SiMe,(CHy,=)CO): 'H NMR spectrum (C;Hg-dg) 6 4.97, 4.53 (=CH,, 5),
1.88 (CCHj, s), 0.44 (SiCHj, s); gated nondecoupled 1*C NMR spectrum
(mult, Ji3c_y in Hz) § 171.5 (OC=, s), 120.9 (CCHj,, s), 101.5 (=CH,, dd,
151, 156), 11.1 (CCH,, q, 126), 1.15 (SiCHj, q, 117). Anal. Caled for
CyH40,8iZr: C, 61.97; H, 8.00. Found: C, 61.89; H, 8.04.

(11) (a) crystal data for Cp*Zr(OC(=CH,)SiMe,(CH,==)CO): space
group P2,/c,a = 8.681 (2) A, b = 20.933 (6) A, ¢ = 14.717 (5) A, 8 = 92.91
(3)°, V = 2671 (2) A% Z = 4, d_4q = 1.253 g/cm®. Of the 4372 unique
diffraction data collected within a detector range 5° < 26 < 48° (£h,k,l)
with Zr-filtered Mo Ka radiation, the 3501 data having F.2 > o(F.2) were
used in the structural analysis. Data collection, reduction, and refinement
procedures have been described elsewhere.!'® Full-matrix least-squares
refinement (based on F %) with anisotropic temperature factors for the
30 non-hydrogen atoms and fixed isotropic temperature factors for the
40 hydrogen atoms converged with final discrepancy indices of R(F,) =
0.047, R(F,% = 0.049, and R, (F,%) = 0.075 with o, = 1.30. (b) Jones, S.
B.; Petersen, J. L. Inorg. Chem,. 1981, 20, 2889.

(12) Cp*,Zr(OC(CH,SiMe,CH,)==C0): 'H NMR spectrum (CgH-dg)
4 1.87 (CHg, s), 1.74 (==CCH,, s), 0.22 (SiCHyj, s); gated nondecoupled 1*C
NMR spectrum (mult, Jisc_yy in Hz): 6§ 141.2 (0C==, s), 120.5 (CCHg, s),
22.0 (=CCH,, t, 124), 11.4 (CCH3, q, 1286), 0.03 (SiCHj, q, 118). Anal.
Caled for CygHy0,8iZr: C, 61.97; H, 8.00. Found: C, 61.94; H, 8.03.

Communications

compound exhibits a Ay, at 492 nm, which is comparable
to that reported by Hoffmann et al.!® for the structurally

similar endiolate Cp*,Zr{OC(Me)=(Me)CO), originally
prepared by Bercaw and co-workers® from the carbony-
lation of Cp*,ZrMe,.!* The reaction was repeated at —78
°C with only 1 equiv of CO. Following removal of solvent
and unreacted CO, a room-temperature 'H NMR mea-
surement of the product revealed that the principal in-

sertion adduct is Cp*,Zr(OC{(=CH,)SiMe,CH,) rather
than the enediolate. This result indicates that the re-
ductive CO coupling pathway will predominate at -78 °C
(after the first CO insertion step) only when a reasonably
large excess of CO is available. Under these conditions the
insertion of a second CO proceeds at a faster rate than the
first 1,2-silyl shift.

This intramolecular 1,2-silyl shift has been observed in
both cyclic® and acyclic!® organometallic systems with a
Si atom located in a 3-position relative to an electron-
deficient metal center. It is well-known in organosilicon
chemistry that a Si atom can stabilize a positive charge
at a 8-carbon via hyperconjugation.’® 1In light of recent
calculations by Hoffmann and co-workers,!” who suggest
that it may be more appropriate to describe the reactivity
of an #?-acyl (formed upon migratory insertion of CO into
a metal-alkyl bond) in terms of a “carbenium-type” rather
than “oxycarbene” interaction, one could envision each
1,2-sily! shift in these silazirconacyclic complexes as pro-
ceeding according to pathway 3. Studies are in progress
to investigate the mechanistic aspects of this intramolec-
ular 1,2-silyl shift.
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Angew. Chem., Int. Ed. Engl. 1985, 24, 712.

(14) A similar reductive coupling reaction has been observed for the
reaction of Cp*;M(CH,SiMe;); (M = Th, U) with CO by Marks and
co-workers, !5
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