Synthesis and Characterization of Neopentylaluminum Compounds

O. T. Beachley, Jr.,* and L. Victoriano

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214

Received April 10, 1987

The series of neopentylaluminum compounds, Al(CH₂CMe₃)₃, Al(CH₂CMe₃)₂H, Al(CH₂CMe₃)₂Br, (Me₃CCH₂)₂AlPPh₂, and (Me₃CCH₂)₂AlN(Me)H, have been prepared by reactions typical in organoaluminum chemistry and characterized by elemental and/or group analysis, cryoscopic molecular weight measurements in benzene solution, and IR and NMR spectroscopic data. All compounds in this series, except Al(CH₂CMe₃)₃, are associated in benzene solution. Even though the neopentyl group is considered a bulky ligand with significant steric effects, the Lewis acidity of $Al(CH_2CMe_3)_3$ has been established by the formation and characterization of adducts $LiAl(CH_2CMe_3)_4$, $(Me_3CCH_2)_3Al\cdotPPh_2H$, and $(Me_3CCH_2)_3Al\cdotN(Me)H_2$. However, since $Al(CH_2CMe_3)_3$ is monomeric in benzene solution, the factors influencing the degree of association of organoaluminum compounds are discussed. The crystalline hydride $Al(CH_2CMe_3)_2H$ has been prepared from $Al(CH_2CMe_3)_3$ and $LiAlH_4$. The other product was LiH rather than $LiAl(CH_2CMe_3)H_3$. These observations of products are unusual in organoaluminum chemistry.

Introduction

Organoaluminum compounds¹ play important roles in chemical synthesis and catalysis as well as in the deposition of semiconducting materials by vapor-phase epitaxy. Even though many organoaluminum compounds have been synthesized and fully characterized, relatively few compounds with bulky substituents have been described in detail. The new compound trimesitylaluminum² has been observed at room temperature to be a monomeric species in the solid state. Tri-tert-butylaluminum³ is also monomeric in benzene solution according to cryoscopic molecular weight measurements in benzene. In contrast, tris((trimethylsilyl)methyl)aluminum,^{4,5} Al(CH₂SiMe₃)₃, has been described as a monomer-dimer equilibrium mixture in benzene solution as have the related compounds⁶ Al(CH₂SiMe₃)₂Br and (Me₃SiCH₂)₂AlPPh₂, an amphoteric ligand to transition-metal carbonyl moieties.⁷ The related hydride⁶ Al(CH₂SiMe₃)₂H represented the first organoaluminum hydride that was a crystalline solid at room temperature. Cryoscopic molecular weight measurements in benzene solution were consistent with the existence of a trimer.

As part of our continuing studies of compounds of the group 13 elements with bulky substituents, we report the syntheses and characterizations of a series of neopentylaluminum derivatives including Al(CH₂CMe₃)₃, Al- $(CH_2CMe_3)_2Br$, $Al(CH_2CMe_3)_2H$, $(Me_3CCH_2)_2AlPPh_2$, and $(Me_3CCH_2)_2AlN(Me)H$. The purpose of our research was to study the steric and electronic effects of the neopentyl group on the Lewis acidity and association of organoaluminum derivatives. The results of these investigations also permit direct comparisons with the corresponding ((trimethylsilyl)methyl)aluminum derivatives. Even though the neopentyl and (trimethylsilyl)methyl groups are chemically similar, they might have very different steric and electronic effects when bound to aluminum.

Experimental Section

All compounds described in this investigation were extremely sensitive to oxygen and moisture and were manipulated in a standard vaccum line or a purified argon atmosphere. All solvents were purified before use. Aluminum(III) bromide was purified by sublimation under high vacuum at 60 °C immediately prior to use. Neopentyl chloride was purchased from Fairfield Chemicals and was distilled prior to use. Neopentyllithium was prepared by reacting 12–14 g of Li wire, containing 1% Na, with 80 g (0.75 mol) of Me₃CCH₂Cl in 500 mL of hexane, a variation of a previously published method.⁸ After ultrasonification of the reaction mixture for 48 h, the resulting yellow solution was filtered from solids and then was concentrated by removing the solvent by vacuum distillation. The resulting colorless crystalline precipitate was isolated by filtration to yield 35.9 g of LiCH₂CMe₃ (460 mmol, 61% yield based on Me₃CCH₂Cl). Elemental analyses were performed by Schwarzkopf Microanalytical Laboratory, Woodside, NY. Analysis for hydrolyzable neopentyl and hydride ligands were performed by acid hydrolysis, and fractionation of the resulting neopentane was measured by mass and H_2 by PVT measurements. Infrared spectra of Nujol mulls between CsI plates were recorded by means of a Perkin-Elmer 683 spectrometer. Absorption intensities are reported with abbreviations w (weak), m (medium), s (strong), vs (very strong), and sh (shoulder). The Raman spectrum of (Me₃CCH₂)₂AlN(Me)H was recorded on a solid sample enclosed in a sealed glass capillary by using a Spex Model 14018 spectrometer. The ¹H NMR spectra were recorded at 90 MHz by using a Varian Model EM-390 spectrometer. Chemical shifts are reported in δ units (ppm) are referenced to SiMe₄ as $\delta 0.00$ and benzene as $\delta 7.13$. All NMR tubes were sealed under vacuum. The molecular weights were measured cryoscopically in benzene by using an instrument similar to that described by Shriver.9

Synthesis of Al(CH₂CMe₃)₃. In a typical experiment, solid LiCH₂CMe₃ (9.89 g, 127 mmol) was added to a suspension of AlBr₃ (11.3 g, 42.4 mmol) in 100 mL of hexane at 0 °C over a 20-min time period. After addition was complete, the resulting mixture was refluxed for 3 h. Then, the hexane was removed by vacuum distillation. The product $Al(CH_2CMe_3)_3$ was then separated from LiBr by a flask to flask vacuum distillation with the flask heated to 120 °C and the receiver flask cooled to -196 °C. Distillation was continued for 8 h in order to ensure complete removal of product. The product was finally purified by vacuum distillation by using a short-path still to yield 8.38 g (34.9 mmol), 82.3% based on AlBr₃. Al(CH₂CMe₃)₃: colorless, nonpyrophoric liquid; bp 50-52 °C (static vacuum), 43-45 °C (dynamic vacuum). Anal.

⁽¹⁾ Eisch, J. J. In Comprehensive Organometallic Chemistry; Wil-kinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982;

<sup>kinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982;
Vol. 1, Chapter 6, p 555.
(2) Jerius, J. J.; Hahn, J. M.; Rahman, A. F. M. M.; Mols, O.; Ilsley,
W. H.; Oliver, J. P. Organometallics 1986, 5, 1812.
(3) Lehmkuhl, H. Justus Liebigs Ann. Chem. 1968, 719, 40.
(4) Nyathi, J. Z.; Ressner, J. M.; Smith, J. D. J. Organomet. Chem.
1974, 70, 35.
(5) Beachley, O. T., Jr.; Tessier-Youngs, C.; Simmons, R. G.; Hallock,
R. B. Inorg. Chem. 1982, 21, 1970.
(6) Beachley, O. T., Jr.; Tessier-Youngs, C. Organometallics 1983, 2, 796</sup>

^{796.}

⁽⁷⁾ Tessier-Youngs, C.; Bueno, C.; Beachley, O. T., Jr.; Churchill, M. R. Inorg. Chem. 1983, 22, 1054.

⁽⁸⁾ Schrock, R. R.; Fellmann, J. D. J. Am. Chem. Soc. 1978, 100, 3359. (9) Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley: New York, 1986; p 38.

Calcd: C, 74.92; H, 13.86. Found: C, 74.69; H, 13.94. Hydrolysis found: 2.98 mol of CMe_4/mol of $Al(CH_2CMe_3)_3$. Cryoscopic molecular weight, formula weight $Al(CH_2CMe_3)_3$ 240.46 (molality based on monomeric species, obsd mol wt, association): 0.0908, 254, 1.05; 0.0477, 225, 1.06; 0.0234, 251, 1.04. ¹H NMR (benzene) δ 1.11 (s, 9.0, Me), 0.56 (s, 2.0, CH₂). IR (neat liquid, cm⁻¹): 2950 (s), 2860 (s), 1465 (s), 1358 (s), 1223 (s), 1120 (s), 1010 (s), 990 (m), 925 (m), 910 (m), 748 (s), 695 (s), 675 (sh), 650 (sh), 465 (m), 390 (m), 325 (m).

Synthesis of LiAl(CH₂CMe₃)₄. Solutions of the reagents Al(CH₂CMe₃)₃ (0.6587 g, 2.739 mmol) and LiCH₂CMe₃ (0.2139 g, 2.738 mmol) in benzene were combined at room temperature. After the reaction mixture was stirred for several hours, the solvent was removed by distillation. Then, the product was washed with several 5-mL portions of pentane at 0 °C to give 0.67 g (2.1 mmol, 78% yield) of LiAl(CH₂CMe₃)₄ as a colorless, microcrystalline powder. LiAl(CH₂CMe₃)₄: mp 184–186 °C. Anal. Calcd: C, 75.40; H, 13.95. Found: C, 73.38; H, 13.54. Hydrolysis found: 3.96 mol of CMe₄/mol of LiAl(CH₂CMe₃)₄. ¹H NMR (benzene): δ 1.18 (s, 9.0, Me), 0.01 (s, 2.0, CH₂). IR (Nujol mull, cm⁻¹): 2730 (s), 2710 (s), 1355 (s), 1225 (sh), 1205 (s), 1135 (m), 1070 (m), 995 (m), 925 (sh), 905 (sh), 750 (s), 670 (sh), 630 (s), 465 (m), 405 (m), 320 (m).

Synthesis of Al(CH₂CMe₃)₂Br. In a typical reaction, Al-(CH₂CMe₃)₃ (0.497 g, 2.08 mmol) and AlBr₃ (0.277 g, 1.04 mmol), each in 15 mL of pentane, were combined in an evacuated tube and then were heated to reflux with a 60 °C oil bath for 30 min. The pentane was removed, and the product was purified by distillation by using a short-path still to yield 0.66 g (2.6 mmol, 83% yield) of Al(CH₂CMe₃)₂Br. An alternative but less convenient method of purification involved recrystallization from a very small volume of pentane (1 mL per g of Al(CH₂CMe₃)₂Br) at -78 °C. Al(CH₂CMe₃)₂Br: colorless solid; mp 58-59 °C; bp 96-103 °C (dynamic vacuum). Color of compound changes to tan upon trace hydrolysis. Anal. Calcd: C, 48.19; H, 8.92; Al, 10.83; Br, 32.07. Found: C, 47.36; H, 8.77; Al, 10.18; Br, 30.37. After hydrolysis found: 1.98 mol of CMe₄/mol of Al(CH₂CMe₃)₂Br, Br, 32.1. Cryoscopic molecular weight, formula weight Al(CH₂CMe₃)₂Br 249.20 (molality based on monomeric species, obsd mol wt, association): 0.133, 492, 1.97; 0.0596, 444, 1.78; 0.0310, 442, 1.77. ¹H NMR (benzene): δ 1.18 (s, 9.0, Me), 0.77 (s, 2.0, CH₂). IR (Nujol mull, cm⁻¹): 2860 (s), 1360 (s), 1230 (s), 1130 (s), 1095 (m), 1015 (m), 995 (m), 930 (m), 910 (w), 760 (s), 745 (m), 670 (s, br), 585 (m), 465 (m), 450 (m), 400 (w), 380 (m), 335 (m), 300 (s).

Synthesis of Al(CH₂CMe₃)₂H. A reaction vessel equipped with a Teflon high vacuum valve and a small stirring bar was charged with 3.67 g (15.3 mmol of Al(CH₂CMe₃)₃, 0.640 g (16.9 mmol) of LiAlH₄, and 50 mL of dry heptane. The mixture was then heated with a 100 °C oil bath for 5 h. After cooling, the resulting suspension was filtered and the insoluble gray solid (0.52 g) was washed with the reaction solvent. The heptane was finally removed by vacuum distillation to leave 3.71 g (21.8 mmol) of Al(CH₂CMe₃)₂H as a colorless, microcrystalline, heptane-soluble solid. The soluble product was further purified by vacuum sublimation at 60 °C for 12 h to yield 3.67 g (21.6 mmol, 95.2% yield based on $Al(CH_2CMe_3)_3$, see Results and Discussion for balanced equation) of $Al(CH_2CMe_3)_2H$. In another independent preparation of Al(CH₂CMe₃)₂H (from 0.984 g of Al(CH₂CMe₃)₃ and 0.157 g of LiAlH₄), 0.0768 g of the gray heptane-insoluble solid was hydrolyzed to yield 6.07 mmol of H_2 . The significance of these data to the nature of the reaction products and the stoichiometry of the preparative reaction is discussed in the Results and Discussion.

The compound Al(CH₂CMe₃)₂H is a colorless, "wet" looking solid at room temperature and sublimes between 40 and 80 °C under high vacuum. The melting point of the compound depends on its history. Samples that were obtained by sublimation at 50–60 °C softened above 50 °C and melted to a clear liquid between 70 and 79 °C. In contrast, samples that sublimed at 86 °C, softened above 50 °C but melted to a clear liquid in the range 82-85 °C. Other characterization data include the following. Hydrolysis: 1.01 mol of H₂/mol of Al(CH₂CMe₃)₂H. (The compound is exceedingly sensitive to O₂ and H₂O, average of 11 analyses for both H₂ and CMe₄.) Cryoscopic molecular weight, formula weight Al-(CH₂CMe₃)₂H 170.31 (molality based on monomeric species, obsd

mol wt, association): 0.227, 433, 2.54; 0.109, 421, 2.47; 0.0871, 412, 2.42; 0.0590, 402, 2.36. The ¹H NMR spectra of benzene solutions are concentration-dependent, and details are given in Table II. IR (Nujol mull, cm⁻¹): 1770 (s, br), 1360 (s), 1260 (w), 1225 (s), 1200 (sh), 1125 (s), 1095 (s), 1012 (s), 995 (s), 925 (m), 910 (m), 820 (s), 760 (m), 740 (w), 705 (m), 665 (s), 560 (w), 460 (m), 400 (m), 385 (w), 330 (m), 300 (m).

Synthesis of (Me₃CCH₂)₃Al-PPh₂H. The reagents 1.327 g (5.52 mmol) of Al(CH₂CMe₃)₃ and 1.027 (5.52 mmol) of PPh₂H were combined in pentane. After the reaction mixture was stirred for several hours, the pentane was removed to leave the adduct as a colorless waxy-looking solid. (Me₃CCH₂)₃Al-PPh₂H: mp softens at 37 °C, turns to an opaque liquid at 41.5-42.5 °C, becomes transparent 44 °C. ¹H NMR (benzene-d₆): δ 0.73 (s, 6.0, CH₂), 1.23 (s, 27.0, Me), 5.41 (d, J_{P-H} = 297 Hz, 1.0 PH), 7.53 (m, 10.0, PhH). ³¹P{¹H} NMR (benzene): δ -31.22 (d, J_{H-P} = 293 Hz). IR (Nujol mull, cm⁻¹): 3070 (m), 3060 (m), 2330 (m), 2280 (w), 1970 (w), 1950 (w), 1655 (w), 1590 (w), 1570 (w), 1355 (s), 1220 (s), 1120 (s), 815 (s), 745 (sh), 735 (sh), 720 (s), 685 (s), 670 (sh), 630 (sh), 505 (m), 470 (m), 450 (m), 425 (w), 390 (w), 330 (m).

Synthesis of (Me₃CCH₂)₂AlPPh₂. This organoaluminum phosphide was prepared by three methods. Method 1. The adduct (Me₃CCH₂)₃Al·PPh₂H (0.44 g, 1.0 mmol) was heated at 180 °C for 24 h to produce 0.97 mmol of CMe₄. The resulting solid was washed with 3 mL of pentane to yield 0.275 g of (Me₃CCH₂)₂AlPPh₂ (0.776 mmol, 78% yield). Method 2. The reagents 1.246 g (7.314 mmol) of Al(CH₂CMe₃)₂H and 1.362 g (7.314 mmol) of PPh_2H were combined and then were heated at 105 °C for 12 h to yield 7.13 mmol of H₂. The aluminum-containing product was isolated as previously described to yield 2.17 g of $(Me_3CCH_2)_2AlPPh_2$ (6.12 mmol, 83.7% yield). Method 3. The reaction involved adding 0.895 g (4.00 mmol) of KPPh₂ to 0.995 g (3.99 mmol) of Al(CH₂CMe₃)₂Br in 50 mL of hexane over 10 min and stirring the mixture for 12 h. The mixture was then filtered, and the resulting solution was concentrated to 20 mL. Cooling of the resulting solution to -15 °C produced large crystals of (Me₃CCH₂)₂AlPPh₂ (0.610 g, 1.72 mmol, 43.1% yield), which were isolated by filtration. Further crystallization raised the overall yield to 0.91 g (2.6 mmol, 75.2% yield). The characterization data for (Me₃CCH₂)₂AlPPh₂ prepared by the three methods were identical. (Me₃CCH₂)₂AlPPh₂: colorless, crystalline solid; mp loses crystallinity at 125 °C, becomes opaque liquid at 180 °C, transforms to clear liquid at 215 °C. Anal. Calcd: C, 74.54; H, 9.12; P, 8.74; Al, 7.61. Found: C, 74.76; H, 7.13; P, 9.04; Al, 7.60. Cryoscopic molecular weight, formula weight (Me₃CCH₂)₂AlPPh₂ 354.22 (molality based on monomeric species, obsd mol wt, association): 0.133, 698, 1.97; 0.0691, 718, 2.03; 0.0357, 714, 2.02. ¹H NMR (benzene- d_6 , 90 MHz): δ 0.98 (t, J = 3.0 Hz, 4.0, CH₂), 1.13 (s, 18.0, Me), 7.70 (m, 10.0, PhH). ¹H NMR (benzene- d_6 , 300 MHz): δ 0.96 (t, J = 3.0 Hz, CH₂), 1.08 (s, Me). ³¹P{¹H} NMR (benzene): δ -41.0 (s). ¹³C{¹H} NMR (benzene): δ 30.66 (t, J = 9 Hz, CH₂), 31.73 (s, C), 34.99 (s, Me). IR (Nujol mull, cm⁻¹): 3070 (m), 3050 (m), 1965 (w), 1945 (w), 1885 (w), 1875 (w), 1800 (w), 1583 (m), 1578 (w), 1430 (s), 1363 (s), 1330 (w), 1300 (m), 1265 (w), 1220 (s), 1180 (w), 1153 (w), 1130 (sh), 1115 (m). 1090 (m), 1020 (m), 1010 (m), 995 (m), 930 (w), 905 (w), 838 (w), 752 (m), 740 (s), 730 (s), 685 (s), 665 (s), 640 (m), 625 (m) 568 (w), 515 (sh), 505 (m), 458 (m), 410 (m), 330 (w), 315 (w), 285 (m), 265 (s)

Synthesis of $(Me_3CCH_2)_3Al\cdotN(Me)H_2$. Dry MeNH₂ (3.00 mmol, PVT) was combined with 0.497 g (2.07 mmol) of Al- $(CH_2CMe_3)_3$ to produce an exothermic reaction. After excess amine was removed by vacuum distillation, a viscous liquid that slowly crystallized was obtained. Mass measurements indicated that 0.0645 g (2.08 mmol) of NMeH₂ reacted. The product quantitatively sublimed at 50 °C. (Me_3CCH₂)_3Al·N(Me)H₂: colorless, crystalline solid; mp 29–34 °C. ¹H NMR (benzene): δ 0.20 (s, 6.0, CH₂), 0.90 (s, 2.0, NH₂), 1.20 (s, 27.0, CMe), 1.48 (s, 3.0, NMe). IR (Nujol mull, cm⁻¹): 3334 (m), 3295 (m), 3275 (w), 1585 (s), 1355 (s), 1220 (s), 1120 (s), 1100 (m), 1030 (s), 995 (s), 925 (m), 905 (w), 750 (w), 715 (w), 675 (s), 645 (s), 545 (w), 470 (m), 410 (m), 390 (m), 325 (m).

Synthesis of (Me₃CCH₂)₂AlN(Me)H. Freshly sublimed (Me₃CCH₂)₃Al·N(Me)H₂ (0.5618 g, 2.061 mmol) was heated at 96 °C for 10 h. After cooling, 2.07 mmol (PVT measurements) of

Table I. Degree of Association of Neopentyl- and ((Trimethylsilyl)methyl)aluminum Compounds

compd/R	CH ₂ CMe ₃	CH_2SiMe_3
AlR ₃	1	$1 \rightleftharpoons 2$
AlR_2H	$2 \rightleftharpoons 3$	3
AlR_2Br	$1 \rightleftharpoons 2^a$	$1^a \rightleftharpoons 2$
R_2AlPPh_2	2	$1 \rightleftharpoons 2$
$R_2AlN(Me)H$	2	2

^a At similar concentrations, the dimer is preferred for the neopentyl derivative whereas the monomer is preferred for the (trimethylsilyl)methyl derivative.

CMe₄ was isolated by distillation. The aluminum-containing product was isolated and purified by vacuum sublimation at 80 °C (0.39 g, 2.0 mmol, 97% yield). (Me₃CCH₂)₂AlN(Me)H: colorless solid; mp softens at 125 °C, melts at 135-137 °C. Anal. Calcd: C, 66.27; H, 13.17, N, 7.03; Al, 13.53. Found: C, 66.39; H, 13.08; N, 7.08; Al, 13.12. Cryoscopic molecular weight, formula weight (Me₃CCH₂)₂AlN(Me)H 199.36 (molality based on monomeric species, obsd mol wt, association): 0.176, 392, 1.97; 0.0945, 385, 1.93; 0.0483, 406, 2.04. ¹H NMR (benzene): δ 0.31 (s. 2.0, CH_2), 0.35 (s, 2.0, CH_2), 0.75 (q, J = 6.6 Hz, 1.0, NH), 1.16 (s, 18.0, CMe), 2.03 (d, J = 6.6 Hz, 3.0, NMe). IR (Nujol mull, cm⁻¹): 3320 (m), 3180 (w), 1355 (s), 1220 (s), 1135 (m), 1120 (s), 1095 (m), 1060 (m), 1025 (s), 1010 (sh), 930 (m), 910 (w), 810 (s), 750 (m), 740 (m), 715 (w), 660 (s), 580 (s), 515 (s), 410 (m), 360 (w), 260 (w). Raman (solid); 3320 cm⁻¹.

Results and Discussion

A series of neopentylaluminum compounds including $Al(CH_2CMe_3)_3$, $Al(CH_2CMe_3)_2Br$, $Al(CH_2CMe_3)_2H$, $(Me_3CCH_2)_2AlPPh_2$, and $(Me_3CCH_2)_2AlN(Me)H$ as well as the adducts $(Me_3CCH_2)_3Al\cdot N(Me)H_2$, $(Me_3CCH_2)_3Al\cdot$ PPh_2H , and $LiAl(CH_2CMe_3)_4$ have been prepared by very facile, high-yield routes, have been easily purified, and have been characterized. The preparative reactions were typical of those used to prepare the related ((trimethylsilyl)methyl)aluminum compounds.^{5,6} The characterization data for the compounds described herein include physical properties, elemental and/or group analyses, and cryoscopic molecular weight measurements as well as infrared and NMR spectroscopic data. The compounds Al-(CH₂CMe₃)₃ and Al(CH₂CMe₃)₂H have been reported previously, but either limited or no characterization data have been described. Trineopentylaluminum¹⁰ was originally prepared by reacting AlMe₃ with 2-methylpropene at 195-198 °C and was characterized only by analysis and cryoscopic molecular weight measurements.¹¹ In contrast, the hydride¹² Al(CH_2CMe_3)₂H has never been isolated but was believed to be one component of a product mixture which was obtained from the thermal decomposition at 110-140 °C of Al(CH₂CMe₃)₂(*i*-Bu), a compound prepared by mixing $Al(CH_2CMe_3)_3$ and $Al(i-Bu)_3$ in a 2:1 mole ratio. The product of this thermal decomposition was described as a mixture, 90 mol % Al(CH_2CMe_3)₂H, 3 mol % Al- $(CH_2CMe_3)_3$, and 6 mol % Al $(i-Bu)_3$.

A significant feature of organo group 13, especially aluminum, compounds relates to their tendency to associate and form dimers, trimers, and/or higher oligomers.¹ A better understanding of the factors that influence the degree of association can be obtained by comparing the cryoscopic molecular weight measurements of these compounds (Table I). At first, no simple, clear trend in the data is apparent. For compounds of the type AlR₃ and AlR_2H (electron-deficient molecules), the neopentyl derivatives are less associated than the corresponding (tri-

Hoffmann, E. G. Justus Liebigs Ann. Chem. 1960, 629, 104.
 Malpass, D. B.; Watson, S. C. U.S. Patents 4170604 and 4101568.

Table II. 90-MHz ¹H NMR Spectra of Al(CH₂CMe₃)₂H in Benzene (ppm)

concn ^a	$\delta(CH_2)$	δ(CH ₃)	δ(AlH) ^c	$K,^d$ M
0.090	$0.63 (0.60), ^{b} 0.70 (0.40)$	1.13, 1.17	3.13, 3.33	0.14
0.19	0.63 (0.53), 0.70 (0.40)	1.13, 1.15	3.17, 3.36	0.14
0.31	0.63 (0.57), 0.70 (0.43)	1.13, 1.15	3.13, 3.33	0.35
0.48	0.61 (0.50), 0.68 (0.50)	1.11, 1.13	3.10, 3.30	0.27
0.91	0.56 (0.40), 0.63 (0.60)	, 1.13	3.08, 3.18	0.18
2.8	0.56 (0.33), 0.63 (0.66)	, 1.13	3.08, 3.18	0.26

^aConcentration of monomer, M. ^bRelative intensity of lines. ^c Lines were very broad and overlapping. ^d Equilibrium constant K= $(dimer)^3/(trimer)^2$, average 0.22 M.

methylsilyl)methyl analogues. In contrast, the neopentyl derivatives of the type R₂AlPPh₂ and AlR₂Br are more associated (electron-precise species). These data suggest that a minimum of two factors related to steric and electronic effects influence the degree of association. Organoaluminum compounds with branched-chain alkyl substituents, such as $Al(CH_2CMe_3)_3$, $Al(i-Bu)_3$, $Al(t-Bu)_3$, and $Al(i-Pr)_3$, are observed to be monomeric¹¹ in benzene solution, whereas compounds without branched-chain substituents, such as $AlMe_3$,¹³ $AlEt_3$,¹¹ and $Al(n-Pr)_3$ ¹¹ are dimeric. Earlier workers suggested that the apparent bulk of the branched-chain substituent prevented association.¹⁴ However, simple steric effects around aluminum cannot be a predominant factor. Aluminum derivatives with bulky branched-chain alkyl substituents form derivatives of the type $LiAlR_4$ (R = CH_2CMe_3 , t-Bu,³ and i-Bu¹⁴). Thus, the AlR₃ derivatives have the available space for a fourth substituent. An alternate center for potential steric effects in AlR₃ species is the potentially bridging carbon atom, the α -carbon. This suggestion is consistent with the observation that Al(CH₂SiMe₃)₃ exists as a monomer-dimer equilibrium mixture,⁴ whereas $Al(CH_2CMe_3)_3$ is a monomer.¹¹ The CH₂SiMe₃ substituent with its longer C-Si distance would have smaller steric effects at the potentially bridging carbon atom than the CH₂CMe₃ group with the shorter C-CMe₃ distance. An alternate or, possibly, additional reason for the lack of association of organoaluminum compounds with branched-chain alkyl groups is related to electronic effects. If the α -carbon atom has insufficient negative charge due to the electron-withdrawing effects of the moieties bound to the α -carbon atoms (such as the CMe_3 group of CH_2CMe_3), electrondeficient bridge bonding might have insufficient strength to overcome the loss of entropy for forming dimers from monomers. It is well-known that carbon is more electronegative than aluminum. Thus, the CMe₃ moiety should have a strong electron-withdrawing effect, should weaken bridge bonding, and consequently enhance the Lewis acidity at aluminum. It is, therefore, significant that the chemical shift of the methylene protons in $Al(CH_2CMe_3)_3$ is at a low-field position, +0.56 ppm (benzene solution), and is consistent with the electron-withdrawing nature of the CMe₃ group. For comparison, the chemical shift of the methylene protons in $Al(CH_2SiMe_3)_3$ is -0.22 ppm (toluene solution). The SiMe₃ group is reported to stabilize negative charge at the adjacent carbon atom.¹⁶ Since the chemical shift of the protons on the α -carbon atom will be affected also by both the nature of the substituent as well as the

⁽¹⁰⁾ Pfohl, W. Justus Liebigs Ann. Chem. 1960, 629, 207.

⁽¹³⁾ Pitzer, K. S.; Gutowsky, H. S. J. Am. Chem. Soc. 1946, 68, 2204.
(14) Coates, G. E.; Green, M. L. H.; Wade, K. Organometallic Compounds, 3rd ed.; Methuen: London, 1967; Vol. 1, p 300.
(15) Zakharkin, L. I.; Gavrilenko, V. V. J. Gen. Chem. USSR (Engl. Transl.) 1962, 2625

<sup>Transl.) 1962, 32, 688.
(16) Fleming, I. In Comprehensive Organic Chemistry; Barton, D.,</sup> Ollis, W. D., Eds.; Pergamon: Oxford, 1979; Vol. 3, Chapter 13, pp 542-547.

degree of association, further comparisons are unwarranted. An alternative explanation for the lack of association of $Al(CH_2CMe_3)_3$, an intramolecular interaction between the aluminum and the hydrogen atoms on the γ -carbon atom with formation of a five-membered ring, was considered but ruled out on the basis of experimental observations. No infrared bands at frequencies, close to but below 3000 cm⁻¹, were observed.

The Lewis acidity of the aluminum in Al(CH₂CMe₃)₃ has been demonstrated by its ability to react with Lewis bases and to form adducts, an observation consistent with the proposed electron-withdrawing character of the CMe₃ moiety and the CH₂CMe₃ substituent. The Lewis bases CH_2CMe_3 , N(Me)H₂, PPh₂H, and Et₂O form adducts. The formation of LiAl(CH₂CMe₃)₄ from Al(CH₂CMe₃)₃ and LiCH₂CMe₃ is supported by analytical and spectroscopic data. Even though the elemental analyses for carbon and hydrogen were low, the formation of 3.96 mol of CMe₄/mol of LiAl(CH₂CMe₃)₄ hydrolyzed was clearly consistent with the formula. It is also noteworthy that the infrared spectrum of LiAl(CH2CMe3)4 exhibits several intense bands at 2730 and 2710 cm⁻¹. These bands are most likely related to C-H stretching motions and suggest the presence of a C-H…Li⁺ interaction.

The hydrogen involved in this C-H...Li⁺ (anion-cation) interaction should be the one with the highest negative charge, most likely the hydrogen atoms on the α -carbon atoms of the anion. The group 15 bases $N(Me)H_2$ and PPh₂H also form simple adducts, (Me₃CCH₂)₃Al·N(Me)H₂ and $(Me_3CCH_2)_3Al \cdot PPh_2H$. It is of interest that the amine adduct can be sublimed at 96 °C. The phosphorus adduct has been confirmed by both ¹H and ³¹P NMR spectroscopy. The P-H coupling constant increased from 218 Hz for pure PPh₂H¹⁷ to 297 Hz for the adduct. The corresponding coupling constants⁶ for Me₃Al·PPh₂H and (Me₃SiCH₂)₃Al·PPh₂H are 299 and 300 Hz, respectively. In contrast, (Me₃CCH₂)₃Al·OEt₂ is extensively dissociated at room temperature. An attempt was made to prepare ether-free $Al(CH_2CMe_3)_3$ by the Grignard route by using diethyl ether as solvent, but the ether could not be quantitatively removed, even under azeotropic distillation with benzene, a technique used to prepare ether-free InMe₃.¹⁸

The compound Al(CH₂CMe₃)₂H was prepared by reacting $Al(CH_2CMe_3)_3$ with $LiAlH_4$ in heptane heated with a 100 °C oil bath. Our stoichiometric data suggest the following balanced equation for the preparative reaction.

$$2Al(CH_{2}CMe_{3})_{3} + LiAlH_{4}(s) \xrightarrow[reflux]{C_{7}H_{16}}{3Al(CH_{2}CMe_{3})_{2}H} + LiH(s) (1)$$

Earlier workers¹⁹ used the same types of reagents to prepare Me₂AlH, but different products and stoichiometry (eq 2) were observed. When 3.67 g (15.3 mmol) of Al-

 $MMe_3 + LiAlH_4 \rightarrow$

 $MMe_2H + LiAlMeH_3$ (M = B, Al, Ga) (2)

hydrogen at 105 °C from Al(CH₂CMe₃)₂H and PPh₂H, the elimination of neopentane at 180 °C from Al(CH₂CMe₃)₃ and PPh₂H, and the elimination of KBr from Al- $(CH_2CMe_3)_2Br$ and $KPPh_2$. Of these, the most convenient route involved the elimination of H₂ at moderate temperature. The product was readily isolated and purified in high yield. The concentration-independent cryoscopic molecular weight data as well as ¹H, ³¹P, and ¹³C NMR spectral data are consistent with the existence of only dimers in benzene solution. In comparison, $(Me_3SiCH_2)_2AlPPh_2$ exists as a monomer-dimer equilibrium mixture.⁶ The observed higher degree of association of the neopentylaluminum derivative is consistent with the proposed electron-withdrawing nature of the neopentyl group and the higher Lewis acidity of the dineopentylaluminum moiety. Without the experimental data, one might have expected the neopentyl derivative with the more bulky substituent to be less associated than the corresponding (trimethylsilyl)methyl derivative. It is of significance that $(Me_3CCH_2)_2InPPh_2$ is also more associated than (Me₃SiCH₂)₂InPPh₂.²⁰

The aluminum-nitrogen compound (Me₃CCH₂)₂AlN-(Me)H exists in benzene solution as a dimer as based on molecular weight measurements. The presence of two different substituents on nitrogen introduces the possibility of cis-trans isomers. The spectroscopic data suggest the presence of only the cis isomer. The compound exhibits two CH₂ (neopentyl) resonances in the ¹H NMR spectrum and the coincidence of infrared and Raman bands at 3320

(CH₂CMe₃)₃ was reacted with 0.640 g (16.9 mmol) of $LiAlH_4$, 3.71 g (21.6 mmol) of purified Al(CH₂CMe₃)₂H was isolated. If the reaction is based on eq 1, the percentage yield of product would be 95.2%. If eq 2 with the 1:1 $Al(CH_2CMe_3)_3/LiAlH_4$ stoichiometry were applicable, the percent yield would be 141%, an unreasonable value. In other experiments, the nonvolatile, insoluble residue, believed to be LiH and excess LiAlH₄, was hydrolyzed and the evolved H_2 was measured. These data support the formation of LiH, not LiAl(CH₂Me₃)H₃.

Dineopentylaluminum hydride is a rare example of an aluminum hydride that melts above room temperature. The only other known example⁶ is $Al(CH_2SiMe_3)_2H$. Cryoscopic molecular weight measurements indicate the existence of an equilibrium between dimeric and trimeric species with hydrogen bridge bonds.

$$2[\mathrm{Al}(\mathrm{CH}_{2}\mathrm{Me}_{3})_{2}\mathrm{H}]_{3} \rightleftharpoons 3[\mathrm{Al}(\mathrm{CH}_{2}\mathrm{CMe}_{3})_{2}\mathrm{H}]_{2} \qquad (3)$$

This equilibrium is also consistent with the ¹H NMR and IR spectral data. The three types of protons, CH₂, Me, and AlH, exhibit three sets of signals, two lines each. The intensity of each line of a set for a given type of proton varies with concentration as required by eq 3. The average equilibrium constant calculated from the NMR data is 0.22 M. Thus, the reactions interconverting dimer and trimer must be slow at the operating temperature of the spectrometer. The presence of a broad, intense band at 1770 cm⁻¹ is also consistent with structures with electron-deficient hydrogen bridge bonding.⁶ The observation of a lower degree of association of Al(CH₂CMe₃)₂H than Al- $(CH_2SiMe_3)_2H$ is consistent with the electron-withdrawing properties of the neopentyl group. As the neopentyl group withdraws electron density from aluminum, the hydride becomes less basic and exhibits a weaker bridge bond and a reduced degree of association.

The aluminum phosphide (Me₃CCH₂)₂AlPPh₂ has been

prepared by three synthetic routes, the elimination of

⁽¹⁷⁾ Bianco, V. D.; Doronzo, S. Inorg. Synth. 1976, 16, 161.
(18) Beachley, O. T., Jr.; Bueno, C.; Churchill, M. R.; Hallock, R. B.;
Simmons, R. G. Inorg. Chem. 1981, 20, 2423.
(19) Wartik, T.; Schlesinger, H. I. J. Am. Chem. Soc. 1953, 75, 835.

⁽²⁰⁾ Beachley, O. T., Jr.; Kopasz, J. P. J. Organomet. Chem. 1987, 325, 69.

cm⁻¹, the region of the spectra expected for N-H stretching It is of interest to note that vibrations. $[(Me_3SiCH_2)_2AlN(Me)H]_2$ has been reported to exist as the trans isomer with only a single proton resonance for the methylene protons of CH₂SiMe₃.⁴

In summary, a comparison of data for the series of compounds AlR₃, AlR₂H, AlR₂Br, R₂AlPPh₂, and R₂AlN-(Me)H demonstrates that neopentyl derivatives are less associated than (trimethylsilyl)methyl derivatives if they are electron-deficient but more associated if they are electron-precise. Presumably for electron-deficient compounds withdrawal of electron density from the bridging unit is the dominant factor influencing the degree of association, whereas for electron-precise compounds where

there are plenty of electrons, the enhanced Lewis acidity of the aluminum is most important.

Acknowledgment. This work was supported in part by the Office of Naval Research and by a postdoctoral fellowship from the Alfa Products Division of Morton Thiokol, Inc. (L.V.).

Registry No. AlBr₃, 7727-15-3; LiCH₂CMe₃, 7412-67-1; Al-(CH₂CMe₃)₃, 42916-36-9; LiAl(CH₂CMe₃)₄, 110638-20-5; Al-(CH₂CMe₃)₂Br, 110638-23-8; Al(CH₂CMe₃)₂H, 65514-51-4; $(Me_3CCH_2)_3Al\cdotPPh_2H$, 110638-21-6; $(Me_3CCH_2)_2AlPPh_2$, 110638-24-9; CMe₄, 463-82-1; KPPh₂, 15475-27-1; $(Me_3CCH_2)_3Al\cdotN(Me)H_2$, 110638-22-7; $(Me_3CCH_2)_2AlN(Me)H$, 110638-25-0.

Electron Transfer from Borohydride and Selective Reductions of Iron Cations. Synthesis of Tetrathiooxalate Iron Derivatives

Daniel Touchard, Jean-Luc Fillaut, Dilip V. Khasnis, and Pierre H. Dixneuf*

Laboratoire de Chimie de Coordination Organique, UA CNRS 415, Université de Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France

Carlo Mealli and Dante Masi

Istituto per la Studio della Stereochimica ed Energetica dei Composti di coordinazione del CNR, 50132 Firenze, Italy

Loïc Toupet

Laboratoire de Physique Cristalline, UA CNRS 804, Université de Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France

Received April 16, 1987

Cations of the type $Fe(\eta^2-CS_2R)(CO)_2(L)_2^+$ (L = PPh₃; R = Me (2a), Et (2b), CH₂C(Me)=CH₂ (2c)) react with NaBH₄ to afford, via electron transfer, C-C coupling products (RS)₂C₂S₂Fe₂(CO)₄(L)₂ (3a-c). Complexes 2 containing an acylalkyl group, R, also give complexes 3d,e, but only on reduction with activated magnesium. Reduction of cations 2a-c with sodium amalgam leads first to 3a-c and then to the $(RS)_2C_2S_2Fe(CO)_2(L)$ complexes (4). Complexes 4a-c are also obtained on treatment of 3a-c with Lewis acids in the presence of air. Cation 2h (L = P(OMe)₃, R = Me) is less easily reduced ($E_c = -0.81$ V vs SCE) than 2a (L = PPh₃; $E_c = -0.74$ V vs SCE) and, when treated with NaBH₄, undergoes electron transfer and hydride addition: complex 6, analogous to 3, and $Fe(\eta^2 - HCS_2Me)(CO)_2L_2$ (5) are thus formed. Reaction of 2h with Na/Hg affords by contrast small amounts of $FeCS(CO)_2L_2$ (8) and $(R_2S)_2C_2S_2Fe(CO)L_2$ (9). The X-ray diffraction structures of 3a and 4a have been determined. 3a: space group PI, Z = 2, a = 9.669(2) Å, b = 13.477 (3) Å, c = 17.323 (3) Å, $\alpha = 101.1$ (2)°, $\beta = 91.5$ (2)°, $\gamma = 110.3$ (2)°, V = 2048 Å³, R = 0.058 for 3802 reflections having $I > \sigma(I)$. 4a: space group $P2_1/a$, Z = 4, a = 24.144 (6) Å, b = 10.017 (2) Å, c = 10.745 (2) Å, $\alpha = 97.38$ (2)°, V = 2577 Å³, R = 0.084 for 2440 reflections having $I > 3\sigma(I)$.

Introduction

Heteroallenes have a potential for the formation of carbon-carbon bonds and, as far as carbon disulfide and isothiocyanate are concerned, for the elaboration of sulfur-containing inorganic and organic substrates. However, this requires activation of the heteroallene, which can be achieved by coordination to a metal center.¹⁻⁴ Examples of metal-promoted dimerization of heteroallenes involving

the formation of carbon-heteroatom bonds have been reported.⁵ These result from oxidative, "head-to-tail" coupling. Only a few processes involving "head-to-head" C-C bond coupling of heteroallenes have been discovered.⁶⁻¹²

⁽¹⁾ Dixneuf, P. H.; Adams, R. D., Report of the International Seminar on the Activation of Carbon Dioxide and Related Heteroallenes on Metal Centers, Rennes, France, 1981.

^{(2) (}a) Ibers, J. A. Chem. Soc. Rev. 1982, II, 57. (b) Werner, H. Coord.

Chem. Rev. 1982, 43, 165 and references therein. (3) Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M. In Stereochemistry of Organometallic and Inorganic Compounds; Bernal, I., Ed.; Elsevier:

^{(4) (}a) Ngounda, M.; Le Bozec, H.; Dixneuf, P. H. J. Org. Chem. 1982, 47, 4000. (b) Le Bozec, H.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1983, 1462.

^{(5) (}a) Werner, H.; Kolb, O.; Feser, R.; Schubert, U. J. Organomet. Chem. 1980, 191, 283. (b) Cowie, M.; Dwight, S. K. J. Organomet. Chem. 1981, 214, 233. (c) Thewissen, D. H. M. W. J. Organomet. Chem. 1980, 188, 211.

 ⁽⁶⁾ Coucouvanis, D. J. Am. Chem. Soc. 1971, 93, 1786.
 (7) Pasquali, M.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. Inorg. Chem. 1981, 20, 349.