Cluster Synthesis. 18. Metal–Metal Exchange Reactions. The Synthesis and Structural Characterizations of $Ru_{3}Mo_{2}(CO)_{10}(\mu-CO)_{2}Cp_{2}(\mu_{4}-S)$ and $RuMo_{2}(CO)_{7}Cp_{2}(\mu_{3}-S)$

Richard D. Adams,* James E. Babin, and Miklos Tasi

Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208

Received June 22, 1987

The compound $RuMo_2(CO)_7Cp_2(\mu_3-S)$ (3) was prepared in 49% yield by a double metal-metal exchange reaction involving Ru₃(CO)₉(μ_3 -S) (1) and [CpMo(CO)₂]₂ at 80 °C. The compound Ru₃Mo₂(CO)₁₀(μ -CO)₂Cp₂(μ_4 -S) (2) was also isolated in 2% yield. Compounds 1–3 were characterized by X-ray crystallographic methods. For 1: space group P2₁, a = 9.302 (3) Å, b = 19.973 (6) Å, c = 13.103 (3) Å, $\beta = 91.00$ (2)°, V = 2434 (1) Å³, and Z = 6. The structure was solved by direct methods and was refined (4124 reflections) to the final values of the residuals R = 0.022 and $R_{wF} = 0.024$. The molecule consists of a triangular cluster of three ruthenium atoms with a triply bridging sulfido ligand on one side of the cluster and a triply bridging carbonyl ligand on the other side. For 2: space group $P\bar{1}$, a = 15.906 (3) Å, b = 16.462 (3) Å, c = 11.668 (2) Å, $\alpha = 93.52$ (2)°, $\beta = 109.60$ (2)°, $\gamma = 75.42$ (1)°, V = 2645 (1) Å³, and Z = 4. The structure was solved by the heavy-atom method and was refined (6078 reflections) to the final values of the residuals R = 0.038and $R_{wF} = 0.040$. The molecule consists of a square-pyramidal cluster of three ruthenium and two molybdenum atoms. The two molybdenum atoms lie in basal positions. A quadruply bridging sulfido ligand bridges the base of the cluster. For 3: space group $P2_1/c$, a = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) Å, b = 15.700 (4) Å, c = 12.429 (4) 10.049 (2) Å, $\beta = 90.28$ (3)°, V = 1961 (1) Å³, and Z = 4. The structure was solved by direct methods and was refined (2566 reflections) to the final values of the residuals R = 0.028 and $R_{wF} = 0.028$. The molecule consists of a triangular cluster of two molybdenum and one ruthenium atoms supported by a triply bridging sulfido ligand. 3 was formed from 1 by the replacement of two ruthenium carbonyl groups for two cyclopentadienyl molybdenum carbonyl groups. Compound 2 was converted into 3 (57% yield) under similar reaction conditions and is believed to be an intermediate in its formation.

Introduction

The synthesis of mixed-metal carbonyl cluster compounds by the process of metal-metal exchange is a method that is receiving increasing attention.¹⁻⁶ In a metal-metal exchange reaction the number of metal atoms in the product will be the same as in the starting material. Mechanistically, however, these reactions usually proceed through a sequence of metal-addition and -elimination steps and traverse an intermediate of higher nuclearity, eq 1, which is frequently unobserved. Bridging ligands are

$$\begin{split} \mathbf{M}_{x}\mathbf{L}_{a} + \mathbf{M}'_{y}\mathbf{L}'_{b} &\rightarrow \mathbf{M}_{x}\mathbf{M}'_{y}\mathbf{L}_{a}\mathbf{L}_{b} \rightarrow \\ \mathbf{M}_{x-y}\mathbf{M}'_{y}\mathbf{L}_{a-m}\mathbf{L}'_{b} + \mathbf{M}_{y}\mathbf{L}_{m} \end{split}$$
(1)

known to stabilize higher nuclearity clusters,^{1,2,7,8} and in metal-metal exchange reactions involving clusters that have bridging ligands, the higher nuclearity intermediates can often be isolated and characterized.²

Vahrenkamp has recently reported the preparation of the compound $RuMo_2(CO)_7(\mu_3-S)Cp_2$ (3) from $RuCo_2$ - $(CO)_{9}(\mu_{3}-S)$ by a series of exchange reactions that sequentially substitute molybdenum-containing moieties for the cobalt carbonyl groupings.⁴ We have now discovered a new route to 3 through a one-step reaction of Ru₃- $(CO)_{9}(\mu_{3}-CO)(\mu_{3}-S)$ (1) with $[CpMo(CO)_{2}]_{2}$. The pentanuclear compound $\operatorname{Ru}_3\operatorname{Mo}_2(\operatorname{CO})_{10}(\mu-\operatorname{CO})_2(\mu_4-\operatorname{S})\operatorname{Cp}_2(2)$ was isolated and shown to be an intermediate in the formation of 3.

Experimental Section

General Data. Although the reaction products are air-stable, all reactions were performed under a dry nitrogen atmosphere. Reagent grade solvents were stored over 4-Å molecular sieves. $Ru_3(CO)_{12}$ and $[CpMo(CO)_3]_2$ were purchased from Strem Chemical Co. and were used without further purification. $[CpMo(CO)_2]_2$ was prepared from $[CpMo(CO)_3]_2$ by the published procedure.⁹ Ru₃(CO)₉(μ_3 -CO)(μ_3 -S) (1) and Ru(CO)₅ were prepared by the previously reported procedures.^{10,11} All chromatographic separations were carried out in air. TLC separations were performed on plates (0.25 mm Kieselgel 60 F_{254} , E. Merck, W. Germany) purchased from Bodman Chemicals. IR spectra were recorded on a Nicolet 5 DXB FT IR spectrophotometer. ¹H NMR spectra were run on a Brüker AM-300 spectrometer operating at 300 MHz. Elemental analyses were performed by Desert Analytics, Tucson, AZ.

⁽¹⁾ Roberts, D. A.; Geoffroy, G. L. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E., Eds.; Pergamon: Oxford, 1982; Chapter 40.

⁽²⁾ Vahrenkamp, H. Adv. Organomet. Chem. 1983, 22, 169.
(3) Adams, R. D.; Babin, J. E.; Mahtab, R.; Wang, S. Inorg. Chem. 1986, 25, 1623.

⁽⁴⁾ Richter, F.; Roland, E.; Vahrenkamp, H. Chem. Ber. 1984, 117,

^{2429.} (5) (a) Blumhofer, R.; Fischer, K.; Vahrenkamp, H. Chem. Ber. 1986, 119, 683.
(b) Roland, E.; Vahrenkamp, H. Chem. Ber. 1984, 117, 1039.
(c) Müller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2748.
(d) Richter, N.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2748.

F.; Vahrenkamp, H. Chem. Ber. 1982, 115, 3224.
 (6) Horwitz, C. P.; Holt, E. M.; Shriver, D. F. Organometallics 1985,

^{4, 1117}

Vahrenkamp, H. Angew. Chem., Int. Ed. Engl. 1975, 14, 322.
 (8) Adams, R. D. Polyhedron 1985, 4, 2003.

 ⁽⁹⁾ Ginley, D. S.; Wrighton, M. S. J. Am. Chem. Soc. 1975, 97, 3533.
 (10) Adams, R. D.; Babin, J. E.; Tasi, M. Inorg. Chem. 1986, 25, 4514. (11) Huq, R.; Poë, A. J.; Charola, S. Inorg. Chim. Acta 1980, 38, 121.

Table I.	Crystallographic	Data for the	Structural	Analyses for	Compounds 1-3
1 4010 11	OrystantoBrahmo	20000 IOI 0100			

	1	2	3
formula	$Ru_3SO_{10}C_{10}$	$Ru_3Mo_2SO_{12}C_{22}H_{10}$	$RuMo_2SO_7C_{17}H_{10}$
temp. ±3 °C	24	23	23
space group	P21. No. 4	PĪ. No. 2	$P2_1/c$, No. 14
$a(\mathbf{A})$	9.302 (3)	15.906 (3)	12.429 (4)
\tilde{b} (Å)	19.973 (6)	16.462 (3)	15,700 (4)
c (Å)	13,103 (3)	11.668 (2)	10.049 (2)
a (deg)	90.0	93.52 (2)	90.0
B (deg)	91.00 (2)	109.60 (2)	90.28 (2)
o (deg)	90.0	75 42 (1)	90.0
$V(\lambda^3)$	2434 (1)	2645 (1)	1961 (1)
M (A)	2151 (1) 615 /	993 5	651 3
7 7	615.4	1	1
Z = (and 3	0 = 0	9.40	+ 0.01
$\rho_{\rm calcd}, {\rm g/Cm^2}$	2.02	2.45	2.21
	(A) Measureme	nt of Intensity Data	
radiatn	Mo K α (0.71069A)	Mo K α (0.71069A)	Mo K α (0.710 69 A)
monochromator	graphite	graphite	graphite
detector aperture (mm)			
horizontal	4.0	4.0	4.0
vertical	4.0	4.0	4.0
cryst faces	011, 0ĪĪ, 0Ī2	100, 100, 012	
•	012, 101, 101	$01\bar{2}, 1\bar{1}\bar{1}, 120$	
cryst size (mm)	$0.14 \times 0.13 \times 0.61$	$0.14 \times 0.20 \times 0.20$	
cryst orientatn			
lattice directn	[100]	[121]	[101]
deg from ϕ axis	4.4	10.4	7.7
refletns measd	$h.k.\pm l$	$h_{l\pm k_{l\pm l}}$	$h.k.\pm l$
max 2A deg	50.0	48.0	50.0
scen type	moving crystal-stationary counter	moving crystal-stationary counter	moving crystal-stationary counter
ω -scan width (A + 0.347 tan θ)°. A =	1.10	1.00	1.10
background (time at each end of scan)	¹ / ₄ scan time	$^{1}/_{4}$ scan time	$^{1}/_{4}$ scan time
ω -scan rate $(deg/min)^a$	4.0	4.0	4.0
no. of reflctns measd	4771	8698	3844
data used $(F^2 \ge 3.0\sigma(F^2))$	4124	6078	2566
	(B) Treat	ment of Data	
absorptn correctn	analytical	empirical	empirical
$coeff (cm^{-1})$	28.6	26.7	21.2
transmissn coeff			
max	0.77	1.00	1.00
min	0.67	0.89	0.87
P factor	0.02	0.02	0.02
final residuals	0.02		
R_	0.022	0.038	0.028
P	0.024	0.040	0.028
roadness of fit	1 95	1 75	1 27
largest shift/error	1.00	1.1.0	,
value of final cycle	0.01	0.07	0.01
largest neak in final diff	0.60	2.72	0.42
Fourier $(e/Å^3)$			
no. of variables	648	721	253

^aRigaku software uses a multiple-scan technique. If the $I/\sigma(I)$ ratio is less than 10.0, a second scan is made and the results are added to the first scan etc. A maximum of three scans was permitted per reflection.

Metal-Metal Exchange Reactions in Cluster Synthesis

Figure 1. An ORTEP diagram of $Ru_3(CO)_9(\mu_3-CO)(\mu_3-S)$ (1) (molecule A) showing 50% probability thermal ellipsoids.

Figure 2. An ORTEP diagram of $Ru_3Mo_2(CO)_{10}(\mu$ -CO) $_2Cp_2(\mu_4$ -S) (2) (molecule A) showing 50% probability thermal ellipsoids.

Reaction of $\operatorname{Ru}_3(\operatorname{CO})_9(\mu_3-\operatorname{CO})(\mu_3-S)$ (1) with $[\operatorname{CpMo}(\operatorname{CO})_2]_2$. [CpMo(CO)₂]₂ (65 mg, 0.150 mmol), dissolved in 70 mL of benzene, was heated to reflux, and a solution of 1 (61 mg, 0.100 mmol), dissolved in 15 mL of benzene, was added via a syringe. The reaction solution was refluxed for 3 h under a continuous purge with nitrogen. The solvent was then removed in vacuo. The residue was dissolved in a CH_2Cl_2 /hexane (25/75) solvent mixture and chromatographed on a Florisil column with the same solvent. A brown band containing 4.0 mg (9%) of $\operatorname{Ru}_7(\operatorname{CO})_{20}(\mu_4-S)_2^{12}$ was eluted first. A pink band containing 24 mg of $[CpMo(CO)_3]_2$ was eluted with a hexane/ CH_2Cl_2 (1/1) solvent mixture. A small green band was eluted with pure CH₂Cl₂. A red band was eluted with a CH_2Cl_2/THF (8/2) solvent mixture. The green band contains a mixture of the compounds $Ru_4Mo_2(CO)_{13}(\mu_4-\eta^2-CO)Cp_2(\mu_4-S)$ (4; 9%) and $Ru_5Mo_2(CO)_{14}(\mu_4-\eta^2-CO)_2Cp_2(\mu_4-S)$ (5; 3%) which contain quadruply bridging carbonyl ligands.¹³ These compounds will be described in detail in a forthcoming report.¹⁴ The red band was further purified by TLC on silica gel using a hexane/ CH₂Cl₂ (7/3) solvent mixture to yield 32 mg of red RuMo₂- $(CO)_7Cp_2(\mu_3-S)$ (3;⁴ 49%) and 2.1 mg of brown Ru₃Mo₂(CO)₁₀- $(\mu$ -CO)₂Cp₂ $(\mu_4$ -S) (2; 2%). For 2: IR [ν (CO), cm⁻¹, in CH₂Cl₂)

Table II. Intramolecular Distances (Å) for $\operatorname{Ru}_{2}(\operatorname{CO})_{0}(\mu_{3}\operatorname{-CO})(\mu_{3}\operatorname{-S})(1)^{\circ}$

	$Hu_{3}(CO)_{9}(\mu_{3}-CO)(\mu_{3}-CO)(1)$										
atom	atom	dist	atom	atom	dist						
Ru1A	C13A	1.91 (1)	Ru2B	C1B	2.188 (9)						
Ru1A	C11A	1.92 (1)	Ru2B	S1B	2.354 (2)						
Ru1A	C12A	1.93 (1)	Ru2B	Ru3B	2.788 (1)						
Ru1A	C1A	2.213 (8)	Ru2C	C21C	1.89 (1)						
Ru1A	S1A	2.341 (2)	Ru2C	C22C	1.91 (1)						
Ru1A	Ru3A	2.790 (1)	Ru2C	C23C	1.935 (9)						
Ru1A	Ru2A	2.802 (1)	Ru2C	C1C	2.180 (9)						
Ru1B	C11B	1.90 (1)	Ru2C	S1C	2.361 (2)						
Ru1B	C12B	1.91 (1)	Ru2C	Ru3C	2.806 (2)						
Ru1B	C13B	1.93 (1)	Ru3A	C33A	1.91 (1)						
Ru1B	C1B	2.174 (9)	Ru3A	C32A	1.91 (1)						
Ru1B	S1B	2.349 (3)	Ru3A	C31A	1.93 (1)						
Ru1B	Ru2B	2.800 (1)	Ru3A	C1A	2.193 (8)						
Ru1B	Ru3B	2.806 (1)	Ru3A	S1A	2.340 (2)						
Ru1C	C13C	1.93 (1)	Ru3B	C31B	1.90 (1)						
Ru1C	C12C	1.93 (1)	Ru3B	C32B	1.93 (1)						
Ru1C	C11C	1.93 (1)	Ru3B	C33B	1.94 (1)						
Ru1C	C1C	2.203 (8)	Ru3B	C1B	2.165 (9)						
Ru1C	S1C	2.354 (2)	Ru3B	S1B	2.354 (2)						
Ru1C	Ru3C	2.786 (1)	Ru3C	C31C	1.91 (1)						
Ru1C	Ru2C	2.795 (1)	Ru3C	C33C	1.91 (1)						
Ru2A	C21A	1.92 (1)	Ru3C	C32C	1.92 (1)						
Ru2A	C23A	1.93 (1)	Ru3C	C1C	2.168 (9)						
Ru2A	C22A	1.93 (1)	Ru3C	S1C	2.349 (2)						
Ru2A	C1A	2.163 (9)	O1A	C1A	1.17 (1)						
Ru2A	S1A	2.334 (2)	01B	C1B	1.17 (1)						
Ru2A	Ru3A	2.812 (1)	01C	C1C	1.17 (1)						
Ru2B	C22B	1.91 (1)	C(A)	$O(A)_{t-av}$	1.13 (1)						
Ru2B	C23B	1.92 (1)	C(B)	$O(B)_{t-av}$	1.13 (1)						
Ru2B	C21B	1.94 (1)	C(C)	$O(C_{t-av})$	1.13 (1)						

 $^a{\rm Estimated}$ standard deviations in the least significant figure are given in parentheses.

2065 (s), 2034 (vs), 2019 (vs), 2004 (m, sh), 1979 (m), 1960 (w, sh), 1906 (vw), 1856 (vw, sh), 1830 (w), 1784 (w); 1H NMR (δ in CDCl_3) 5.44 (s, C_5H_5). Anal. Calcd C, 26.59; H, 1.01. Found: C, 26.37; H, 0.94.

Thermolysis of Ru₃Mo₂(CO)₁₀(μ_4 -S) (2). 2 (11.0 mg, 0.0111 mmol) was refluxed in 25 mL of cyclohexane solvent for 3 h under a continuous purge with nitrogen. The solvent was then removed in vacuo. The residue was dissolved in a minimum amount of CH₂Cl₂ and was chromatographed by TLC on silica gel by using a hexane/CH₂Cl₂ (7/3) solvent mixture. This yielded the following compounds in order of elution: 1.2 mg of 5 (8%), 2.7 mg of 4 (21%), and 4.1 mg of 3 (57%).

Crystallographic Analyses

Yellow rod-like crystals of 1 were grown from solutions in a hexane/benzene (9/1) solvent mixture by cooling to 0 °C. Brown crystals of 2 were grown from solutions in a benzene/acetone (3/1)solvent mixture by slow evaporation at 10 °C. Red crystals of 3 were grown from solutions in a hexane/CH₂Cl₂ solvent mixture by slow evaporation at 25 °C. The data crystals were mounted in thin-walled glass capillaries. Diffraction measurements were made on a Rigaku AFC6 automatic four-circle diffractometer. Unit cells were determined and refined from 25 randomly selected reflections obtained by using the diffractometer automatic search, center, index, and least-squares routines. Crystal data, data collection parameters, and results of the analyses are listed in Table I. All data processing was performed on a Digital Equipment Corp. MICROVAX II computer by using the TEX-SAN structure solving program library obtained from the Molecular Structure Corp., College Station, TX. Neutral atom scattering factors were calculated by the standard procedures.^{15a}

⁽¹²⁾ Adams, R. D.; Babin, J. E.; Tasi, M. Inorg. Chem. 1987, 26, 2807.
(13) Adams, R. D.; Babin, J. E.; Tasi, M. Angew. Chem., Int. Ed. Engl.
1987, 26, 685.

⁽¹⁴⁾ Adams, R. D.; Babin, J. E.; Tasi, M., report in preparation.

⁽¹⁵⁾ International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1975; Vol. IV: (a) Table 2.2B, pp 99-101, (b) Table 2.3.1, pp 149-150.

Table III. Selected Intramolecular Bond Angles (deg) for $Ru_3(CO)_9(\mu_3-CO)(\mu_3-S)$ (1)^a

		Table	III. Selected	Intramolecu	lar Dono	Augres	(deg) for Rus(<u>(UU)9(μ3-UU</u>)(#3-3) (1)"	
atom	atom	atom	angle	atom	atom	atom	angle	atom	atom	atom	angle
C12A	D.11 A	SIA.	06 2 (2)	Copp	D110D	C21B	07 2 (5)	C22C	P.,20	P119C	110.5 (2)
C12A	Du1A	D.124	90.2(3)	C23B	DuoD	S1B	97.3 (3)	C33C	RusC RusC	S1C	05.2(3)
	Ru1A	Ruon Ru2A	1476 (3)	C23B	Ru2D	Ruse	147 9 (3)	C32C	Ruse	Bu1C	97.2 (3)
	RulA RulA	S1 A	166.8 (3)	C23B	Ru2D	Ru1B	94 3 (3)	C32C	Ruse	Ru2C	148.0 (3)
CIIA	Dul A	D124	100.0(3) 1164(2)	C23D	D.10D	CIR	1201(A)	C1C	RusC	S1C	140.0 (J) 20.6 (J)
CIIA	Dul A	DugA	115.4 (3)	C21B	Du2D	S1B	04.7(2)		RusC RusC	ButC	51 0 (2)
CIA	Du1A	RUZA S1A	110.9(0)	C21D	Ru2D	D.0D	05 5 (9)		DuaC	Ruit Ruit	51.0(2)
C12A	D.1A	D94	94.0 (3) 146 0 (2)	C21B	Ru2D	D.1D	147 0 (2)	S1C	DusC	Ru2C Pu1C	50.0 (2) 52.77 (6)
C12A	Dul A	D.OA	140.9 (3)		DuoD	C1D	147.0 (3)	S1C	Ruse Puse	Ruic BuoC	52 62 (6)
C12A	Du1A	Q1 A	90.7 (0)	CIB	D.,0D	D.,0D	40 8 (2)	B10	DusC	Ru2C	50.02 (0)
CIA	Du1A	D	50 A (2)		Ru2D	Du1D	49.0 (2)	Pu2A	RUSC Q1 A	D.20	72 07 (7)
CIA	Dul A	D.OA	10.4(2)	CID S1D	D0D	D.0D	49.0 (<i>2)</i> 59.67 (<i>C</i>)	Duo A	Q1 A	Dul A	79 69 (7)
CIA S1A	Du1A	Du2A	49.4 (2) 59.40 (6)	SIB SIB	D.0D	D ₁₁ D	52 28 (6)	D112A	SIA SIA	Du1A	79.15 (7)
SIA	Du1 A	DugA	52 0G (C)	D2D	D110D	Du1D	60.90 (9)	D ₁₁ D	Q1D	DuoD	73.13 (7)
D.OA	RUIA Dui A	Ru2A	00.00 (0)	ColC	Ru2D	RULD	160 5 (3)	Ruib DuiD	SID SID	Ru2D	73.08(7)
RUJA	RulA Du1D	RuZA	60.38 (3)		Ru2C	But0	109.0 (3)	Ruid Duod	01D 01D	RUSD D0D	13.20 (1) 70 GE (7)
CIID	Du1D	51D D.0D	94.9 (3) 146 0 (2)	C21C	Ru2C	Due	110.9(3) 1175(3)	Ru2D	S1D S1C	RuoD Du1C	72.03 (1)
	RulB D. 1D	Ru2B	146.0(3)	0210	RuzC	RUSC	117.0 (3)	RusC BusC	810	Ruit RuaC	72.00 (0)
	RulB	Ru3B	92.7(3)	0220	Ru2C	D.10	98.3 (3)	Rust DutC	810	Ru2C	73.13 (7)
CI2B	Rulb		92.6 (4)	0220	Ru2C	Ruic DuoC	93.0 (3)	Ruit		Ru2C	12.70 (6)
CI2B	RulB	SIB	169.3 (3)	0220	RuzC	Ruse	148.1 (3)	OIA	CIA	Ru2A	132.8 (7)
CI2B	RulB	RuzB	116.7(3)	0230	Ruzo	SIC	93.3 (3)	OIA	CIA	RUJA	132.4 (6)
C12B	RulB	Ru3B	119.4 (3)	C23C	RuzC	Ruit	146.2 (3)	DIA	CIA	RUIA	131.9 (7)
CI3B	RulB	SIB	93.0 (3)	C23C	RuzC	Rusc	97.1 (3)	RuzA	CIA	Ru3A	80.4 (3)
CI3B	RulB	Ru2B	95.9 (3)		RuzC	SIC D 10	89.0 (2)	RuZA	CIA	RUIA Dul A	79.6 (3)
C13B	RulB	Ru3B	145.5 (3)		Ru2C	Ruic	50.8 (2)	Ru3A	UIA OID	RulA	78.6 (3)
CIB	RulB	SIB	88.8 (2)		Ru2C	Ruse	49.6 (2)	OIB	CIB	Ru3B	133.1 (7)
CIB	RulB	Ru2B	50.3 (2)	SIC	Ru2C	Rult	53.54 (6)	OIB	CIB	Ruib	131.8 (7)
C1B	RulB	Ru3B	49.6 (2)	SIC	Ru2C	Ru3C	53.23 (6)	OIB	CIB	Ru2B	131.2 (7)
SIB	RulB	Ru2B	53.53 (6)	RulC	Ru2C	Ru3C	59.65 (3)	Ru3B	CIB	RuiB	80.6 (3)
S1B	Ru1B	Ru3B	53.43 (6)	C33A	Ru3A	SIA	94.5 (3)	Ru3B	CIB	Ru2B	79.7 (3)
Ru2B	RulB	Ru3B	59.65 (3)	C33A	Ru3A	RulA	94.8 (3)	RulB	CIB	Ru2B	79.9 (3)
C13C	Ru1C	SIC	95.7 (3)	C33A	Ru3A	Ru2A	146.1 (3)	010	CIC	Ru3C	133.4 (7)
C13C	RulC	Ru3C	93.3 (3)	C32A	Ru3A	S1A	96.3 (3)	010	CIC	Ru2C	132.5 (7)
C13C	RulC	Ru2C	147.3 (3)	C32A	Ru3A	RulA	147.6 (3)	OIC	CIC	RulC	131.1 (7)
C12C	Ru1C	SIC	167.9 (3)	C32A	Ru3A	Ru2A	93.8 (3)	Ru3C	CIC	Ru2C	80.4 (3)
C12C	RulC	Ru3C	116.4 (3)	C31A	Ru3A	SIA	167.9 (3)	Ru3C	CIC	RulC	79.2 (3)
C12C	Ru1C	Ru2C	116.7(3)	C31A	Ru3A	RulA	115.4 (3)	Ru2C	CIC	RulC	79.2 (3)
CIIC	Ru1C	SIC	94.5 (3)	C31A	Ru3A	Ru2A	119.3 (3)	OIIA	CIIA	RulA	179 (1)
CIIC	Ru1C	Ru3C	147.2 (3)	CIA	Ru3A	S1A	88.5 (2)	011B	CHB	Ru1B	179 (1)
CIIC	Ru1C	Ru2C	96.6 (3)	CIA	Ru3A	RulA	51.0 (2)	0110	CHC	Ruit	177(1)
CIC	Ru1C	SIC	88.6 (2)	CIA	Ru3A	Ru2A	49.3 (2)	012A	C12A	RulA	177 (1)
CIC	RulC	Ru3C	49.8 (2)	SIA	Ru3A	RulA	53.45 (6)	012B	C12B	RulB	177(1)
CIC	RulC	Ru2C	50.0 (2)	SIA	Ru3A	Ru2A	52.91 (6)	0120	C12C	Ruit	177.0 (9)
SIC	RulC	Ru3C	53.58 (6)	RulA	Ru3A	Ru2A	60.02 (3)	013A	C13A	RulA	178 (1)
SIC	RulC	Ru2C	53.76 (6)	C31B	Ru3B	SIB	169.9 (3)	013B	CI3B	RulB	177(1)
Ru3C	RulC	Ru2C	60.38 (4)	C31B	Ru3B	Ru2B	119.2 (3)	0130	CI3C	Ruic	177.0 (9)
C21A	Ru2A	SIA	95.3 (3)	C31B	Ru3B	RulB	117.9 (3)	021A	C21A	Ru2A	177(1)
C21A	Ru2A	RulA	94.5 (3)	C32B	Ru3B	SIB	99.3 (3)	021B	C21B	Ru2B	176 (1)
C21A	Ru2A	Ru3A	146.7 (3)	C32B	Ru3B	Ru2B	93.6 (3)	0210	C21C	Ru2C	178.8 (8)
C23A	Ru2A	SIA	94.7 (3)	C32B	Ru3B	RulB	149.3 (3)	022A	C22A	Ru2A	178.3 (9)
C23A	Ru2A	RulA	146.8 (3)	C33B	Ru3B	SIB	93.2 (3)	022B	C22B	Ru2B	178 (1)
C23A	Ru2A	Ru3A	95.8 (3)	C33B	Ru3B	Ru2B	146.5 (3)	022C	C22C	Ru2C	177.8 (9)
C22A	Ru2A	S1A	170.0 (3)	C33B	Ru3B	Ru1B	98.2 (3)	023A	C23A	Ru2A	178 (1)
C22A	Ru2A	Ru1A	118.1 (2)	C1B	Ku3B	SIB	88.9 (2)	023B	C23B	Ru2B	178 (1)
C22A	Ru2A	Ru3A	119.5 (3)	CIB	Ku3B	Ru2B	50.5 (2)	023C	C23C	Ru2C	177.7 (9)
C1A	Ru2A	S1A	89.4 (2)	C1B	Ru3B	Ru1B	49.8 (2)	031A	C31A	Ru3A	178 (1)
C1A	Ru2A	Ru1A	51.0 (2)	S1B	Ru3B	Ru2B	53.67 (6)	031B	C31B	Ru3B	177.1 (9)
C1A	Ru2A	Ru3A	50.3 (2)	S1B	Ru3B	Ru1B	53.28 (7)	031C	C31C	Ru3C	178.0 (9)
S1A	Ru2A	Ru1A	53.31 (6)	Ru2B	Ru3B	Ku1B	60.06 (3)	032A	C32A	Ru3A	179 (1)
S1A	Ru2A	Ru3A	53.12 (5)	C31C	Ru3C	SIC	96.9 (3)	032B	C32B	Ru3B	177.3 (8)
Ru1A	Ru2A	Ru3A	59.60 (3)	C31C	Ru3C	Ku1C	148.1 (3)	032C	C32C	Ru3C	180 (1)
C22B	Ru2B	S1B	169.1 (3)	C31C	Ru3C	Ru2C	93.9 (3)	033A	C33A	Ru3A	179.0 (9)
C22B	Ru2B	Ru3B	116.8 (3)	C33C	Ru3C	SIC	168.7 (3)	033B	C33B	Ru3B	175(1)
C22B	Ru2B	KulB	118.6 (3)	C33C	Ku3C	Ku1C	115.6 (3)	O33C	C33C	Ru3C	179 (1)

^a Estimated standard deviations in the least significant figure are given in parentheses.

Anomalous dispersion corrections were applied to all non-hydrogen atoms.^{15b} Full-matrix least-squares refinements minimized the function: $\sum_{hkl} w(|F_0| - |F_0|)^2$, where $w = 1/\sigma(F)^2$, $\sigma(F) = \sigma(F_0^2)/2F_o$, and $\sigma(F_0^2) = [(I_{raw})^2 + (PF_2^2)^2]^{1/2}/Lp$.

Compound 1 crystallized in the monoclinic crystal system. The systematic absences, 0k0, k = 2n + 1, in the data were consistent with either of the space groups $P2_1$ or $P2_1/m$. The data were

corrected for absorption by the analytical method. Attempts to solve the structure by direct methods (MITHRIL) in both space groups were successful only for the space group P_{2_1} . The P_{2_1} choice was further supported by the successful refinement. With Z = 6, the crystal of 1 contains three independent formula equivalents of 1 in the asymmetric unit. All atoms were refined with anisotropic thermal parameters. After the final least-squares

Table IV. Positional Parameters and B(eq) for $Ru_3Mo_2(CO)_{10}(\mu-CO)_2Cp_2(\mu_4-S)$ (2)

					-				
atom	. x	У	Z .	$B(eq), Å^2$	atom	x	У	z	$B(eq), Å^2$
Ru1A	-0.33205 (5)	0.08088 (4)	0.08734 (7)	2.22 (3)	C13A	-0.3121 (7)	-0.0227 (7)	0.1616 (9)	3.4 (5)
Ru1B	0.16195 (6)	0.41241(5)	0.41667 (8)	2.84 (4)	C13B	0.086 (1)	0.5086 (8)	0.330(1)	5.4 (7)
Ru2A	-0.20994(5)	0.11951 (4)	-0.03412 (7)	2.22(3)	C21A	-0.2757 (7)	0.1091 (6)	-0.200 (1)	3.1(5)
Ru2B	0.36866 (6)	0.37620 (5)	0.53881 (7)	2.69 (4)	C21B	0.3790 (8)	0.3913 (6)	0.702 (1)	3.7 (5)
Ru3A	-0.12582(5)	0.02494 (4)	0.18052(7)	2.18 (3)	C22A	-0.1297 (8)	0.1664 (6)	-0.088 (1)	3.5 (5)
Ru3B	0.28899 (6)	0.46548(5)	0.32091 (8)	2.98 (4)	C22B	0.5027 (8)	0.3310 (6)	0.5928 (9)	3.3 (5)
Mo1A	-0.22247 (6)	0.15138 (5)	0.,31481 (7)	2.27 (4)	C23A	-0.1256 (7)	0.0019 (6)	-0.0034 (9)	3.0 (5)
Mo1B	0.19259 (6)	0.33779 (5)	0.19260 (8)	3.04 (4)	C23B	0.3723 (8)	0.4919 (6)	0.502 (1)	4.0 (5)
Mo2A	-0.31413 (6)	0.25635(5)	0.07736 (7)	2.20 (4)	C31A	0.0097 (8)	0.0115 (6)	0.2485 (9)	2.9 (5)
Mo2B	0.28460 (6)	0.23609 (5)	0.43768 (8)	2.50 (4)	C31B	0.3800 (8)	0.4743 (6)	0.247(1)	4.1 (6)
S1A	-0.1494 (2)	0.1757(1)	0.1653 (2)	2.3 (1)	C32A	-0.1088 (8)	-0.0918 (6)	0.1955 (9)	3.1 (5)
S1B	0.3558 (2)	0.3149 (1)	0.3414 (2)	2.6 (1)	C32B	0.2336 (9)	0.5828(7)	0.304 (1)	4.4 (6)
011A	-0.5485 (6)	0.1237 (6)	0.048 (1)	7.2 (6)	C33A	-0.1498 (7)	0.0254 (6)	0.3539 (8)	2.7 (5)
011B	-0.0035 (7)	0.3665 (6)	0.469 (1)	8.1 (7)	C33B	0.1704 (8)	0.4630 (7)	0.149 (1)	3.8 (6)
012A	-0.3791 (7)	-0.0038 (5)	-0.1529 (7)	5.8 (5)	C41A	-0.3372 (8)	0.1140 (6)	0.316 (1)	3.4 (5)
012B	0.1920 (7)	0.5131 (6)	0.6435 (8)	7.7 (6)	C41B	0.058 (1)	0.3675 (7)	0.197 (1)	5.0 (7)
013A	-0.3089 (6)	-0.0862 (5)	0.2022 (7)	5.3 (5)	C51A	-0.4041 (8)	0.2598 (6)	0.171(1)	3.5 (5)
013B	0.0248 (7)	0.5700 (6)	0.2836 (8)	7.0 (5)	C51B	0.1510 (8)	0.2274(6)	0.354 (1)	3.8 (5)
021A	-0.3141 (6)	0.1044 (5)	-0.3008 (7)	4.8 (4)	C52A	-0.4025 (7)	0.2145(6)	-0.068 (1)	3.0 (5)
021B	0.3864 (6)	0.3995 (6)	0.8025 (7)	6.2 (5)	C52B	0.2500 (8)	0.2804(7)	0.581 (1)	4.0 (6)
O22A	-0.0812 (6)	0.1952 (5)	-0.1184 (8)	5.4 (5)	C61A	-0.116 (1)	0.225(1)	0.443 (1)	5.2 (8)
022B	0.5846 (5)	0.3045 (5)	0.6265 (7)	5.5 (5)	C61B	0.269 (1)	0.269 (1)	0.058 (1)	7 (1)
O23A	-0.0918 (6)	-0.0555 (4)	-0.0508 (6)	4.3 (4)	C62A	-0.1098 (9)	0.1569 (8)	0.503(1)	4.6 (6)
O23B	0.3985 (7)	0.5508 (5)	0.5470 (8)	6.2 (5)	C62B	0.197 (2)	0.335 (1)	-0.003 (1)	7 (1)
O31A	0.0907 (5)	0.0050 (5)	0.2910 (6)	4.4 (4)	C63A	-0.198 (1)	0.1587(7)	0.516 (1)	4.4 (7)
O31B	0.4366 (6)	0.4736 (5)	0.2019 (9)	6.5 (5)	C63B	0.110 (1)	0.323 (1)	-0.005 (1)	6.3 (8)
O32A	-0.0968 (6)	-0.1622 (5)	0.2066 (7)	5.2(5)	C64A	-0.2617 (9)	0.2337 (8)	0.464(1)	4.7 (6)
O32B	0.2028 (7)	0.6524 (5)	0.2931 (8)	6.6 (5)	C64B	0.129 (1)	0.248 (1)	0.055 (1)	6.2 (8)
O33A	-0.1227 (5)	-0.0281 (4)	0.4291 (6)	3.9 (4)	C65A	-0.211 (1)	0.2749 (7)	0.417(1)	5.5 (8)
O33B	0.1268 (6)	0.5172 (5)	0.0767 (7)	5.5 (5)	C65B	0.226 (1)	0.2144(8)	0.092 (1)	6.5 (8)
O41A	-0.3977 (6)	0.0975 (5)	0.3423 (7)	5.1 (5)	C71A	-0.2480 (8)	0.3744 (6)	0.128 (1)	3.5 (5)
O41B	-0.0245 (6)	0.3790 (6)	0.1739 (8)	6.4 (5)	C71B	0.4365 (8)	0.1404 (6)	0.509 (1)	3.9 (5)
O51A	-0.4670 (6)	0.2779 (5)	0.2085 (7)	5.0 (4)	C72A	-0.2528 (9)	0.3550 (6)	0.011 (1)	3.9 (6)
O51B	0.0768 (6)	0.2086 (5)	0.3144 (9)	5.9 (5)	C72B	0.3918 (8)	0.1175 (6)	0.392 (1)	3.9 (6)
O52A	-0.4632 (5)	0.2118 (4)	-0.1578 (6)	3.8 (4)	C73A	-0.350 (1)	0.3631 (7)	-0.061 (1)	5.0 (7)
O52B	0.2344 (6)	0.2856 (5)	0.6733 (7)	5.4 (5)	C73B	0.3059 (8)	0.0956 (6)	0.389 (1)	4.4 (6)
C11A	-0.4670 (8)	0.1124 (7)	0.066 (1)	3.9 (6)	C74A	-0.4061 (9)	0.3885 (6)	0.015 (1)	4.8 (6)
C11B	0.0598 (8)	0.3793 (7)	0.447 (1)	4.4 (6)	C74B	0.3025 (9)	0.1050 (6)	0.509 (1)	4.4 (6)
C12A	-0.3547 (8)	0.0311 (6)	-0.065 (1)	3.7 (6)	C75A	-0.3417 (8)	0.3960 (6)	0.130 (1)	3.8 (5)
C12B	0.1904 (8)	0.4705 (7)	0.563(1)	4.5 (6)	C75B	0.383(1)	0.1322(7)	0.580(1)	4.8 (6)

Figure 3. An ORTEP diagram of $\text{RuMo}_2(\text{CO})_7\text{Cp}_2(\mu_3\text{-S})$ (3) showing 50% probability thermal ellipsoids.

refinement cycle, a test of the enantiomorphic form was made by inverting all the atomic coordinates and refining again. No significant difference were observed between the R values of the two refinements; thus, the atomic coordinates for the first enantiomorphic form were retained and are reported here.

Compound 2 crystallized in the triclinic crystal system. The space group PI was assumed and confirmed by the successful solution and refinement of the strcture. The data were corrected for absorption by the empirical method. The structure was solved by a combination of Patterson and difference Fourier techniques. All non-hydrogen atoms were refined with anisotropic thermal parameters. The positions of the hydrogen atoms were calculated by assuming idealized geometries of the C_5H_5 rings. Their contributions were added to the structure factor (SF) calculations, but their positions were not refined.

Compound 3 crystallized in the monoclinic crystal system. The space group $P2_1/c$ was identified uniquely from the systematic absences observed in the data. The data were corrected for absorption by the empirical method. The structure was solved by a combination of direct methods (MITHRIL) and difference Fourier techniques. All non-hydrogen atoms were refined with anisotropic thermal parameters. The positions of the hydrogen atoms were calculated by assuming idealized geometries for the C_5H_5 rings. Their contributions were added to the SF calculations, but their positions were not refined.

Error analyses were calculated from the inverse matrix obtained on the final cycle of refinement. Tables of observed and calculated SF amplitudes, values of the anisotropic thermal parameters, and final positional parameters for three independent molecules of 1 are available (see supplementary material).

Results

The principal product obtained from the reaction of $\operatorname{Ru}_3(\operatorname{CO})_9(\mu_3\operatorname{-CO})(\mu_3\operatorname{-S})$ (1) with $[\operatorname{CpMo}(\operatorname{CO})_2]_2$ was $\operatorname{RuMo}_2(\operatorname{CO})_7\operatorname{Cp}_2(\mu_3\operatorname{-S})$ (3; 49% yield). A number of minor products, 4 (9%),¹³ 5 (3%),¹³ and $\operatorname{Ru}_3\operatorname{Mo}_2(\operatorname{CO})_{10}(\mu-\operatorname{CO})_2\operatorname{Cp}_2(\mu_4\operatorname{-S})$ (2; 2%), were also obtained. The metal nuclearity of 2 suggested that it was a direct product of the reaction and possibly an intermediate in the formation of 3. This was confirmed by an independent experiment in which 2 was converted into 3 in 57% yield. Compounds 2 and 3 were characterized by single-crystal X-ray diffraction analyses. For comparative purposes a crystallographic analysis of 1 was also performed and these results are included with this report.

Table V. Intramolecular Distances (Å) for Ru₃Mo₂(CO)₁₀(μ -CO)₂Cp₂(μ_4 -S) (2)^a

		102/00/10/2	00/2012(1	4~/(=/	
atom	atom	dist	atom	atom	dist
Ru1A	C13A	1.87 (1)	Mo1A	C33A	2.09 (1)
Ru1A	C12A	1.88 (1)	Mo1A	C63A	2.25 (1)
Ru1A	C11A	1.90 (1)	Mo1A	C64A	2.28 (1)
Ru1A	Ru3A	2.852 (1)	Mo1A	C62A	2.30 (1)
Ru1A	Ru2A	2.876 (1)	Mo1A	C65A	2.31 (1)
Ru1A	Mo1A	2.963 (1)	Mo1A	C61A	2.34 (1)
Ru1A	Mo2A	2.981 (1)	Mo1A	S1A	2.455 (2)
Ru1B	C13B	1.83 (1)	Mo1A	Mo2A	3.066 (1)
Ru1B	C12B	1.88 (1)	Mo1B	C41B	1.98 (1)
Ru1B	C11B	1.90 (1)	Mo1B	C33B	2.07 (1)
Ru1B	Ru3B	2.845 (1)	Mo1B	C64B	2.26 (1)
Ru1B	Ru2B	2.883(1)	Mo1B	C63B	2.26 (1)
Ru1B	Mo1B	2.950 (1)	Mo1B	C62B	2.31 (1)
Ru1B	Mo2B	2.998 (1)	Mo1B	C65B	2.31 (1)
Ru2A	C22A	1.87 (1)	Mo1B	C61B	2.32 (1)
Ru2A	C21A	1.87 (1)	Mo1B	S1B	2.444 (3)
Ru2A	C23A	2.01 (1)	Mo1B	Mo2B	3.110 (1)
Ru2A	S1A	2.418 (2)	Mo2A	C52A	1.98 (1)
Ru2A	Ru3A	2.769 (1)	Mo2A	C51A	2.00 (1)
Ru2A	Mo2A	2.911 (1)	Mo2A	C74A	2.28 (1)
Ru2B	C22B	1.87 (1)	Mo2A	C73A	2.30 (1)
Ru2B	C21B	1.87 (1)	Mo2A	C75A	2.31 (1)
Ru2B	C23B	2.00 (1)	Mo2A	C72A	2.34 (1)
Ru2B	S1B	2.425 (3)	Mo2A	C71A	2.36 (1)
Ru2B	Ru3B	2.756(1)	Mo2A	S1A	2.407 (3)
Ru2B	Mo2B	2.908 (1)	Mo2B	C51B	1.96 (1)
Ru3A	C32A	1.89 (1)	Mo2B	C52B	1.97 (1)
Ru3A	C31A	1.89 (1)	Mo2B	C74B	2.28 (1)
Ru3A	C23A	2.16 (1)	Mo2B	C75B	2.30 (1)
Ru3A	C33A	2.172 (9)	Mo2B	C73B	2.31 (1)
Ru3A	S1A	2.425(2)	Mo2B	C71B	2.34 (1)
Ru3A	Mo1A	2.920 (1)	Mo2B	C72B	2.36 (1)
Ru3B	C31B	1.89 (1)	Mo2B	S1B	2.407 (2)
Ru3B	C32B	1.90 (1)	C(A)	$O(A)_{av}$	1.15 (1)
Ru3B	C23B	2.15(1)	C(B)	$O(B)_{av}$	1.15 (1)
Ru3B	C33B	2.21 (1)	Ru2A	C52A	2.84 (1)
Ru3B	S1B	2.422(3)	Ru2B	C52B	2.84 (1)
Ru3B	Mo1B	2.911 (1)	Mo1A	C51A	2.89 (1)
Mo1A	C41A	1.98(1)	Mo1B	C51B	3.01 (1)

^aEstimated standard deviations in the least significant figure are given in parentheses.

Description of the Structures. (a) $Ru_3(CO)_9(\mu_3$ - $CO(\mu_3 \cdot S)$ (1). Compound 1 crystallized in the monoclinic space group $P2_1$ with three independent molecules in the asymmetric crystal unit. All three molecules are structurally similar, and an ORTEP diagram of molecule A is shown in Figure 1. Intramolecular distances and selected intramolecular angles are listed in Tables II and III. The molecule consists of a triangular cluster of three ruthenium atoms connected by three metal-metal bonds. Over all three molecules the Ru-Ru distances lie in the narrow range of 2.786(1)-2.812(1) Å; the average equals 2.798(3)Å. Each molecule contains a triply bridging sulfido ligand on one side of the cluster and a triply bridging carbonyl ligand on the other side. The Ru-S distances range from 2.334 (2) to 2.361 (2) Å. The Ru-C distances to the triply bridging carbonyl ligands exhibit a wider range, 2.163 (9)-2.213 (8) Å. Each metal atom contains three linear terminal carbonyl ligands. All these Ru-C distances lie in the range of 1.89 (1)-1.94 (1) Å. Compound 1 is structurally very similar to that of the iron¹⁶ and osmium¹⁷

homologues that have been reported previously.

(b) $Ru_3Mo_2(CO)_{10}(\mu-CO)_2Cp_2(\mu_4-S)$ (2). Compound 2 crystallizes in the triclinic space group $P\bar{1}$ with two independent molecules in the asymmetric crystal unit. Both molecules are structurally similar. An ORTEP diagram of molecule A is shown in Figure 2. Final positional parameters are listed in Table IV. Intramolecular bond distances and selected bond angles are listed in Tables V and VI, respectively. The molecule consists of a squarepyramidal cluster of three ruthenium and two molybdenum atoms. The two molybdenum atoms occupy basal positions of the pyramid. A quadruply bridging sulfido ligand spans the square base. Carbonyl ligands bridge two of the basal edges of the cluster, C(33)-O(33) across Mo-(1)-Ru(3) and C(23)-O(23) across Ru(2)-Ru(3). The Mo(1)-Mo(2) bond length is 3.066 (1) Å [3.110 (1) Å]. The quantity in brackets corresponds to the distance in molecule B. These distances are shorter than the Mo-Mo single bond length, 3.235 (1) Å, observed in sterically crowded molecule $[CpMo(CO)_3]_2$.¹⁸ Interestingly, there is no significant difference between the CO-bridged Mo-(1)-Ru(3) distance, 2.920 (1) Å [2.911 (1) Å], and the unbridged distance Mo(2)-Ru(2), 2.911 (1) Å [2.908 (1) Å]. The Ru(2)-Ru(3) metal-metal bond is the shortest in the molecule, 2.756 (1) Å [2.796 (1) Å]. Similar Ru-Ru bond distances were observed for the CO-bridged bonds in the structurally similar cluster $\operatorname{Ru}_5(\operatorname{CO})_{11}(\mu-\operatorname{CO})_4(\mu_4-S)$ (4).¹⁹ The Ru–Mo and Ru–Ru bonds to the apical atom Ru(1)are significantly longer than the corresponding bonds in the base of the pyramid, Ru(1)-Mo(1) = 2.963 (1) Å [2.950 (1) Å] and Ru(1)-Mo(2) = 2.981 (1) Å [2.998 (1) Å]; Ru-(1)-Ru(2) = 2.876 (1) Å [2.883 (1) Å] and Ru(1)-Ru(3) =2.852 (1) Å [2.845 (1) Å]. A similar effect was observed in compound 4.¹⁹ Compound 2 contains two bridging carbonyl ligands, v = 1830 and 1784 cm⁻¹. There are two carbonyl ligands on Mo(2) that are weakly semibridging. The remaining carbonyl ligands, distributed as shown in Figure 2, are all of a terminal type. The ¹H NMR spectrum shows only one cyclopentadienyl resonance, δ 5.44. However, in the solid-state structure the rings are inequivalent. The implied solution equivalence could be the result of a dynamic averaging process involving very simple bridgeterminal CO ligand shifts. For example, the semibridging ligand, C(52)-O(52), shifts to a full bridge across the Mo(2)-Ru(2) bond, and the full bridge, C(33)-O(33), shifts into a semibridging mode on Mo(1). Compound 2 contains a total of 76 valence electrons. It obeys both the polyhedral skeletal electron pair theory and the effective atomic number rule, although within the framework of the latter theory the Mo(2)-Ru(2) bond would be regarded as donor-acceptor bond from Mo(2) to Ru(2).20

(c) $\operatorname{RuMo}_2(\operatorname{CO})_7\operatorname{Cp}_2(\mu_3 \cdot \mathbf{S})$ (3). An ORTEP drawing of the molecular structure of 3 is shown in Figure 3. Positional parameters are listed in Table VII. Intramolecular bond distances and angles are listed in Tables VIII and IX, respectively. The molecule consists of a triangular cluster of two molybdenum and one ruthenium atom

⁽¹⁶⁾ Markó, L.; Madach, T.; Vahrenkamp, H. J. Organomet. Chem. 1980, 190, C67.

⁽¹⁷⁾ Adams, R. D.; Horváth, I. T.; Kim, H. S. Organometallics 1984, 3, 548.

⁽¹⁸⁾ Adams, R. D.; Collins, D. M.; Cotton, F. A. Inorg. Chem. 1974, 13, 1086.

⁽¹⁹⁾ Adamä, R. D.; Babin, J. E.; Tasi, M. Organometallics, in press.
(20) (a) Mingos, D. M. P. Acc. Chem. Res. 1984, 17, 311. (b) Wade,
K. In Transition Metal Clusters; Johnson, B. F. G., Ed.; Wiley: New York, 1980. (c) Johnson, B. F. G.; Benfield, R. E. Top. Stereochem. 1981, 12.

Table VI. Selected Intramolecular Angles (deg) for $Ru_3Mo_2(CO)_{10}(\mu-CO)_2Cp_2(\mu_4-S)$ (2)^a

			ii beiceteu ii			(uog/		0/10(p 00/2		(-/	····
atom	atom	atom	angle	atom	atom	atom	angle	atom	atom	atom	angle
C13A	Ru1A	Ru3A	77.1 (3)	C32A	Ru3A	Ru1A	101.3 (3)	Ru1B	Mo1B	Mo2B	59.24 (3)
C13A	Ru1A	Ru2A	124.9 (3)	C32A	Ru3A	Mo1A	124.9 (3)	C52A	Mo2A	Ru2A	68.0 (3)
C134	Ru1A	MolA	93 4 (3)	C31A	Ru3A	R112A	113.8 (3)	C52A	Mo2A	Ru1A	62.0 (3)
C13A	Ru1A	Mo2A	155 5 (3)	C31A	Ru3A	Ru1A	168 2 (3)	C52A	Mo2A	MolA	1201(3)
CIOA	DulA	D112A	100.0 (0)	C21A	RusA RusA	MolA	100.2 (0)	C51A	Mo2A	R1124	139.9 (3)
C12A	DulA	D.OA	99.4 (3) 60.6 (2)	COLA	D.0A	Duga	103.2(0)	C51A	Mo2A	Dul A	72 8 (2)
CIZA	RulA D.1A	RuZA	09.0 (<i>J</i>)	Cash	RUSA D2A	Ru2A	40.1 (3)	CELA	Maga	MalA	13.0 (3) 65 7 (9)
CIZA	RulA	MOIA	107.6 (3)	C23A	RusA D. 0 A	KUIA Mala	00.0 (J)	COIA	M-0A	Duga	50.7 (3) 59.06 (6)
CIZA	RulA	MozA	112.0 (3)	C23A	RUJA	MOIA D. OA	139.1 (3)	SIA	MOZA	Ru2A	03.00 (0)
CIIA	RulA	Ru3A	165.5 (3)	C33A	Ru3A	RuzA	136.8 (3)	SIA	MOZA	RUIA	(0)
CIIA	RulA	Ru2A	135.7 (3)	C33A	Ru3A	RulA	83.4 (2)	SIA	Mo2A	MolA	51.60 (6)
C11A	Ru1A	Mo1A	109.9 (3)	C33A	Ru3A	MolA	45.5 (3)	Ru2A	Mo2A	RulA	58.42 (3)
C11A	Ru1A	Mo2A	94.8 (3)	S1A	Ru3A	Ru2A	55.00 (6)	Ru2A	Mo2A	MolA	87.58 (3)
Ru3A	Ru1A	Ru2A	57.82 (3)	S1A	Ru3A	Ru1A	78.16 (6)	Ru1A	Mo2A	Mo1A	58.66 (3)
Ru3A	Ru1A	Mo1A	60.25 (3)	S1A	Ru3A	Mo1A	53.71 (6)	C51B	Mo2B	Ru2B	133.0 (3)
Ru3A	Ru1A	Mo2A	89.46 (3)	Ru2A	Ru3A	Ru1A	61.53 (3)	C51B	Mo2B	Ru1B	74.7 (3)
Ru2A	Ru1A	Mo1A	90.23 (3)	Ru2A	Ru3A	Mo1A	93.28 (4)	C51B	Mo2B	Mo1B	68.5 (3)
Ru2A	Ru1A	Mo2A	59.57 (3)	Ru1A	Ru3A	Mo1A	61.77(3)	C52B	Mo2B	Ru2B	68.1 (3)
Mo1A	Ru1A	Mo2A	62.10 (3)	C31B	Ru3B	Ru2B	114.3 (3)	C52B	Mo2B	Ru1B	63.1 (3)
C13B	Ru1B	Ru3B	76.7 (4)	C31B	Ru3B	Ru1B	166.6 (3)	C5iB	Mo2B	Mo1B	120.4 (3)
C13B	Ru1B	Ru2B	126.4(4)	C31B	Ru3B	Mo1B	107.2(4)	S1B	Mo2B	Ru2B	53.27 (6)
C13B	Ru1B	MolB	89.5 (4)	C32B	Ru3B	Ru2B	124 9 (3)	S1Bv	Mo2B	Ru1B	75.20 (6)
C13B	Ru1B	Mo2B	152 6 (4)	C32B	RusB	Ru1B	100 8 (4)	S1B	Mo2B	Mo1B	50 64 (6)
C10D	D ₁ 1D	D102D	102.0(4)	Capp	D112D	Mo1B	100.0(4) 1951(9)	B10B	Mo2B	Ru1B	59 40 (3)
C12D	Duid	D.OD	97.0(4)	CO2D	D.0D	DuoD	120.1 (0)	D ₁₀ 2D	Mo2D	Mo1P	96 92 (A)
CI2D	Ruid Duid	Ku2D	150 0 (4)	CODB	RuaD	Ru2D	40.0 (3)	Du1D	Man	Mo1D	60.63 (4) 57 71 (9)
C12B	RulB	MOID	106.2 (4)	CZ3D	D. OD	Kulb M.1D	09.0 (0)	Kulb		Duga	07.71 (0) 74.01 (7)
CI2B	Ruib	MozB	113.4 (3)	C23B	RUSB	MOID	139.6 (3)	MOZA	SIA	RuzA	74.Z1 (7)
CIIB	RulB	Ru3B	168.2 (4)	C30B	Ru3B	Ru2B	136.4 (3)	MoZA	SIA	Ru3A	116.3 (1)
CIIB	RulB	Ru2B	133.3(4)	C33B	Ru3B	RulB	81.7 (3)	Mo2A	SIA	MolA	78.18 (7)
C11B	Ru1B	Mo1B	111.1 (3)	C33B	Ru3B	MolB	45.2 (3)	Ru2A	S1A	Ru3A	69.74 (7)
C11B	Ru1B	Mo2B	93.4 (3)	S1B	Ru3B	Ru2B	55.39 (6)	Ru2A	S1A	Mo1A	116.2 (1)
Ru3B	Ru1B	Ru2B	57.53 (3)	S1B	Ru3B	Ru1B	78.00 (6)	Ru3A	S1A	Mo1A	73.50 (7)
Ru3B	Ru1B	Mo1B	60.27 (3)	S1B	Ru3B	Mo1B	53.60 (6)	Mo2B	S1B	Ru3B	116.9 (1)
Ru3B	Ru1B	Mo2B	89.52 (3)	Ru2B	Ru3B	Ru1B	61.92 (3)	Mo2B	S1B	Ru2B	74.01 (7)
Ru2B	Ru1B	Mo1B	90.41 (4)	Ru2B	Ru3B	Mo1B	93.80 (4)	Mo2B	S1B	Mo1B	79.75 (8)
Ru2B	Ru1B	Mo2B	59.24 (3)	Ru1B	Ru3B	Mo1B	61.65 (3)	Ru3B	S1B	Ru2B	69.31 (7)
Mo1B	Ru1B	Mo2B	63.05 (3)	C33A	Mo1A	Ru3A	47.9 (2)	Ru3B	S1B	Mo1B	73.47 (7)
C22A	Ru2A	Ru3A	117.5 (3)	C33A	Mo1A	Ru1A	82.1 (3)	Ru2B	S1B	Mo1B	116.5(1)
C22A	Ru2A	Ru1A	166.2(3)	C33A	Mo1A	Mo2A	132.7(2)	023A	C23A	Ru2A	143.0 (8)
C22A	R1194	Mo24	105.3 (3)	C63A	MolA	R113A	129.5 (3)	023A	C23A	Ru3A	133 8 (7)
C21A	Ru2A	Ru3A	1406 (3)	C634	Mo14	Ru14	1431(3)	B1124	C234	Ru3A	83.2 (4)
C21A	D119A	Du1 A	104 5 (2)	C63A	MolA	Mo24	149.7 (3)	023B	C23R	Ru2B	1/3 (1)
C21A	D.01	Maga	104.0(0)	Cert	MolA	D.2A	142.7(0) 164.9(2)	0200	C20D	D. 2D	140(1) 1241(0)
CODA	Ru2A	D.OA	113.1 (3) 50 7 (2)	CC4A	MalA	Du1A	104.2(0) 105 = (0)	023B B9D	Coop	RusD D9D	104.1 (9)
CZ3A	Ru2A	Rusa	$\frac{1}{2}$	C64A	Maia	KulA			C23D	Ruse D.o.A	00.0 (4)
C23A	RuzA	RUIA	91.1 (3)	C64A	WI01A	MO2A	107.4 (3)	MOIA	COOR	RUJA	80.0 (4)
C23A	Ru2A	Mo2A	143.0 (3)	C62A	MolA	Ru3A	106.5 (3)	033B	C33B	MolB	146 (1)
SIA	Ru2A	Ru3A	55.25 (6)	C62A	MolA	RulA	159.7 (3)	O33B	C33B	Ru3B	128.3 (9)
S1A	Ru2A	Ru1A	77.79 (6)	C62A	MolA	Mo2A	137.6 (3)	MolB	C33B	Ru3B	85.7 (4)
S1A	Ru2A	Mo2A	52.73 (6)	C65A	Mo1A	Ru3A	142.3 (4)	C62A	C61A	C65A	108 (1)
Ru3A	Ru2A	Ru1A	60.65 (3)	C65A	Mo1A	Ru1A	143.2 (3)	C62B	C61B	C65B	108 (1)
Ru3A	Ru2A	Mo2A	92.55 (3)	C65A	Mo1A	Mo2A	87.7 (3)	C61A	C62A	C63A	110 (1)
Ru1A	Ru2A	Mo2A	62.01 (3)	C61A	Mo1A	Ru3A	111.7 (3)	C61B	C62B	C63B	108 (1)
C22B	Ru2B	Ru3B	117.1(3)	C61A	Mo1A	Ru1A	159.0 (3)	C62A	C63A	C64A	108 (1)
C22B	Ru2B	Ru1B	166.2(3)	C61A	Mo1A	Mo2A	104.3 (4)	C62B	C63B	C64B	108 (1)
C22B	Ru2B	Mo2B	105.2 (3)	S1A	Mo1A	Ru3A	52.79 (6)	C63A	C64A	C65A	106 (1)
C21B	Ru2B	Ru3B	139.7 (3)	S1A	Mo1A	Ru1A	75.55 (6)	C65B	C64B	C63B	108 (1)
C21B	Ru2B	Ru1B	103.0 (3)	Su1A	Mo1A	Mo2A	50.22 (6)	C64A	C65A	C61A	108(1)
C_{21B}	Ru2B	Mo2B	1119(3)	R113A	Mo1A	Ru1A	57.99 (3)	C64B	C65B	C61B	108 (1)
C23B	Ru2B	Ru3B	50.7(3)	R113A	MolA	Mo2A	86 58 (3)	C72A	C71A	C75A	107(1)
C23B	Ru2D	Ru1B	015(3)	Ru1A	MolA	Mo2A	59.24 (3)	C75B	C71B	C72B	109 (1)
C20D	P110D	MADD	1436 (9)	Coop	Mo1P	B1102H	49 1 (9)	C71 A	C79A	C72A	109 (1)
0400	DOD	D102D	140.0 (0)	Coop	Mc1D	D.1D	91 9 (9)	071A	C70D	CTOR	109 (1)
SID	Ru2B	RUSD	00.30 (0)		Mo1D	M-OD	01.0 (J) 100 0 (D)		0724	CTAD	107 (1)
SIB	Ru2B	RUIB	(1.22 (6)	0338	WI01B	WI02B	132.8 (3)	C72A	073A	074A	107 (1)
SIR	Ru2B	Mo2B	52.72 (6)	SIB	MolB	Ru3B	52.93 (6)	C74B	C73B	C72B	106 (1)
Ru3B	Ru2B	KulB	60.55 (3)	SIB	MolB	RulB	75.64 (6)	C75A	U/4A	C73A	106 (1)
Ru3B	Ru2B	Mo2B	93.17 (4)	S1B	Mo1B	Mo2B	49.61 (6)	C75B	C74B	C73B	108 (1)
Ru1B	Ru2B	Mo2B	62.36 (3)	Ru3B	Mo1B	Ru1B	58.08 (3)	C71A	C75A	C74A	110 (1)
C32A	Ru3A	Ru2A	125.9 (3)	Ru3B	Mo1B	Mo2B	86.19 (4)	C71B	C75B	C74B	109 (1)

^a Estimated standard deviations in the least significant figure are given in parentheses.

connected by three metal-metal bonds. The Mo-Ru distances, Mo(1)-Ru(1) = 2.9129 (8) Å and Mo(2)-Ru(1) = 2.8989 (9) Å, are very similar to those in the base of the square pyramid of 2. The Mo(1)-Mo(2) bond of 3.0282 (8) Å is slightly shorter than the Mo-Mo bond in 2.

Compound 3 contains a triply bridging sulfido ligand. The Ru-S distance of 2.314 (2) Å is shorter than the two Mo-S distances, 2.385 (2) and 2.371 (2) Å. There are seven carbonyl ligands. The three CO ligands on Ru(1) are linear. Those on the molybdenum atoms are weakly semi-

Table VII. Positional Parameters and B(eq) for RuMo₂(CO)₇Cp₂(μ_{3} -S) (3)

atom	x	У	z	$B(eq), Å^2$							
Ru1	0.67769 (4)	0.11364 (3)	0.34105 (4)	2.89 (2)							
Mo1	0.72835(4)	0.02149(3)	0.09769(4)	2.51(2)							
Mo2	0.77768 (4)	-0.05221 (3)	0.36970 (5)	2.77(2)							
s	0.6092(1)	-0.0164 (1)	0.2733(1)	3.11 (6)							
011	0.9262 (4)	0.1438 (3)	0.1219 (5)	5.3 (2)							
O12	0.5983 (4)	0.1796 (3)	0.0057 (4)	5.0 (2)							
O21	0.9012 (5)	0.0845 (3)	0.5260 (7)	9.4 (4)							
O22	0.9794 (4)	-0.0628 (4)	0.1934 (5)	6.9 (3)							
O31	0.6274 (4)	0.1239 (3)	0.6333 (5)	6.2 (3)							
O32	0.4829 (4)	0.2212 (3)	0.2720 (5)	5.4 (3)							
O33	0.8357 (5)	0.2616 (3)	0.3522 (6)	7.6 (3)							
C11	0.8526 (5)	0.1007 (4)	0.1200 (5)	3.4 (3)							
C12	0.6445 (5)	0.1236 (4)	0.0505 (5)	3.4 (3)							
C21	0.8473 (6)	0.0421 (4)	0.4583(7)	5.4 (4)							
C22	0.8987 (5)	-0.0522 (4)	0.2488 (6)	4.5 (3)							
C31	0.6458 (5)	0.1198 (4)	0.5231 (6)	4.1 (3)							
C32	0.5579 (5)	0.1815(4)	0.2927 (6)	3.8 (3)							
C33	0.7772 (5)	0.2064(4)	0.3502 (6)	4.2 (3)							
C41	0.8291(5)	-0.0473 (5)	-0.0613 (6)	4.6 (3)							
C42	0.7736 (6)	-0.1118 (4)	0.0049 (7)	4.6 (3)							
C43	0.6650 (6)	-0.0991 (5)	-0.0164 (7)	5.2 (4)							
C44	0.6514 (6)	-0.0267 (5)	-0.0952 (7)	5.3 (4)							
C45	0.7555 (6)	0.0062(5)	-0.1247 (6)	4.9 (4)							
C51	0.7215 (7)	-0.1235 (5)	0.5614(7)	6.0 (4)							
C52	0.6828 (6)	-0.1689 (4)	0.4550(7)	4.7 (4)							
C53	0.7679 (8)	-0.2001 (4)	0.3816 (7)	5.5 (4)							
C54	0.8602 (7)	-0.1738 (6)	0.445 (1)	7.4 (5)							
C55	0.8318 (9)	-0.1257 (6)	0.555 (1)	7.6 (6)							

bridging ligands. The metal atoms in 3 contain 48 valence electrons. It is thus electron-precise.²⁰

Discussion

The value of the unsaturated compound $[CpMo(CO)_2]_2$ as a reagent for cluster synthesis has been demonstrated.^{21,22} Metal-metal exchange reactions are a commonly used method for obtaining new heteronuclear clusters.¹⁻⁶

The reaction of 1 with $[CpMo(CO)_2]_2$ at 80 °C yielded 3 through a reaction in which the two molybdenum atoms were added in one step to yield the pentanuclear intermediate 2. The importance of molybdenum-sulfur interactions is indicated since both molybdenum atoms in 2 are bonded to the sulfido ligand. As shown schematically

$101110_2(00)_70p_2(\mu_3-5)(0)$									
atom	atom	dist							
Ru1	C31	1.876 (7)							
Ru1	C32	1.891 (7)							
Ru1	C33	1.912 (7)							
Ru1	S	2.314(2)							
Ru1	Mo2	2.8989 (9)							
Ru1	Mo1	2.9129 (8)							
Mo1	C12	1.969 (6)							
Mo1	C11	1.994 (6)							
Mo1	C45	2.274 (6)							
Mo1	C44	2.286 (6)							
Mo1	C41	2.303 (6)							
Mo1	C43	2.348 (6)							
Mo1	C42	2.360 (6)							
Mo1	S	2.385 (2)							
Mo1	Mo2	3.0282 (8)							
Mo2	C21	1.931 (7)							
Mo2	C22	1.938 (7)							
Mo2	C55	2.289 (7)							
Mo2	C54	2.295 (7)							
Mo2	C53	2.329 (6)							
Mo2	C51	2.338 (7)							
Mo2	C52	2.343 (6)							
Mo2	S	2.371 (2)							
011	C11	1.138 (6)							
O12	C12	1.142 (6)							
O21	C21	1.162 (7)							
O22	C22	1.162 (7)							
O31	C31	1.135 (7)							
O32	C32	1.141 (7)							
O33	C33	1.132 (7)							
C41	C45	1.393 (9)							
C41	C42	1.396 (9)							
C42	C43	1.380 (9)							
C43	C44	1.40 (1)							
C44	C45	1.43 (1)							
C51	C52	1.37 (1)							
C51	C55	1.37 (1)							
C52	C53	1.38 (1)							
C53	C54	1.37 (1)							
C54	C55	1.39 (1)							

 $^{\rm a}$ Estimated standard deviations in the least significant figure are given in parentheses.

in Scheme I, the Mo-Mo triply bonded unit in $[CpMo-(CO)_2]_2$ was inserted into one of the Ru-S bonds. Each molybdenum atom formed two Mo-Ru bonds, and square-pyramidal cluster resulted. The yield of 2 was low because under the reaction conditions 2 is converted into 3. Details of the expulsion of the two ruthenium atoms

Table IX.	Intramolecular	Bond	Angles	(deg) fo	r RuMo ₂	(CO) ₇ Cp	$_{2}(\mu_{3}-S)$	(3) ^a
-----------	----------------	------	--------	----------	---------------------	----------------------	-------------------	-------------------------

atom	atom	atom	angle	atom	atom	atom	angle	atom	atom	atom	angle
C31	Ru1	C32	93.0 (2)	C11	Mo1	s	123.8 (2)	Mo2	s	Mo1	79.10 (5)
C31	Ru1	C33	93.1 (3)	C11	Mo1	Ru1	76.5 (2)	011	C11	Mo1	174.0 (5)
C31	Ru1	S	104.7 (2)	C11	Mo1	Mo2	89.0 (2)	012	C12	Mo1	170.7 (5)
C31	Ru1	Mo2	92.4 (2)	S	Mo1	Ru1	50.60 (4)	O 21	C21	Mo2	164.9 (6)
C31	Ru1	Mo1	153.1 (2)	S	Mo1	Mo2	50.25 (4)	O22	C22	Mo2	167.1 (5)
C32	Ru1	C33	95.3 (3)	Ru1	Mo1	Mo2	58.37 (2)	O31	C31	Ru1	179.4 (6)
C32	Ru1	s	97.7 (2)	C21	Mo2	C22	86.6 (3)	O32	C32	Ru1	175.3 (5)
C32	Ru1	Mo2	150.2 (2)	C21	Mo2	S	113.6 (2)	O33	C33	Ru1	178.2 (6)
C32	Ru1	Mo1	103.7 (2)	C21	Mo2	Ru1	63.1 (2)	C42	C41	C45	109.3 (6)
C33	Ru1	\mathbf{S}	157.4 (2)	C21	Mo2	Mo1	102.2 (2)	C41	C42	C43	107.9 (6)
C33	Ru1	Mo2	113.7 (2)	C22	Mo2	S	115.5(2)	C42	C43	C44	108.7 (6)
C33	Ru1	Mo1	106.0 (2)	C22	Mo2	Ru1	105.7 (2)	C43	C44	C45	107.8 (6)
\mathbf{S}	Ru1	Mo2	52.66 (4)	C22	Mo2	Mo1	65.7 (2)	C41	C45	C46	106.3 (6)
S	Ru1	Mo1	52.80 (4)	S	Mo2	Ru1	50.89 (4)	C52	C51	C55	107.3 (8)
Mo2	Rul	Mo1	62.80 (2)	\mathbf{S}	Mo2	Mo1	50.66 (4)	C51	C52	C53	109.5 (7)
C12	Mo1	S	93.0 (2)	Ru1	Mo2	Mo1	58.83 (2)	C52	C53	C54	106.6 (7)
C12	Mo1	Ru1	71.4 (2)	Ru1	S	Mo2	76.45 (5)	C53	C54	C55	108.6 (8)
C12	Mo1	Mo2	129.3 (2)	Ru	s	Mo1	76.60 (4)	C54	C55	C51	108.0 (8)

^a Estimated standard deviations in the least significant figure are given in parentheses.

were not provided by this study. Since no Ru₂Mo₂ species were observed, it is believed that both ruthenium carbonyl groups were eliminated rapidly. Most of the ruthenium was isolated as $Ru_3(CO)_{12}$. This could have passed through $Ru(CO)_5$ since this is known to convert into $Ru_3(CO)_{12}$ under the reaction conditions. Small amounts of ruthenium were used in the formation of higher nuclearity products.13

(22) Hsu, L.-Y.; Hsu, W.-Y.; Jan, D.-Y.; Shore, S. G. Organometallics 1986, 5, 1041.

(23) Bruce, M. I. Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E., Eds.; Pergamon: Oxford, 1982; Chapter 32.2.

Acknowledgment. The research was supported by the National Science Foundation under Grant No. CHE-8612862. The AM-300 NMR spectrometer was purchased with funds from the National Science Foundation, Grant No. CHE-8411172.

Registry No. 1, 105121-22-0; 2, 111189-74-3; 3, 92067-61-3; 4, 109013-40-3; 5, 109064-30-4; $Ru_7(CO)_{20}(\mu_4-S)_2$, 109466-69-5; [CpMo(CO)₃]₂, 12091-64-4; [CpMo(CO)₂]₂, 56200-27-2.

Supplementary Material Available: Tables of positional parameters for compound 1, positional parameters of the hydrogen atoms for compounds 2 and 3, C-C and C-O distances for 1 and 2, and anisotropic thermal parameters for 1-3 (14 pages); listings of observed and calculated structure factor amplitudes for 1-3 (86 pages). Ordering information is given on any current masthead page.

Preparation and Reactivity of Sodium Organocuprates¹

Steven H. Bertz,* Charles P. Gibson, and Gary Dabbagh

Bell Laboratories, Murray Hill, New Jersey 07974

Received June 15, 1987

Sodium organocuprates, R₂CuNa, can be prepared from organosodium reagents (RNa) and CuCN or $CuBr \cdot SMe_2$ at -50 °C in THF. The resulting reagents show typical cuprate reactivity; however, they are less reactive toward a typical α -enone than the corresponding Li cuprates. Organocuprate reactivity toward 2-iodoheptane appears to be controlled by the counterion $(CN^{-} vs I^{-})$ rather than by the metal ion (Na^{+}) vs Li⁺). Both Bu₂CuNa NaCN and Bu₂CuLi LiCN are very stable and react quantitatively with PhCOCl. Whereas treatment of di-tert-butyl thicketone with BuNa or BuLi yields predominately reduction product, treatment with the corresponding cuprates yields a substantial proportion of thiophilic addition product. The effects of 15-crown-5 and 12-crown-4 on Bu₂CuNa NaCN and Bu₂CuLi-LiCN are also described.

Organocuprates arguably are the most important of the transition-metal organometallic reagents, and they are among the most important of all the many reagents currently applied to organic synthesis.² While the counterion in the Cu(I) precursor (X in Scheme I) has been varied widely (e.g., halide,³⁻⁵ cyanide,⁶ acetylide,⁷ methanide,⁸ mesitylenide,⁹ alkoxide,¹⁰ mercaptide,¹⁰ amide,¹¹ phosphide,^{11,12} triflate¹³), the only metal ions that have been

Chem. 1975, 40, 1460.

Chem. 1975, 40, 1460.
(6) (a) Gorlier, J.-P.; Hamon, L.; Levisalles, J.; Wagnon, J. J. Chem. Soc., Chem. Commun. 1973, 88. (b) Fleming. I.; Roessler, F. J. Chem. Soc., Chem. Commun. 1980, 276. (c) Lipshutz, B. H.; Wilhelm, R. S.; Floyd, D. M. J. Am. Chem. Soc. 1981, 103, 7672.
(7) Corey, E. J.; Beames, D. J. J. Am. Chem. Soc. 1972, 94, 7210.
Mandeville, W. H.; Whitesides, G. M. J. Org. Chem. 1974, 39, 400.
(8) Bergbreiter, D. E.; Whitesides, G. M. J. Org. Chem. 1975, 40, 779.
Posner, G. H.; Sterling, J. J.; Whitten, C. E.; Lentz, C. M.; Brunelle, D. J. J. Am. Chem. Soc. 1975, 97, 107.
(9) Tsuda, T.; Yazawa, T.; Watanabe, K.; Fujii, T.; Saegusa, T. J. Org. Chem. 1981, 46. 192.

Chem. 1981, 46, 192.

(10) Posner, G. H.; Whitten, C. E.; Sterling, J. J. J. Am. Chem. Soc. 1973, 95, 7788.

(11) (a) Bertz, S. H.; Dabbagh, G. J. Chem. Soc., Chem. Commun. 1982, 1030. (b) Bertz, S. H.; Dabbagh, G.; Villacorta, G. M. J. Am. Chem. Soc. 1982, 104, 5824.

(12) Bertz, S. H.; Dabbagh, G. J. Org. Chem. 1984, 49, 1119.

Scheme I

$CuX + 2RM \rightarrow R_2CuM \cdot MX$ (or $R_2Cu(X)M_2$)

partners with Cu in previous cuprates have been Li, Mg, and, to a very limited extent, Zn,^{14,15} Cd,¹⁵ Zr,¹⁶ B,¹⁷ and Hg.¹⁸ Other metals have been added to organocopper reagents in the form of Lewis acids.¹⁹ We have been able to prepare sodium cuprates by the addition of organosodium reagents to CuCN or CuBr·SMe2. These new species possess typical organocuprate reactivity but have some significant differences from the corresponding lithium cuprates.

(16) Yoshifuji, M.; Loots, M. J.; Schwartz, J. Tetrahedron Lett. 1977, 1303.

(17) Yamamoto, Y.; Yatagai, H.; Maruyama, K.; Sonoda, A.; Murahashi, S.-I. J. Am. Chem. Soc. 1977, 99, 5652. Campbell, J. B.; Brown, H. C. J. Org. Chem. 1980, 45, 549, 550.

H. C. J. Org. Chem. 1980, 45, 549, 550.
(18) Larock, R. C.; Leach, D. R. Tetrahedron Lett. 1981, 3435.
Bergbreiter, D. E.; Whitesides, G. M. J. Am. Chem. Soc. 1974, 96, 4937.
(19) BF₃: Yamamoto, Y.; Maruyama, K. J. Am. Chem. Soc. 1978, 100, 3240. AlCl₃: Ibuka, T.; Minakata, H.; Mitsui, Y.; Kinoshita, K.; Kawami, Y. J. Chem. Soc., Chem. Commun. 1980, 1193. TiCl₄: Yamamoto, Y.; Yamamoto, S.; Yatagai, H.; Maruyama, K. J. Am. Chem. Soc. 1980, 102, 2218. 2318.

^{(21) (}a) Braunstein, P.; Jud, J. M.; Tiripicchio, A.; Tiripicchio-Ca-mellini, M.; Sappa, E. Angew. Chem., Int. Ed. Engl. 1982, 21, 307. (b) Williams, P. D.; Curtis, M. D.; Duffy, D. N.; Butler, W. M. Organo-metallics 1983, 2, 165.

⁽¹⁾ New Copper Chemistry. 13. For part 12, see ref 26a, for part 11, ref 33, and for part 10, ref 26b.

⁽²⁾ Posner, G. H. An Introduction to Synthesis Using Organocopper Reagents; Wiley: New York, 1980. (3) Reich, M. R. C. R. Hebd. Seances Acad. Sci. 1923, 177, 322. Gil-

⁽⁵⁾ Freiun, M. R. C. R. Heoa. Seances Acad. Sci. 1923, 177, 322. Gilman, H.; Straley, J. M. Recl. Trav. Chim. Pays-Bas 1936, 55, 821. Gilman, H.; Jones, R. G.; Woods, L. A. J. Org. Chem. 1952, 17, 1630.
(4) (a) Corey, E. J.; Posner, G. H. J. Am. Chem. Soc. 1967, 89, 3911.
(b) Whitesides, G. M.; Fischer, W. F.; San Filippo, J.; Bashe, R. W.; House, H. O. J. Am. Chem. Soc. 1969, 91, 4871.
(5) House, H. O.; Chu, C.-Y.; Wilkins, J. M.; Umen, M. J. J. Org. Chem. 1975, 40, 1460.

⁽¹³⁾ Bertz, S. H.; Dabbagh, G.; Williams, L. M. J. Org. Chem. 1985, 50, 4414

<sup>50, 4414.
(14)</sup> Thiele, K.-H.; Köhler, J. J. Organomet. Chem. 1968, 12, 225.
Hofstee, H. K.; Boersma, J.; van der Kerk, G. J. M. Ibid. 1978, 144, 255.
Weissig, V.; Thiele, K.-H.; Beckhaus, R. Z. Anorg. Allg. Chem. 1981, 482, 185.
Kitazume, T.; Ishikawa, N. Chem. Lett. 1982, 1453. See also Gaudemar, M. Tetrahedron Lett. 1983, 24, 2749.
(15) Wiemers, D. M.; Burton, D. J. J. Am. Chem. Soc. 1986, 108, 832.
(16) Wiemers, M.; Schwartz, M. T. Tetrahedron Lett. 1977.