by the trace water in the medium.5c UV-vis and FTIR spectra at the end of the electrolysis period show that the catalyst remains unchanged during the electrolysis experiments.

The kinetics of $CO₂$ reduction were studied by computer simulation of the scan rate dependence of cyclic voltammetric wave shapes under conditions where the concentrations of cis- $[Os(bpy)_{2}(CO)H][PF_{6}]$, CO_{2} , and $H_{2}O$ could be systematically varied.⁶ Of a variety of possible mechanistic cases that were considered, the data were most satisfactorily fit by a mechanism that involves an initial, irreversible reaction between $[Os(bpy)₂(CO)H]⁻$ and $CO₂$ with a rate constant, k_1 , to give an intermediate which subsequently undergoes either a self-reaction or an irreversible reaction with H_2O as shown in eq 1-8 (Scheme I). In one alternate mechanism, which gives a **similar** variation in i_d/i_{cat} with concentration, see below, but with a less satisfactory fit, parallel pathways exist which are first order in cis -[(bpy)₂Os(CO)H][PF₆] and CO₂ with one of the two pathways involving a following step which is first order in added H,O. **As** shown, the mechanism does not include the H_2 production pathway which appears at high $[H_2O]$. In principle, it should have been possible to use product ratio studies at high added $[H_2O]$ to evaluate k_6 and k_7 . However, there are large uncertainties in the analyses, and we have insufficient data to justify using the results in this way.

In Figure 1B is shown a plot of the ratio of the diffusion and catalytic currents measured at the second wave (i_d/i_{est}) vs the function log $(RT[CO₂]/F_{\nu})$ at various assumed values of k_1 where ν is the scan rate and F the Faraday constant. This concentration-scan rate function is appropriate for the mechanism in eq 1-4 in the absence of added H₂O. The variation of $i_d/i_{\text{cat.}}$ with added water is consistent with the additional steps proposed in the mechanism (see Figure 1C). The combination of results from the kinetic and product studies suggests that formate arises from the H20 branch (reaction **5** followed by reaction 6) and CO from both branches.

When the isotopically labeled complex cis -[Os(bpy)₂-(CO)D][PF,] was used **as** a catalyst under conditions where formate production is nearly maximized **(0.3** M added $H₂O$, there was no proton incorporation after 1.8 turnovers of formate. Likewise, in experiments using ${}^{13}CO_2$ there was no incorporation of 13C0 into the catalyst after **5.5** turnovers in terms of the production of *CO.* The labeling studies are consistent with the mechanism in eq 1-8 and rule out pathways like insertion of $CO₂$ into the Os-H bond. They show that the -CO and -H groups in the proposed intermediates I_a and I_b are inert and are not involved in the net reductions.

In dry $CH₃CN^{5a}$ where the formate pathway is negligible, similar current enhancements at the second bpy wave are observed for the related complexes cis- $[M(bpy)_{2}(CO)R]^{+}$ $(M = Os, R = Me$ or Ph; $M = Ru, R = CH₂Ph$ and $trans-[Os(bpy)₂(CO)R]^+$ (R = Me, C_2H_5 , or Ph). Values for k_1 were obtained for the series by assuming the same mechanism and by using the same kinetic analysis. **As** shown by the plot of $\ln k_1$ vs the cone angle 7 of the R group in Figure 1D: **(1)** rate constants for the cis complexes have a remarkable dependence on the steric bulk of the group cis to **CO, (2)** although the stereochemically more crowded cis isomers are more sensitive to steric effects than are the trans isomers, they are intrinsically more reactive toward COz, and **(3)** if isomeric intermediates exist for the cis and trans series, they are stereochemically rigid under the conditions that lead to $CO₂$ reduction.

Finally, a comparison between our proposed mechanism of catalysis with that of Amatore and Saveant for the reduction of $CO₂$ in $CH₃CN$ solution at a Pt electrode⁸ is revealing in three ways. First, oxalate formation is the kinetically favored pathway for the uncatalyzed reduction with $k = 10^7$ M⁻¹ s⁻¹ for the coupling of CO₂⁻, but this pathway is suppressed in the Os-catalyzed reaction, apparently as a consequence of $CO₂$ binding and the subsequent bimolecular reaction of sterically demanding intermediates. Second, for CO production, the dimerization of I_a replaces the reaction between CO_2^- and free CO_2 that occurs in the uncatalyzed system. Lastly, the formate making step is of similar form in both mechanisms, i.e., reaction of a proton with either CO_2^- or reduced, metalcomplexed $CO₂$, followed by a rapid electron transfer from an external reductant, that is, CO_2^- in the uncatalyzed process or a reduced Os complex in the catalyzed process.

Acknowledgment. Financial support by the Gas Research Institute is greatly appreciated. Special thanks are due to Dr. C. Mark Bolinger for the development of the electrolysis techniques.

Registry No. *cis*-[Os(bpy)₂(CO)H][PF₆], 84117-35-1; CO₂, **124-38-9; CO, 630-08-0; HCO₂⁻, 71-47-6; cis-[Os(bpy)₂(CO)H]⁻, 111437-23-1;** cis - $[Os(bpy)_{2}(CO)CH_{3}]$ ⁻, 111437-17-3; cis - $[Os (bpy)_2$ (CO)C₆H₅]-⁻, 111437-18-4; *cis*-[Ru(bpy)₂(CO)CH₂C₆H₅]⁻, **111437-19-5; ~i~-[(bpy)20~(CO)H]+, 84117-34-0;** *cis-[* **(bpy),Os-** $(CO)CH₃$ ⁺, 111437-20-8; cis -[(bpy)₂Ru(CO)CH₂C₆H₅]⁺, 82482-59-5; *cis*-[(bpy)₂Os(CO)C₆H₅]⁺, 111437-21-9; trans-[(bpy)₂Os- $(CO)CH₃$ ⁺, 111554-34-8; *trans*-[(bpy)₂Os(CO)CH₂CH₃]⁺, 111437-22-0; *trans*-[(bpy)₂Os(Co)C₆H₅]⁺, 111554-35-9.

(8) Amatore, C.; Saveant, J.-M. *J. Am. Chem.* **SOC. 1981,** *103,* **5021.**

Reaction of a Terminal Phosphlnldene Complex with a Carbyne Complex. Synthesls and X-ray Crystal Structure of a Metallaphosphlrene

Ngoc Hoa Tran Huy, ^{1a} Jean Fischer, ^{1b} and François Mathey*^{1a}

Laboratoire de Chimie du Phosphore et des M6taux de Transition, DCPH Ecde Poiflechnique, 9 I 128 Palaiseau Cedex, France and Laboratoire de Chimie des M6taux de Transition et Catalyse, Institut Le Bel Universit6 Louis Pasteur, 67070 Srrasbourg, France Received July 29, 1987

Summary: The terminal phosphinidene complex [PhP== $W(CO)_{6}$ as generated from the appropriate 7-phosphanorbornadiene complex reacts with the carbyne complex $PhC \equiv W(CO)_2$ Cp to give a three-membered tungstanorbornadiene complex reacts with the carbyne complex
PhC==W(CO)₂Cp to give a three-membered tungsta-
phosphirene ring via a formal $[1 + 2]$ P + W==C cycloaddition.

In a previous note, 2 we described the condensation of a terminal phosphinidene³ with a carbene complex. A η ¹-P

^{(6) (}a) Feldberg, S. W. In *Electroanalytical Chemistry*; Bard, A. J., Ed.; Marcel Dekker: New York, 1969; Vol. 3. (b) Feldberg, S. W. In Computer Applications in Analytical Chemistry; Mark, H. B., Ed.; Marcel Dekker; New

⁽⁷⁾ Tolman, C. A. *Chem. Reu.* **1977, 77, 313.**

^{(1) (}a) Laboratoire de Chiie du Phosphore et des M6taux de Transition. (b) Laboratoire de Chimie des Métaux de Transition et de Cat**alyse.**

⁽²⁾ Tran Huy, N. H.; Mathey, F. *Organometallics* **1987, 9, 207.**

^a Many reflections were unobserved due to the low diffusion power of the crystal.

phosphaalkene complex was thus obtained via a transient metallaphosphirane (eq 1).

This preliminary success prompted us to extend our initial study to the carbyne case. Accordingly, equimolar amounts of the 7-phosphanorbornadiene complex 1 and the carbyne complex **2*** were heated together in the presence **of** catalytic amounts of CuCl which is known to promote the decomposition of 1 at ca. 60 °C.³ A stable metallaphosphirene $P-W(CO)$ ₅ complex, $3,5$ ⁵ was thus produced (eq 2).

 $(OC)_5W$

As far **as** we know, the only related structures that have ever been described in the literature^{6,7} contain the tanta-

Figure 1. An **ORTEP** plot of one molecule of 3. Ellipsoids are scaled to enclose 50% of **the** electronic density. Hydrogen atoms are omitted. Principal bond lengths **(A):** Wl-Cl, 1.954 (8); W1-P, 2.522 (2). Principal bond angles (deg): P-W1-C1, 44.7 (2); 2.511 (3); P-C1, 1.775 (8); C1-C2, 1.47 (2); P-C8, 1.866 (8); W2-P, W1-P-C1, 50.7 (2); W1-C1-P, 84.6 (3); Wl-Cl-C2, 146.6 (6); P-C1-C2, 128.7 (6); W1-P-W2, 127.52 (8); Wl-P-C8, 110.6 (2); W2-P-C1, 120.2 (2); W2-P-C8, 119.5 **(3);** Cl-P-C8, 107.7 (4).

laphosphirene ring **4a** which, according to the X-ray data, seems to be best viewed as λ^5 -phosphaalkyne n^2 -complex **4b.7**

In our case, the X-ray crystal structure analysis of **38** is in favor **of** a genuine metallaphosphirene ring. Indeed, the P-C(Ph) bond length (1.775 **A)** is very similar to the P-C(ring) bond length recorded in a phosphirene $P-W(CO)_{5}$ complex⁹ and the W= C bond length is almost normal (1.95) **A** vs 1.91 **A** in a similar carbenic structure described by Stone¹⁰). In solution, the metallaphosphirene formulation

(9) Marinetti, A.; Mathey, F.; Fischer, J.; Mitschler, A. *J.* Am. *Chem. SOC.* **1982,** *104,* **4484.**

(10) Ashworth, T. V.; Chetcuti, M. J.; Howard, J. A. K.; Stone, F. G.
A.; Wisbey, S. J. J. Chem. Soc., Dalton Trans. 1981, 763.
(11) Lehmann, M. S.; Larsen, F. K. Acta Crystallogr. Sect A: Struct.

Crystallogr. Cryst. Chem. **1974,** *A30,* **580.**

⁽³⁾ For a recent review on the chemistry of terminal phosphinidene complexes, see: Mathey, F. *Angew. Chem., Int. Ed. Engl.* **1987,26,275. (4)** Fischer, **E. 0.;** Lindner, T. L.; Huttner, G.; Friedrich, P.; Kreissl,

F. R.; Besenhard, J. O. Chem. Ber. 1977, 110, 3397.

(5) Complex 3 was purified by chromatography on silica gel (eluent:

pentane/CH₂Cl₂, 4/1): air-stable crystals; recrystallized from pentane/

CH₂Cl₂, mp ~131 °C δ 93.68 (s, Cp), 197.77 (d, ²J(C-P) = 7.8 Hz, W(CO)₈ cis), 199.29 (d, ²J(C-P) = 29.6 Hz, W(CO)₈ trans), 217.35-218.26 (2d, W(CO)₂), 266.34
(d, ¹J(C-P) = 54.3 Hz, C=W); IR (Decalin) ν (CO) 2070 (m), 1990 (C, **36.35;** H, **1.81; 0, 13.56;** P, **3.75;** W, **44.52.** Found: C, **36.53;** H, **1.94; 0, 13.27;** P, **3.67;** W, **44.07. 3 H,** PhP), **7.82** (d, 3J(H-P) *e* **7.5** Hz, **2** H, PhP *ortho);* '3C NMR (CDClJ

⁽⁶⁾ Green, M. L. H.; Hare, P. M.; Bandy, J. A. *J. Organomet. Chem.* **1987,** *330,* **61** and references cited herein.

⁽⁷⁾ Kee, T. P.; Gibson, V. C.; Clegg, W. *J. Organomet. Chem.* **1987,** *325,* **C14.**

⁽⁸⁾ The diffraction data were collected at **-100** "C on a Philips PW cluster and glued to a glass filament mounted on a rotation free goniometer head. Data collection parameters are given in Table I. The orientation matrix was obtained from **25** machine-centered reflections. Three standard reflections measured every hour showed no trend in intensity during data collection. The raw step-scan data were converted to intensities by using the Lehmann-Larsen¹¹ method and then corrected for Lorentz, polarization, and absorption factors, the latter computed by the empirical method of Walker and Stuarti2 since face indexation was not possible. The structure was solved by using Patterson techniques. After refinement of heavy atoms, difference Fourier maps revealed maxima of electron density close to the positions expected for hydrogen atoms. These atoms were introduced into structure factor calculations by their computed coordinates (C-H = 0.95 Å) and isotropic temperature factors
such that $B(H) = 1 + B_{\text{eqv}}(C)$ Å². No hydrogen atom parameters was
allowed to vary during full-matrix least-squares refinements minimizing
 $\sum w([F_0]$ nificant maxima. *All* computatiom were done on a MicroVax **I1** computer using the SDP/VAX package.¹³ The scattering factors were from ref 14 and **15,** respectively. $\sum w(|F_g| - |F_g|)^2$. The unit-weight observation in Table I is for $p = 0.08$
in $\sigma^2(F^2) = \sigma^2$ (counts) + $(pI)^2$. A final difference map showed no sig-

is **also** supported by the extreme high-field shift of the **31P** resonance of 3 (δ -188.7 vs external 85% H_3PO_4) and by the low-field shift of the carbenic carbon $(\delta(^{13}C) + 266.3)$.

Registry No. 1, 83603-06-9; **2,** 60635-78-1; **3,** 111495-74-0.

Supplementary Material Available: Anisotropic thermal parameters (Table Sl), hydrogen atom parameters (Table S2), complete set of bond lengths (Table S3), and complete set of bond angles (Table S4) (8 pages); observed and calculated structure factor amplitudes for all observed reflections $(X10)$ (Table S5) (11 pages). Ordering information **is** given on any current masthead page. ted by the extreme high-field shift of the ³¹P

3 (δ -188.7 vs external 85% H₃PO₄) and by

shift of the carbenic carbon (δ ⁽¹³C) + 266.3).

0. 1, 83603-06-9; 2, 60635-78-1; 3, 111495-74-0.

1. 81603-06-9; 2,

(12) Walker, N.; Stuart, D. *Acta Crystallogr.,* Sect. *A.:* Struct. *Crys-tallogr. Cryst. Chem.* **1983, A39,158.**

(13) Frenz, B. A. In Computing in Crystallography; Schenk, H., Olthof-Hazekamp, R., Van Koningsveld, H.; Bassi, G. C., Eds.; Delft University Press: Delft, The Netherlands, 1978; pp 64-71.
(14) Cromer, D. T.; Waber, J. T.

Cristallography; Kynoch Birmingham, England, **1974;** Vol. IV, Table **2.2b.**

(15) Cromer, D. T. *International Tables for X-ray Crystallography;* Kynoch: Birmingham, England, 1974; Vol. IV, Table 2.3.1.

Unexpected Formation of $[\mu-\eta^2-(S)(S)CSC_2H_4S][\eta^1-CSC_2H_4S]Fe_2(CO)_5$:

Structure and Dynamic Behavior

Armelie Lagadec,[†] Bogusiaw Misterklewicz,[†] **Andr6 Darchen,\$ Daniel GrandJean,§ Abdelhamld Mousser,§ and Henrl Patin"**

Laboratoire de Chimie des Organom6talliques Laboratoire d'flectrochimie, Laboratoire de Cristallochimie et Ecole Nationale Sup6rieure de Chimie University of Rennes, 35700-Rennes Beaulieu, France Received January 2 I, 1987 ratoire de Chimie de

ratoire d'Electrochii

ole Nationale Supé

rsity of Rennes, 35

mary: Ethylene t

carbonyl to afformed

SSC₂H₄S]Fe₂(CO)

ponded to one iro

is transformed

Summary: Ethylene trithiocarbonate reacts with diiron nonacarbonyl to afford the coordination compound $[\mu$ - η^3 -SCSC₂H₄S]Fe₂(CO)₆ in which the carbon of the thione

is σ -bonded to one iron atom; upon warming, this complex is transformed into $[\mu-\eta^2-(S)(S)CSC_2H_4S][\eta^1-$

 $CSC₂H₄S$] Fe₂(CO)₅. The formation of this new coordina-

tion compound implies that the association of two fragments containing the heterocyclic moieties is followed by a redistribution of the sulfur atoms affording the planar carbenic ligand (= $CSC₂H₄S$) and the original bridging system $[(S)(S)CSC₂H₄S]$ in which a carbon atom is linked to four sulfur atoms. 26.

(15) Crosse, D. T. International Tobles for X-ray Crystallography.

(15) Crosse, D. T. International Tobles for X-ray Crystallography.

(15) Crosset: Birmingham, England, 1974; Vol. IV, Table 2.3.1.
 II. Relevant b Dynamic Behavior

C_r[†] Boguslaw Misterklewicz,[†]

Landel Grandjean,[§]

thanel Grandjean,[§]

thanel Grandyean,[§]

himie des Organométalliques

ctrochimie, Laboratoire de Cristallochimie

le Supérieure de Chimie

mes From atom; upon w
d into $[\mu - \eta^2 - (8\pi)$
The formation of
as that the assoc
heterocyclic moise
e sulfur atoms at
 $\frac{2SC_2H_4S}{H_4S}$ and the

Organic molecules containing the thiocarbonyl group are good ligands **for** zerovalent metal carbonyls and lead to families of mono- and polynuclear coordination compounds.' In this field we have shown that the behavior of the >C=S group toward diiron nonacarbonyl depends considerably on the nature of neighboring atoms. For instance, complexation of 0-alkyl S-alkyl dithiocarbonate **1** affords compounds **3** in which the carbon atom of the thione is σ -bonded to one iron atom.² Upon warming or

(1) For a leading reference see: Seyferth, D.; Womack, G. B.; Cowie M.; Hames, B. W. *Organometallics* **1984, 3, 1891.**

Figure 1. Molecular structure and labeling scheme for compound **11.** Relevant bond distances **(A)** and angles (deg): Fe(1)-Fe(2), 2.489 (1); $Fe(1)-S(1)$, 2.273 (2); $Fe(1)-S(2)$, 2.275 (2); $Fe(2)-S(1)$, 2.281 (2); Fe(2)-S(2), 2.282 (2); Fe(2)-C(6), 1.900 (6); S(l)-C(9), 1.850 (6); S(2)-C(9), 1.829 (6); S(3)-C(6), 1.680 (7); S(4)-C(6), 1.668 (7) ; $S(5)-C(9)$, $1.803(6)$; $S(6)-C(9)$, $1.811(6)$; $Fe(1)-S(1)-Fe(2)$, 66.25 (5); Fe(1)-S(2)-Fe(2), 66.21 (5); Fe(2)-C(6)-S(3) 123.5 (4); Fe(2)-C(6)-S(4), 124.5 (4); S(3)-C(6)-S(4), 112.0 (4); S(1)-C- (9) -S(2), 93.6 (3); S(1)-C(9)-S(5), 111.4 (3); S(1)-C(9)-S(6), 113.5 $(3); S(2)-C(9)-S(5), 114.9 (3); S(2)-C(9)-S(6), 113.2 (3); S(5)-C-$ (9)-S(6), 109.5 (3).

on electron-transfer catalysis, compound **3** rearranges to the carbenic binuclear complex $5.^{2,3}$ carbonates **2** the fragmentation is not regiospecific **and** the two isomers 6 and 7 are obtained.⁴ Finally, dithioesters 8 afford compounds 4 possessing a stable carbon-iron σ -bond.⁵ All these coordination compounds are good All these coordination compounds are good models for study of the stereochemical aspects of ligand exchange under thermal activation or by electron-transfer catalysis. $6,7$ Up to now, we have studied conformationally mobile sulfur ligands, but in this paper we describe the reactivity of the cyclic trithiocarbonate 9 which initially behaves like a dithioester ligand, affording 10. Then 10, under thermal activation, leads to the new compound 11.

In contrast to the behavior of ligands of type **2,** the reaction of 9 with $Fe₂(CO)₉$ does not lead to the insertion of iron into a carbon-sulfur bond. Complex 10 was rapidly formed,⁸ but the production of the more polar product 11

Laboratoire de Chimie des Organometalliques.

^{*} Laboratoire d'Electrochimie.

⁸Laboratoire de Cristallochimie.

^I' Ecole Nationale Superieure de Chimie.

⁽²⁾ Lhadi, E. K.; Patin, H.; Darchen, A. *Organometallics* **1984,3,1128. (3)** Patin, H.; Mignani, G.; Benoit, **A.;** Le Marouille, J. Y.; Grandjean, D. *Inorg. Chem.* **1981,20,4351.**

⁽⁴⁾ Patin, H.; Mignani, G.; Mahe, C.; Le Marouille, J. Y.; Southern,

T. G.; Benoit, **A.;** and Grandjean, D. *J. Organomet. Chem.* **1980,197,315. (5)** Patin, H.; Misterkiewicz, B.; Le Marouille, J. Y.; Mousser, A. *J. Organomet. Chem.* **1986,314, 173.**

⁽⁶⁾ Darchen, **A.;** Lhadi, E. K.; Patin, H. *J. Organomet. Chem.* **1983,** 259, **196.**

⁽⁷⁾ Darchen, **A,;** Mahe, C.; Patin, H. *Now. J. Chim.* **1982,** *6,* **539. (8)** To a solution of **9** (1.64 **g**, 12 mmol) in toluene (20 mL) was added 6 **g** of Fe₂(CO)₉ (16 mmol), and the mixture was allowed to react for 45 min at 55 °C under N₂ with stirring. The solvent was removed under vacuum and the residue chromatographed on silica plates (petroleum ether-diethyl ether (1/1)). The strips of R_f 0.6 and 0.3 were extracted
and afforded, after crystallization, respectively 2.66 g of 10 (53%) and 1.05
g of 11 (19%). Compound 10 also is one of the components of the mixtu

⁽CO)₅. 10: mp 100-102 °C (pentane-ether) (lit.⁹ mp 101-102 °C); mass spectrum, m/z calcd 415.786, found 415.786 (M⁺⁺), successive loss of six CO's, 248 (C₃H₄S₃Fe₂), 220 (CS₃Fe₂), 176 (Fe₂S₂), 144 (F IR (Nujol) terminal carbonyl region 1950–2085 cm⁻¹; ¹H NMR (CDCl₃)
 δ 2.5 (m, 1 H), 3.45 (m, 3 H); ¹³C NMR (CDCl₃ at 36 °C) δ 38.2 (CH₂), 49.5 (CH₂), 74.9 (CS), 208.7 (3 CO), 210.5 (3 CO). Anal. Calcd **23.44.**