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Summary: Molybdenum alkynyls trans - [ M(C=CMe3)L- 
(PR,),(Cp)] (7, 8, 12) are prepared by deprotonation of 
[Mo(H-CMe3)(PR3),(Cp)]+ (5, PR, = P(OMe),; 6, PR, 
= PMe,Ph) using NaN(SiMe,), in the presence of CO (7 
and 8) or P(OMe), (12). Protonation of [Mo(C=CMe,)- 
(CO)(P(OMe),],(Cp)] (7) at -78 OC gives trans-[Mo(C= 
CHCMe,)(CO){P(OMe),],(Cp)] [ X] (9), which decarbonyla- 
tes to 5 above 0 OC (X = BF,) or is trapped by excess 
triflic acid (HOTf) to give the alkylidyne complex frans- 
[ Mo(~CH,CMe,)(OTf)(P(OMe),),(Cp)] [OTf] (1 1). Pro- 
tonation of [ Mo(C=t;CMe,)(CO)(PMe,Ph),(Cp)] (8) with 
HOTf gives stable trans -[Mo(C=CHCMe,)(CO)- 
(PMe,Ph),(Cp)] [OTf] ( lo),  while exposure of [Mo(HCE 
CCMe,)(PMe,Ph),(Cp)] [BF,] (6) to 1 atm of CO effects its 
conversion to trans - [ Mo(C=CHCMe,)(CO)(PMe,Ph),- 
(Cp)] [BF,] (10). The structure of trans-[W(C= 
CMePh)(CO)(P(OMe),),(Cp)] [PF,] (4) was determined by 
X-ray diffraction (R = 3.3 %, R ,  = 4.0 %). 

The 1-alkyne to vinylidene tautomerization (eq 1) has 
been implicated in many transition-metal-mediated reac- 
tions of alkynes.'P2 The relative stability of alkyne and 

( 1 )  
CYH /H 
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M-111 x M = C = C  
'R 

vinylidene forms is determined (inter alia) by the d-elec- 
tron count and electron richness of the metal center. 
Molybdenum and tungsten complexes illustrate the com- 
plexity of the situation. For d6, zerovalent tungsten, ir- 
radiation of [w(co)6] with 1-alkynes gives the thermally 
unstable catalyst precursors [W(C=CHR)(C0),],3 whereas 
1-alkynes add to f~c-[W(THF)(CO)~(dppe)l to give stable 
mer-[W(C=CHR)(CO),(dppe)] ( d p p e  = 
Ph2PCH2CH2PPh2) via tautomerization of labile fuc-[ W- 
(HC=CR)(CO)3(dppe)].4 Surprisingly, even more elec- 
tron-rich tr~ns-[M(N,),(dppe)~] (M = Mo, W) reacts with 
1-alkynes to give $-alkyne and alkynyl, rather than vi- 
nylidene,  product^.^ Formally ds [Mo(C=CHR)- 
(dppe)(07-C7H7)+ is stable in the vinylidene form.6 In 
contrast, the d4, divalent complexes [M(HC=CR)- 
(PR'3)2(Cp)]+ are stable in the $-alkyne form and do not 
rearrange to ~ i n y l i d e n e . ~ ~ ~  Molecular orbital studies 
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Figure 1. Plot of the structure of [W(C=CMePh)(CO)(P- 
(OMe)&Cp)][PF ] showing 50% probability ellipsoids. Selected 
bond distances (1): W-Cl, 1.990 (7); W-C2, 1.947 (6); W-P1, 
2.446 (2); W-P2, 2.436 (2); W-CpO (centroid), 2.008 (7); 0142,  

Selected bond angles (deg): Pl-W-P2,139.8 (4); P1-W-Cl, 79.7 
1.134 (8); C2-C3, 1.330 (9); C3-C4, 1.49 (1); C3-C5, 1.472 (9). 

(2); P1-W-CP, 75.0 (2); P1-W-CpO, 111.8 (2); P2-W-C1,85.0 (2); 
P2-W-C2, 74.6 (2); P2-W-CpO, 108.3 (2); C1-W-C2, 107.3 (2); 
C1-W-CpO, 115.6 (3); W-(21-01, 176.7 (6); W-C2-C3,177.6 (5); 
C2-C3-C4 119.4 (7); C2-C3-C5 123.3 (6); C4-C3-C5 117.2 (6). 

Scheme I 
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suggest that an unfavorable two-center-four-electron re- 
pulsion between the filled alkyne ?rL orbital and a filled 
metal d?r orbital destabilizes the de alkyne complexes, while 
*-donation from the same alkyne orbital to an empty metal 
d r  orbital stabilizes the d4 alkyne complexe~.~ In this 

(7) Green, M. J. Organomet. Chem. 1986,300, 93-109. 
(8) (a) Allen, S. R.; Baker, P. K.; Barnes, S. G.; Green, M.; Trollope, 

L.; ManojloviE-Muir, L.; Muir, K. M. J. Chem. SOC., Dalton Tram. 1981, 
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Dalton Trans. 1983,271-276. (c) Bottrill, M.; Green, M. J. Chem. SOC., 
Dalton Trans. 1977,2365-2371. 
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Scheme 11" 
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light, we report here several key ligand transformations 
for d4 cyclopentadienyl molybdenum and tungsten com- 
plexes: v2-alkyne to alkynyl, alkynyl to vinylidene, 7,- 
alkyne to vinylidene, vinylidene to v2-alkyne, and vinyl- 
idene to alkylidyne. 

The tungsten alkynyl complex [W(C=CPh)(CO)(P- 
(OMe)3)2(Cp)] (2) is prepared by photolytic substitution 
on [W(C=CPh)(C0),(Cp)]lo (1) (Scheme I). Reactions 
of tungsten complex 2 with HBF4, HOTf, or MeOTf (OTf 
= CF3S03 = triflate) lead to stable cationic vinylidene 
complexes 3 and 4 with characteristic NMR (ac, r320) and 
IR (v(C=C) r 1620 cm-l) proper tie^."-'^ An X-ray dif- 
fraction study of 4 is summarized in Figure l.14 The 
W-C2(vinylidene) bond (1.947 (6) A) is shorter than the 
W-Cl(carbony1) bond (1.990 (7) A) in 4, the W-C(viny1- 
idene) bond in mer-[W(C=CHC02Me)(CO) (dppe)] (1.98 
(1) A): and most W-C single bonds (2.2-2.4 R)l6 but longer 
than most W-C triple bonds (1.75-1.77 A).13J6 The plane 
of the vinylidene ligand lies nearly in the pseudosymmetry 

(10) Bruce, M. I.; Humphrey, M. G.; Mattisons, J. G.; Roy, S. K.; 
Swincer, A. G. A u t .  J. Chem. 1984,37,1955. 

(11) Full spectroscopic data for all new compounds are included as 
supplementary material. 

(12) There is evidence for the formation of unstable [Mo(C= 
CHPh)(CO)(PPh8)(Cp)l[BF41 from [Mo(BF,)(CO),(PPhs)(Cp)l and 
PhCWH.  Siinkel, K.; Nagel, U.; Beck, W. J. Organomet. Chem. 1981, 

(13) The protonation of [W(C=CPh)(CO)&p)] gives a reactive vi- 
nylidene intermediate which gives a binuclear product or is trapped by 
PPh* Kolobova, N. E.; Skripkin, V. V.; Rozantseva, T. V.; Struchkov, 
Yu. T.; Aleksandrov, G. G.; hdrianov, V. G. J. Organomet. Chem. 1981, 
218, 351-359. 

(14) Crystal data for 4: space group F'2,/n; 2 = 4; a = 11.658 (2) A, 
b = 20.682 (7) A, c = 12.045 (2) A, j3 
= 1.824 pan4, p = 43.60 cm-'. A total of 5040 reflections were measured, 
and of these 3988 with (FJ2 b 3a(FJ2 were used. The structure refined 
to R = 3.3% and R, = 4.0% with anisotropic thermal parameters for all 
non-hydrogen atoms and all hydrogen atoms in calculated positions. 

(15) (a) Chisholm, M. H.; Hoffman, D. M.; Huffman, J. C. Inorg. 
Chem. 1983,22,2903. (b) Chisholm, M. H.; Huffman, J. C.; Marchant, 
N. S .  J. Am. Chem. SOC. 1983,105,6162-6163. 

(16) (a) Bruce, M. I.; Hambley, T. W.; Rodgers, J. R.; Snow, M. R.; 
Swincer, A. G. J. Organomet. Chem. 1982,226, Cl-C4. (b) Levisalles, 
J.; Rudler, H.; Jeannin, Y.; Dahan, F. J. Organomet. Chem. 1979,178, 
C W 1 2 .  

(17) Kirchner, R. M.; Ibers, J. A. Inorg. Chem. 1974,13, 1667-1673. 

222, 251-262. 

99.66 (1)'; V 2863.05 A'; p d d  

plane of the [W(CO)(P(OMe),),(Cp)] group, with the 
phenyl group oriented cis to the cyclopentadienyl ligand. 
Overall, the structure of 4 resembles those of trans-[Mo- 
(Br) (C=CHPh)(P(OMe),),(Cp)] l' and trans- [Mo(Cl)(C= 

Synthesis of molybdenum alkynyl complexes trans- 
[Mo(C=CCMe,)(CO)L,(Cp)] (L = P(OMe)3 (7) or 
PMezPh (8)) was accomplished by deprotonation of the 
cationic $-alkyne complexes [Mo(HC=CCMe,)L,(Cp)]- 
[BF,] (L = P(OMe), (5) or PMezPh (6))7+8 using NaN- 
(SiMe3)2 in the presence of CO according to Scheme 11. 
Removal of the acetylenic proton transforms a four-elec- 
tron v2-alkyne ligand into a two-electron alkynyl ligand, 
a process which is unprecedented in the literature.l98 The 
resulting site of coordinative unsaturation is filled by an 
incoming carbon monoxide. Similarly, deprotonation of 
5 in the presence of P(OMe), leads to [Mo(C=CCMe3)- 
(P(OMe),),(Cp)] (12, Scheme 11). 

Protonation of ~~~~~-[MO(C==CCM~,)(CO)(P(OM~)~]~- 
(Cp)] (7) by HBF, at -78 "C in CD2C12 quantitatively gives 
~~~~S-[M~(C=CHCM~,)(CO)(P(OM~)~]~(C~)]+ (9). On 
warming above 0 "C, the tetrafluoroborate salt of 9 de- 
carbonylates with vinylidene tautomerization to give back 
the v2-alkyne complex 5. Protonation of 7 by triflic acid 
at  -78 "C quantitatively forms the triflate salt of 9. On 
warming in the presence excess HOTf, the alkylidyne 
complex ~~~~S-[MO(=CCH~CM~,)(OT~)(P(OM~)~),- 
(Cp)] [OTfl (11) is f ~ r m e d . ~ ~ ~ , ~ ~  Proton NMR spectra do 

C(CN),)(P(oMe)31,(C~)l.1a 

(18) Beevor, R. G.; Green, M.; Orpen, A. G.; Williams, I. D. J. Chem. 
SOC., Chem. Commun. 1983,673-675. 

(19) Acetylenic protons have been removed from two-electron alkyne 
ligands, although prior tautomerization to vinylidenes is difficult to rule 
out. Examples: (a) Reger, D. L.; Swift, C. A. Organometallics 1984, 3, 
876. (b) Berke, H. Chem. Ber. 1980, 113, 1370. 

(20) Propargylic protons have also been removed from coordinated 
alkyne ligands. Examples: (a) Reger, D. L.; Klaeren, S. A,; Lebioda, L. 
Organometallics 1986,5,1072. (b) Watson, P. L.; Berg",  R. G. J. Am. 
Chem. SOC. 1980,102, 2698. 

(a) Mayr, A,; 
Schaefer, K. C.; Huang, E. Y. J. Am. Chem. SOC. 1984,106,1517-1518. 
(b) Gill, D. S.; Green, S .  J. Chem. SOC., Chem. Commun. 1981,1037-1038. 
(c) Beevor, R. G.; Freeman, M. J.; Green, M.; Morton, C. E.; Orpen, A. 
G. J. Chem. SOC., Chem. Commun. 1985,68-70. 

(21) Formation of alkylidynes from vinylidenes: 
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not show either trans-[Mo(=CCH2CMe3)(CO)(P- 
(OMe)3]z(Cp)]2+ or trans-[Mo(C=CHCMe,)(OTf)(P- 
(OMe),j,(Cp)] as intermediates, consistent with the view 
that decarbonylation of 9 occurs before the vinylidene 
ligand can rearrange to a $-alkyne. Carbon monoxide is 
labile in 9 because it must compete for metal *-electron 
density with the strongly *-acidic vinylidene ligand trans 
to it. Trapping of "[MO(C=CHCM~~)(P(OM~)~)~(C~)]+~ 
by triflate followed by a second protonation leads to 11. 
In contrast, protonation of 8 with HOTf gives a stable 
vinylidene complex, t rans-  [ Mo( C=CHCMe3) (C0)- 
(PMe2Ph),(Cp)] [OTfl (10). Tris(phosphite) alkynyl 12 is 
so basic that it was converted without isolation to ita stable 
vinylidene cation [ MO(C=CHCM~~){P(OM~)~]~(CP)] [BF,] 
(13) by protonation on alumina (6% H,O), followed by 
elution with CH2C12/MeOH. 

Treatment of a CH2Clz solution of [Mo(HC= 
CCMe3)(PMe2Ph)2(Cp)][BF4] (6) with 1 atm of CO at  -78 
OC, followed by warming to room temperature, transforms 
it into tralzs-[Mo(C=CHCMe3)(CO)(PMe,Ph),(Cp)l [BF41 
(10). This is the first example of alkyne to vinylidene 
tautomerization on a d4 metal center, starkly contrasting 
with the reverse transformation of vinylidene 9 into 
[ Mo( HCeCCMe,) {P (OMe) 3}2( Cp)] + (5). This difference 
is attributed to varying electron density a t  molybdenum. 
In 5, two weakly donating P(OMe)3 ancillary ligands leave 
molybdenum electron-poor, so a q2-alkyne ligand which is 
both a good a- and *-donor is favored. In 10, two strongly 
donating PMe2Ph ligands create an electron-rich molyb- 
denum, so CO and vinylidene ligands which are weak a- 
donors but strong a-acceptors are favored. The stability 
of [Mo(C=CHCMe,)(P(OMe),J,(Cp)] [BF,] (13) is similarly 
rationalized. The mild conditions for transformations 6 
to 10 and 9 to 5 (Scheme 11) suggest that the energy dif- 
ference between q2-alkyne and vinylidene tautomers must 
be small for divalent molybdenum. So far, only carbon 
monoxide promotes alkyne to vinylidene rearrangement. 
For example, excess P(OMe), does not  convert [Mo- 
(HC=CCMe3){P(0Me),),(Cp)]+ (5) into the stable vinyl- 
idene [Mo(C=CHCMe,){P(OMe),J3(Cp)]+ (13). Perhaps 
both the a-donor and *-acceptor abilities of CO are nec- 
essary to promote this rearrangement. 

In closing, we have demonstrated that (1) deprotonation 
of coordinated alkynes provides a useful route to alkynyl 
complexes, (2) reprotonation of these alkynyls can lead to 
vinylidene, rather than alkyne, products, (3) electron 
density overwhelmingly determines the relative stability 
of v2-alkyne versus vinylidene structures for d4 molybde- 
num, and (4) tautomerization of a v2-alkyne to a vinylidene 
ligand can be driven by the addition of carbon monoxide. 
Future reports will expand on these findings. 
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Summary: The reactions of quinoline (I), isoquinoline (2), 
1,2,3,4-tetrahydroquinoline (3), and 2-methylquinoline (4) 
with (pentamethylcyclopentadieny1)rhodium dication 
[Cp*Rh(acetone):+, Cp"Rh(acetonitrile),2+, or Cp*Rh@- 
~ylene)~+X,; X = PF, or BF,] were studied to ascertain 
nitrogen (N) versus r-bonding. Ligands 1 and 2 were 
found to form N-bonded rhodium complexes, while ligand 
3 preferred r-coordination ($). Ligand 4 was found to 
provide both P- and N-bonded complexes. A single- 
crystal X-ray structural analysis of a derivative of 
Cp Rh(quin~line)(acetonirile),~+, [ Cp * Rh(quinoline)(p- 
hydroxo)];', verified the N-bonding of ligand 1 to the 
rhodium metal center. I t  was also found that the 
above-mentioned Cp" Rh" synthetic precursors were 
excellent catalysts or catalyst precursors for the selective 
hydrogenation of 1, 2, and 4 to their corresponding tet- 
rahydro derivatives. This latter result defines the impor- 
tant role of N-bonding for regioselective nitrogen ring re- 
duction. 

In recent studies on the regioselective hydrogenation of 
polynuclear heteroaromatic nitrogen compounds with 
mononuclear rhodium and ruthenium homogeneous cata- 
lysts, it was evident that the substrate nitrogen compound 
binds to the catalyst metal center prior to hydrogen 
transfer.2ab The mode of bonding of the nitrogen het- 
erocyclic compound to the metal center, we speculated, was 
pivotal for the selective hydrogenation of the nitrogen- 
containing ring. Therefore, in order to determine more 
unequivocally the nature of this substrate bonding, i.e., 
nitrogen (N) versus *-bonding, we have initiated studies 
on the reactions of several representative polynuclear 
heteroaromatic nitrogen ligands with (pentamethylcyclo- 
pentadieny1)rhodium dication (Cp*Rh2+). 

A previous study showed that reaction of Cp*Rh2+ with 
indole provided a *-bonded complex ($) to the benzene 
ring., To our knowledge, no other complexes with poly- 
nuclear heteroaromatic nitrogen ligands and Cp*Rh2+ have 
been reported. In this communication, we report prelim- 
inary findings that show that the structure of the nitrogen 
ligand and availability of nonbonding electrons on the 
nitrogen atom determines N-versus dond ing  to Cp*Rh2+. 

(1) (a) Lawrence Berkeley Laboratory. (b) University of South Car- 
olina. 

(2) (a) Fish, R. H.; Tan, J. L.; Thormodsen, A. D. J. Org. Chem. 1984, 
49,4500. (b) Fish, R. H.; Tan, J. L.; Thormodsen, A. D. Organometallics 
1985, 4, 1743. 

(3) White, C.; Thompson, S. J.; Maitlis, P. M. J. Chem. SOC., Dalton 
Trans. 1977,1654. Another synthetic procedure that we found useful for 
the prepmation of complexes 5-9 ww reaction of Cp*Rh(p-xylene)(BF,)* 
with ligands 1-4. This ligand exchange reaction provided good yields of 
5-9, while circumventing the use of silver salts that often made purifi- 
cation of product more difficult. 
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