29.81, 23.13, 20.96, 20.81 (α anomer). The resonances assigned to the β anomer is δ 95.51. Anal. Calcd for $B_{10}C_{16}H_{32}O_6$: C, 44.85; H, 7.53; B, 25.23. Found: C, 45.10; H, 7.42; B, 25.20.

1-[(2,3-Dideoxy-erythro-hex-2-enopyranosyl)methyl]-1,2dicarbadodecahydroundecaborate(1-) ion (8). The potassium salt of this monoanion was prepared by a general degradation procedure.⁹ 3 (1.14 g, 2.95 mmol) was refluxed in ethanolic KOH (0.45 g, 0.5 M) for 20 h. The potassium salt was dissolved in water and converted to the tetramethylammonium salt by the addition of an excess of Me_4NCl . This salt was recrystallized from water to give white plates (0.79 g, 73%). IR (Nujol mull): 3480-3460 (br m), 2525 (vs), 1088 (w), 1035 (s), 1020 (s br), 949 (m) cm⁻¹. ¹H NMR (acetone- d_6): δ 5.88 (1 H, br d, J = 10.2), 5.68 (1 H, br d, J = 10.2), 5.00 and 4.90 (1 H, 2 br s), 4.10-4.01 (2 H, m), 3.82-3.56 (6 H, m), 3.45 (12 H, s), 3.35 (1 H, s), -2.6 (1 H, br s). ¹³C NMR (MeOH-d₄): δ 132.79, 132.68, 125.79, 125.76, 92.96, 92.31, 75.47, 74.65, 71.71, 71.68, 62.39, 60.85, 60.81, 54.36, 54.33, 54.30. ¹¹B NMR (acetone): δ -9.91 (4 B, d, J = 135), -10.69 (1 B, d), -11.01 (1 B, d), -14.38 (1 B, d, J = 167), -22.48 (2 B, d, J = 147),-32.82 (2 B, d, J = 121), -37.15 (2 B, d, J = 137). MS: cluster of peaks between m/e 289 and 294, with most intense peak at m/e 292. This m/e corresponds to ${}^{10}B_1{}^{11}B_8C_9H_{22}O_4$.

1-[(2,3-Dideoxy-α-D-erythro-hex-2-enopyranosyl)methyl]-1,2-dicarba-closo-dodecaborane (9). K₂CO₃ (1.60 g, 11.6 mmol) was dissolved in 50 mL of 90% EtOH, with gentle heating. After the solution was cooled to room temperature, 2.01 g (5.20 mmol) of 3 was added. This solution was stirred overnight and concentrated in vacuo. The solid thus produced was washed with 3×15 mL H₂O and recrystallized from chloroform (0.97 g,

62%): mp 143-144.5 °C. IR (Nujol mull): 3330-3274 (br s), 3080 (m), 3060 (m), 2591-2569 (br s), 1409 (w), 1326 (m), 1305 (m), 1245 (w), 1180 (w), 1124 (m), 1095 (w), 1046 (s), 989 (m), 984 (m), 959 (m) cm⁻¹. ¹H NMR (acetone- d_6): δ 5.97 (1 H, br d, J = 10.1), 5.70 (1 H, ddd, J = 10.1), 5.03 (1 H, br s), 4.30 (1 H, d, J = 11.4),4.12 (1 H, d, J = 11.4), 4.01 (1 H, m), 3.86–3.76 (2 H, m), 3.65–3.61 (2 H, m), 2.81 (2 H, br s, exchanges with D₂O). ¹³C[¹H] NMR $(DMSO-d_6): \delta 135.28, 124.08, 93.41, 74.39, 73.25, 68.22, 62.17, 61.06,$ 60.64. Anal. Calcd for B₁₀C₉H₂₂O₄: C, 35.77; H, 7.27; B, 35.77. Found: C, 35.31; H, 7.29; B, 35.42.

Acknowledgment. This research was supported by NIH Grant 1-R01-CA31753-06 and Battelle Columbus Laboratories Contract 85-468. We wish to thank Dr. A. Varadarajan for his insightful discussions and Nazim Jaffer and Dr. Jane Strouse for their assistance in the acquisition and interpretation of the NMR spectra.

Registry No. 1, 117162-37-5; α-2, 117162-38-6; β-2, 117162-39-7; α -3, 117162-40-0; β -3, 117162-41-1; α -4, 117162-42-2; β -4, 117183-74-1; α -5, 117162-43-3; β -5, 117162-44-4; α -6, 117162-45-5; β-6, 117162-46-6; α-7, 117162-47-7; β-7, 117162-48-8; 8, 91946-38-2; 9, 117162-49-9; HOCH₂-o-C₂B₁₀H₁₀-H, 19610-34-5; HOCH₂CH₂-o-C₂B₁₀H₁₀-H, 23835-95-2; HOCH₂CH₂-o-C₂B₁₀H₁₀-CH₃, 20644-51-3; HO(CH₂)₃-o-C₂B₁₀H₁₀-H, 23835-93-0; HO(CH₂)₃-o-C₂B₁₀H₁₀-CH₃, 17815-32-6; 1-o-acetyl-2,3,5-tri-obenzoyl-β-D-ribofuranose, 6974-32-9; 3,4-di-O-acetyl-D-xylal, 3152-43-0; tri-O-acetyl-D-glucal, 2873-29-2.

Transition-Metal-Substituted Silanes. Hydrosilylation of Phenylacetylene Using $[(\eta^5-C_5H_5)Fe(CO)_2SiPh_2H]$ and $[(\eta^5 - C_5 H_4 SiPh_2 H)Fe(CO)_2 R] (R = Me, SiMe_3)^1$

Keith H. Pannell,* James M. Rozell, Jauching Lii, and Shu-Yuan Tien-Mayr

Department of Chemistry, The University of Texas at El Paso, El Paso, Texas 79968-0513

Received April 13, 1988

The complex $[(\eta^5-C_5H_5)Fe(CO)_2SiPh_2H]$ (FpSiPh₂H, I) has been synthesized and characterized. Treatment of I with i-Pr₂NLi (LDA) followed by MeI or Me₃SiCl produces the silvl migration products [(η^5 - $C_5H_4SiPh_2H)Fe(CO)_2R$ (R = Me (IIa), SiMe₃ (IIb)). Addition of the Si-H bonds to phenylacetylene using chloroplatinic acid yields exceptionally high yields of the appropriate α products. The hydrosilylation products of I may be transformed into those of II by treatment with LDA followed by MeI or Me₃SiCl. The trans- β -silylstyrene hydrosilylation products were synthesized independently by the reaction of $[(\eta^5 - C_5 H_4 R)Fe(CO)_2]$ -Na⁺ (R = H, SiMe₃) with trans-Ph₂Si(Cl)CH=CHPh.

Introduction

Transition-metal complexes containing a Si-H bond are relatively uncommon compared to those with halogen, alkyl, or aryl groups bonded to silicon; however, those complexes that are reported exhibit much unusual chemistry.²⁻⁴ For example, the silicon-hydrogen bond of $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}SiMe_{2}H]$ (FpSiMe₂H), exhibits a low Si-H stretching frequency and is readily transformed into a silicon-chlorine bond upon treatment with CCl4;5 bridging metal-hydrogen-silicon systems are known,^{6,7} and (dimethylsilyl)methyl groups readily rearrange to trimethylsilyl groups, e.g. $[(\eta^5-C_5H_5)M(CO)_nCH_2SiMe_2H] \rightarrow [(\eta^5-C_5H_5)M(CO)_nSiMe_3]$.^{8,9} Given the interesting chemistry it is surprising that the most studied reaction of organosilicon hydrogen bonds, namely, hydrosilylation, has

⁽¹⁾ Part 18. Organometalloidal Derivatives of the Transition Metals. For part 17 see; Parkanyi, L.; Pannell, K. H.; Hernandez, C. J. Organo-

met. Chem. 1988, 347, 295.
 (2) Aylett, B. J. Adv. Inorg. Chem. Radiochem. 1982, 25, 1.

⁽³⁾ Pannell, K. H. Silicon Compounds: Register and Review, Anderson, R., Arkles, B., Larson, G. L. Eds.; Petrarch Systems Inc.: Bristol, PA, 1987; pp 32-39.
 (4) Cundy, C. S.; Kingston, B. M.; Lappert, M. F. Adv. Organomet.

Chem. 1973, 11, 253.

⁽⁵⁾ King, R. B.; Pannell, K. H.; Ishaq, M.; Bennett, C. R. J. Organomet. Chem. 1969, 19, 327.

⁽⁶⁾ Schubert, U.; Muller, J.; Alt, H. G. Organometallics 1987, 6, 469.
(7) Schubert, U.; Scholz, G.; Muller, J.; Ackermann, K.; Worle, B.;
Stansfield, R. F. D. J. Organomet. Chem. 1986, 306, 303.
(2) Densell K. H. L. Organomet. Chem. 1986, 304, 303.

 ⁽⁸⁾ Panell, K. H. J. Organomet. Chem. 1970, 21, 17; Transition Met.
 Chem. (Weinheim, Ger.) 1975/1976, 1, 36.
 (9) Lewis, C.; Wrighton, M. S. J. Am. Chem. Soc. 1983, 105, 1067.

Transition-Metal-Substituted Silanes

Table I. Spectral Data of Complexes^a

	$(\eta^5 - C_5 H_5) Fe(CO)_2 SiPh_2 H$ (I)		$(\eta^5 - C_5 H_4(Ph)C \longrightarrow CH_2 Fe(CO)_2 SiMe_3 (Vb)$
¹³ C	84.2 (C ₅ H ₅), 127.7, 128.4, 134.5, 141.3 (Ph), 214.3 (CO)	¹³ C	7.4 (SiMe ₃), 86.8, 87.0, 90.0 (C ₅ H ₄), 127.0, 127.5, 127.9, 128.2,
ιΗ	4.71 (C ₅ H ₅), 5.67 (SiH), 7.36, 7.69 (Ph)		130.0, 133.7, 133.8, 136.1, 143.5, 146.6 (Ph), 214.9 (CO)
²⁹ Si	27.1	Η ¹	0.40 (SiMe ₃), 4.39 (m), 4.59 (m, C ₅ H ₄), 5.94 (d, $J = 2.5$ Hz),
ν(CO)	2008, 1956, ν (SiH) 2085	2901:	6.37 (d, $J = 2.5$ Hz, C=CH ₂), 7.3-7.8 (Ph)
	$(n^{5}-C_{*}H_{4}SiPh_{2}H)Fe(CO)_{2}Me$ (IIa)	-~51 (CO)	$-17.0 (0_5 \Pi_4 SI), 41.9 (FeSI)$ 1997 1949
¹³ C	-22.7 (Me), 80.0, 87.8, 94.5 (C_5H_4), 128.1, 130.1, 132.9, 135.4	<i>v</i> (00)	1557, 1542
	(Ph), 216.7 (CO)		$(\eta^5-C_5H_4SiPh_2$ -trans-CH=CHPh)Fe(CO) ₂ Me (VIa)
¹ H	0.20 (Me), 4.89 (m, C_5H_4), 5.48 (s, SiH), 7.47, 7.68 (Ph)	¹³ C	-22.9 (Me), 83.0, 88.7, 94.0 (C ₅ H ₅), 121.8, 126.9, 127.6, 128.0,
²⁹ Si	-21.0	177	128.6, 130.0, 133.9, 135.7, 137.8, 149.4 (Ph), 217.1 (CO)
v(CO)	2014, 1958, $\nu(S1H)$ 2143	11 290;	$(SiNie_3), 4.87 (m, C_5 H_4), 7.0-7.7 (Ph)$
	$(\eta^5 - C_5 H_4 SiPh_2 H)Fe(CO)_2 SiMe_3$ (IIb)	»(CO)	2014 1957
¹³ C	7.6 (SiMe ₃), 83.8, 87.2, 90.0 (C_5H_4), 128.1, 130.2, 132.6,	1(00)	2014, 1507
_	135.5 (Ph), 215 (CO)		$(\eta^5-C_5H_4SiPh_2$ -trans-CH=CHPh)Fe(CO) ₂ SiMe ₃ (VIb)
¹ H	0.43 (SiMe ₃), 4.72 (m, C ₅ H ₄), 5.49 (s, SiH), 7.44 , 7.70 (Ph)	¹³ C	7.6 $(SiMe_3)$, 86.6, 87.2, 98.9 (C_5H_4) , 122.1, 126.8, 127.6, 128.0,
²⁹ Si	-21.2 (C ₅ H ₄ Si), 42.0 (FeSi)	177	128.6, 129.9, 133.8, 135.8, 137.8, 149.2 (Ph), 215.2 (CO)
ν(CO)	1997, 1944, v(S1H) 2140	11 290:	0.41 (SIMe ₃), 4.69 (m), 4.75 (m, U_5H_4), 7.4–7.7 (Pn)
	$(\eta^5 - C_s H_s) Fe(CO)_2 SiPh_2(Ph)C = CH_2$ (III)	SI (CO)	$-19.2 (0_5 \Pi_4 SI), 41.0 (FeSI)$ 1005 1040
¹³ C	84.5 (C ₅ H ₅), 126.2, 127.5, 127.7, 127.8, 128.2, 130.1, 135.3,	<i>v</i> (00)	1335, 1340
	142.2, 146.2, 154.0 (Ph, CH ₂)), 215.3 (CO)		$(\eta^{5}-C_{5}H_{4}SiMe_{3})Fe(CO)_{2}SiPh_{2}H$ (VII)
ιΗ	4.40 (C_5H_5), 5.64 (d, $J = 3.0$ Hz), 6.01 (d, $J = 3.0$ Hz, CH ₂),	¹³ C	$0.1 \text{ (SiMe}_3), 87.8, 89.9, 92.1 \text{ (C}_5H_4), 128.1, 128.7, 134.9, 141.9$
99 cr -	7.1-7.6 (Ph)	1	(Ph), 215 (CO)
⁴⁰ Si	37.0	*H 290:	$(0.49 \text{ (S1Me}_3), 4.67, 4.88 \text{ (C}_5H_4), 5.91 \text{ (S1H}), 7.5-7.9 \text{ (Ph)}$
v(CO)	2008, 1996	SI (CO)	$-4.0 (0_5 \pi_4 SI), 27.4 (FeSI)$ 2002 1951(SiH) 2080
	$(\eta^5 - C_5 H_5) Fe(CO)_2 SiPh_2 - trans - CH = CHPh (IV)$	<i>V</i> (CO)	2002, 1901, 7(511) 2000
¹³ C	84.5 (C ₅ H ₅), 126.6, 127.6, 127.8, 128.3, 128.4, 131.9, 135.0,		$(\eta^5-C_5H_4SiMe_3)Fe(CO)_2SiPh_2(Ph)C=CH_2$ (VIII)
	138.6, 142.0, 143.7, 215 (CO)	¹³ C	-0.6 (SiMe ₃), 88.3, 88.8, 93.0 (C ₅ H ₄), 126.2, 127.5, 127.8,
Ή	4.68 (C_5H_5), 6.76 (d, $J = 18.7$ Hz), 7.09 (d, $J = 18.7$ Hz,		127.9, 128.2, 130.2, 135.4, 142.4, 146.3, 154.2 (Ph), 215.6
2901	CH=CH), 7.3-7.6 (Ph)	111	$(UU) = \frac{1}{2} (SiM_{\odot}) + \frac{1}{2} (SiM_{\odot})$
	31.6 2006 1054	.ц	$(0.27 \text{ (SIMe}_3), 4.33 \text{ (m)}, 4.40 \text{ (m)}, 0.5 \text{H}_4), 5.74 \text{ (u)}, 0.72 \text{ (sime}_3), 4.53 \text{ (m)}, 4.40 \text{ (m)}, 0.5 \text{H}_4), 5.74 \text{ (u)}, 0.74 $
<i>v</i> (CO)	2008, 1554	²⁹ Si	-4.3 (C-H.Si) 36.5 (FeSi)
	$(\eta^5-C_5H_4(Ph)C=CH_2)Fe(CO)_2Me$ (Va)	ν(CO)	2002. 1950
¹³ C	-22.7 (Me), 83.1, 89.9, 92.9 (C ₅ H ₄), 127.0, 127.5, 128.0,		
	128.3, 130.0, 133.6, 133.9, 136.1, 143.6, 146.4 (Ph), 216.7	13.0	$(\eta^{\circ}-C_{5}H_{4}SiMe_{3})Fe(CO)_{2}SiPh_{2}$ -trans-CH=CHPh (IX)
1	(CU) = (CU) = (CU) +	-°C	-0.4 (SiMe ₃), 88.2, 89.3, 92.3 (U_5H_4), 126.6, 127.6, 127.8,
.н	$(0.0 \text{ (Me)}, 4.45, 4.70 \text{ (C}_5 \text{H}_4), 5.84 \text{ (d}, J = 2.1 \text{ Hz}), 5.28 \text{ (d}, J = 0.1 \text{ Hz}), 7.9.77 \text{ (Db)}$		128.3, 124.4, 132.1, 130.1, 138.7, 142.1, 143.7 (Pn), 215.3 (CO)
295;	-2.1 mz , $1.2^{-1.1} (\text{rm})$ -16.4	чн	0.32 (SiMe ₀), 4.44 (m), 4.75 (m, C ₂ H ₄), 7.3–7.7 (Ph)
»(CO)	2014. 1957	²⁹ Si	-4.2 (C _e H _s Si), 30.8 (FeSi)
	,	ν(CO)	2000, 1949

^{a 29}Si. ¹³C. and ¹H NMR spectra (chemical shifts in ppm) were recorded in CDCl₃ with the exception of the ²⁹Si spectra of complexes I, Vb, VIb, VIII, and IX which were recorded in C₆D₆. IR spectra were recorded in hexane.

not been reported for transition-metal SiH complexes. It is the purpose of this paper to report the complex $(\eta^5$ - C_5H_5)Fe(CO)₂SiPh₂H (I) and the chloroplatinic acid catalyzed addition of I and its migrated products II, $(\eta^5$ - $C_5H_4SiPh_2H)Fe(CO)_2R$ (R = Me, SiMe₃), to phenylacetylene.

Results

The synthesis of the title complex FpSiPh₂H (I) was accomplished by reaction 1.

$$[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}]^{-}Na^{+} + Ph_{2}SiHCl \rightarrow (\eta^{5}-C_{5}H_{5})Fe(CO)_{2}SiPh_{2}H (1)$$

In contrast to the related dimethylsilyl complex $[(\eta^5 -$ C₅H₅)Fe(CO)₂SiMe₂H,⁵] complex I may be readily handled in air and purified by column chromatography and recrystallization. Despite a Si-H stretching frequency at 2085 cm⁻¹ (hexane), cf. Ph₃SiH at 2131 cm⁻¹, I is thermally stable and treatment in refluxing toluene for 24 h does not produce a chemical reaction. The complex is photochemically active under variety of conditions, and such chemistry will be the subject of a future publication.

Treatment of I with lithium diisopropylamide (LDA) resulted in initial deprotonation of the cyclopentadienyl ring as in the case for the trialkyl-/triarylsilane complexes of the iron system.¹⁰⁻¹³ As with previous studies, silyl

group migration occurs to produce a ferrate salt, in this case $[(\eta^5-C_5H_4SiPh_2H)Fe(CO)_2]^-Li^+$. The salt was trapped using either MeI or Me₃SiCl to produce complexes IIa and IIb, respectively, in which the Si-H functionality has been LDA/RX

$$(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}SiPh_{2}H \xrightarrow{} (\eta^{5}-C_{5}H_{4}SiPh_{2}H)Fe(CO)_{2}R$$
 (2)
II
RX = MeI (IIa), Me₃SiCl (IIb)

successfully transferred from the Fe atom to the cyclopentadienyl ring. This is the first example of the migration of a silyl group with a useful functional group in such reactions. It is of interest that the Si-H stretching frequency in the intermediate ferrate salt and the resulting complexes IIa and IIb is at 2143 cm⁻¹ as compared to the value of 2085 cm⁻¹ in the starting complex. Clearly the electron density in the ferrate salt is quite localized upon the Fe atom, and both the salt and the complexes II behave as species very similar to Ph₃SiH in terms of the stretching

⁽¹⁰⁾ Thum, G.; Ries, W.; Greissinger, D.; Malisch, W. J. Organomet.

⁽¹⁰⁾ Thum, G., Mes, W., Greissinger, D., Mansch, W. J. Organomet.
Chem. 1983, 252, C67.
(11) Berryhill, S. R.; Clevenger, G. L.; Burdurli, P. Yu. Organometallics 1985, 4, 1509.
(12) Pannell, K. H.; Cervantes, J.; Hernandez, C.; Vincenti, S. Organometallics 1986, 5 1056.
(10) Darapelly, M. H.; Vincenti, S.; Scatt HI, B. Organometallics 1987.

⁽¹³⁾ Pannell, K. H.; Vincenti, S.; Scott III, R. Ogranometallics 1987, 6. 1593.

Table II New Complexee: Analytical Data

	complex	found (calcd)	found (calcd)	mp, °C
I	$(\eta^5 - C_5 H_5) Fe(CO)_2 SiPh_2 H$	63.16 (63.34)	4.57 (4.48)	91
IIa	$(\eta^5 - C_5 H_4 SiPh_2 H)Fe(CO)_2 Me$	63.51 (64.18)	4.64 (4.85)	
IIb	$(\eta^5 - C_5 H_4 SiPh_2 H)Fe(CO)_2 SiMe_3$	61.11 (61.10)	5.70 (5.59)	
III	$(\eta^5 - C_5 H_5) Fe(CO)_2 SiPh_2(Ph)C = CH_2$	69.85 (70.13)	4.98 (4.80)	121
IV	$(\eta^5-C_5H_5)Fe(CO)_2SiPh_2$ -trans-CH=CHPh	70.14 (70.13)	4.76 (4.80)	133
Va	(η^5 -C ₅ H ₄ SiPh ₂ (Ph)C=CH ₂)Fe(CO) ₂ Me	70.56 (70.59)	5.38 (5.08)	81
Vb	(n ⁵ -C ₅ H ₄ SiPh ₂ (Ph)C=CH ₂)Fe(CO) ₂ SiMe ₃	67.36 (67.41)	5.72 (5.62)	110
VIa	(η^5 -C ₅ H ₄ SiPh ₂ -trans-CH=CHPh)Fe(CO) ₂ Me	70.56 (70.59)	5.18 (5.08)	82
VIb	(n ⁵ -C ₅ H ₄ SiPh ₂ -trans-CH=CHPh)Fe(CO) ₂ SiMe ₃			102
VII	$(\eta^5 - C_5 H_4 Si Me_3) Fe(CO)_2 Si Ph_2 H^a$			
VIII	(n ⁵ -C _s H ₄ SiMe ₂)Fe(CO) ₂ SiPh ₂ C(Ph)=CH ₂	66.05 (67.41)	5.60 (5.62)	
IX	(n ⁵ -C ₅ H ₄ SiMe ₃)Fe(CO) ₂ SiPh ₂ -trans-CH=CHPh	66.87 (66.40)	5.82 (5.66)	75

^aComplex VII is an air- and temperature-sensitive oil which cannot be purified by column chromatography or recrystallization. All spectral and chemical properties are consistent with the structure, but attempts to obtain satisfactory elemental analysis were unsuccessful.

Table III. Regioselectivity of SiH Addition to PhC=CH

	% products		
complex	trans- SiCH = CH- Ph	Si(Ph)- C=CH ₂	
$(\eta^5 - C_5 H_5) Fe(CO)_2 SiPh_2 H$	18	82	
(η^5 -C ₅ H ₄ SiPh ₂ H)Fe(CO) ₂ Me	30	70	
$(\eta^5 - C_5 H_4 SiPh_2 H)Fe(CO)_2 SiMe_3$	67	33	
$(n^5 - C_5 H_4 Si Me_3) Fe(CO)_2 Si Ph_2 H$	32	68	

frequency of the Si-H bond.

The spectral and analytical properties of the new complexes are recorded in Tables I and II and conform with the described structures.

Hydrosilylation reactions of I with phenylacetylene were attempted with several different catalysts, i.e. platinum on carbon, [Rh(diphos)₂(norbornadiene)]⁺PF₆⁻, and chloroplatinic acid. Of these only chloroplatinic acid proved effective and even then elevated temperatures were required; therefore all hydrosilylation reactions were performed in refluxing toluene. The product distribution from the hydrosilylation of phenylacetylene by I is recorded in Table III.

The data indicate that of the three possible compounds that may be formed, α -silylstyrene, trans- β -silylstyrene, and $cis-\beta$ -silylstyrene, the predominant isomer formed was the α -silvestyrene (82%), with 18% of the trans- β -styrene and a trace of the $cis-\beta$ -styrene.

Compared to the hydrosilylation of olefins, reports on the addition of silanes to acetylenes are relatively few.¹⁴⁻²⁰ It has been established that the hydrosilylation of diphenylacetylene by optically active NpPhMeSiH resulted in a cis addition with retention of configuration at silicon.¹⁷ A recent study of the monoaddition of $Ph_nMe_{3-n}SiH$ to phenylacetylene catalyzed by chloroplatinic acid salts

- (15) Hill, J. E.; Nile, T. A. J. Organomet. Chem. 1977, 137, 293. (16) Green, M.; Spencer, J. L.; Stone, F. G. A.; Tsipis, C. A. J. Chem. Soc. Dalton Trans. 1977, 1525.
- (17) Brook, A. G.; Pannell, K. H.; Anderson, D. J. Am. Chem. Soc.
- 1968, 90, 4375 (18) Ójima, I.; Kumagai, M.; Nagai, Y. J. Organomet. Chem. 1974, 66, C14.
- (19) Lukevics, E.; Sturkovich, R. Ya.; Pudova, O. A. J. Organomet. Chem. 1985, 292, 151.
 (20) Iovel, I. G.; Goldberg, Y. Sh.; Shymanska, M. V.; Lukevics, E.

Organometallics 1987, 6, 1410.

showed that the regioselectivity of addition changed as the degree of phenyl substitution changed, whereas Ph₃SiH yielded an β : α product ratio of 95:5; this progressively decreased upon Me substitution of Ph to a ratio of 72:28 for Me₂PhSiH.²⁰ In general, addition of silanes to acetylenes leads to predominantly *trans*- β -olefins and a study by Hill and Nile reported that use of a rhodium carbene catalyst resulted in the sole formation of β -addition products.¹⁵ Directly related to our study is the report that cymantrenylmethylphenylsilane, $(\eta^5 - C_5 H_4 SiPh(Me)H)$ - $Mn(CO)_3$, adds to phenylacetylene to yield a ratio of 73:27 trans- β : α addition.²¹

To determine if the uniquely high yields of α -product III obtained by using I were due to the presence of the Si-Fe bond, we also performed the identical hydrosilylation reaction with the migrated complexes IIa and IIb. The reaction with IIa yielded a product distribution almost identical with that with I, clearly indicating that the abnormally high α -styrene formation was not due to the presence of a direct metal-silicon bond. Increasing the steric bulk of the complex by having a trimethylsilyl group attached to the Fe atom, IIb, did reduce the amount of α -product when compared to the results from complexes I and IIa, but even in this case the 33% yield of α -silylstyrene is still somewhat high for such a reaction when compared to a 5% or 22% yield for Ph₃SiH and Ph₂MeSiH, respectively.

These results indicate that the presence of the SiPh₂H group in the coordination sphere of a $[(\eta^5-C_5H_4R)Fe(CO)_2]$ group results in a generally higher α -addition in the hydrosilylation reaction. Also, steric factors play a role in reducing the extent of this unusual regioselectivity since the greater steric bulk of the overall complex is expected to yield more of the β -product IV as observed, i.e. IIa vs IIb.

⁽¹⁴⁾ Benkeser, R. A.; Burrows, M. L.; Nelson, L. E.; Swisher, J. V. J. Am. Chem. Soc. 1961, 83, 4385.

⁽²¹⁾ Asatiani, L. P.; El-Agami, A. A. Zh. Obshch. Khim. 1980, 50, 1584.

The extent of this steric role was studied by synthesizing $(\eta^5-C_5H_4SiMe_3)Fe(CO)_2SiPh_2H$ (VII) (eq 5) and performing

$$\begin{array}{c} (\eta^{5} - C_{5}H_{5})Fe(CO)_{2}SiMe_{3} \xrightarrow{\text{LDA}} \\ [(\eta^{5} - C_{5}H_{4}SiMe_{3})Fe(CO)_{2}]^{-}Li^{+} \xrightarrow{\text{Ph}_{2}Si(H)Cl} \\ (\eta^{5} - C_{5}H_{4}SiMe_{3})Fe(CO)_{2}SiPh_{2}H (5) \end{array}$$

the same hydrosilylation reaction to determine if the extra steric bulk of the trimethylsilyl group was equally important when placed upon the cyclopentadienyl ring while the SiPh₂H group was bonded to the Fe atom, i.e. interchanging the relative positions of the two Si groups (eq 6).

In total, these results, all of which are tabulated in Table III, indicate that the effect of the Me_3Si group upon the regioselectivity of hydrosilylation of the $SiPh_2H$ moiety is limited to the situation when it is bonded to the Fe atom. This suggests that there may be some direct interaction between the Pt catalyst and the Fe coordination sphere during the catalytic cycle. The precise nature of this interaction is unclear but is currently under investigation.

The hydrosilylation products were separated by column chromatography and fully characterized by the appropriate spectroscopic techniques. These data are recorded in Table I. As expected, the ²⁹Si NMR data for the various complexes with a direct Si–Fe bond, I, IIb, III, IV, Vb, VIb, VII, VIII, and IX, exhibit low-field chemical shifts of approximately 35 ppm for these Si atoms when compared to the SiMe analogues, e.g. FpSiPh₂H vs MeSiPh₂H.²² Silicon atoms attached directly to the cyclopentadienyl ring exhibit slightly high field shifts, 3.5 ppm, as noted in previous studies.¹² Such shifts for the two types of silicon atom greatly facilitate complete identification.

Further product characterization was provided by independent synthesis. Complexes IV and IX were obtained from the reactions of the appropriate ferrate salts with trans-Ph₂ClSiCH=CHPh (eq 7).

$$[(\eta^{5}-C_{5}H_{4}R)Fe(CO)_{2}]^{-} + trans-Ph_{2}ClSiCH \longrightarrow (\eta^{5}-C_{5}H_{4}R)Fe(CO)_{2} - trans-SiPh_{2}CH \longrightarrow CHPh (7)$$

$$R = H (IV), SiMe_3 (IX)$$

Experimental Section

All manipulations were performed in N₂ atmospheres by using dry oxygen-free solvents. Starting chlorosilanes were purchased from Petrarch Systems Inc., and $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ was purchased from Strem Chemicals.

NMR spectra were recorded on a Bruker NR 200 MHz multinuclear spectrometer and IR spectra on a Perkin-Elmer 580B spectrometer. Elemental analyses were performed by Galbraith Laboratories Inc., Knoxville, TN.

Typical reactions are described below, and all spectral and analytical data are provided in the tables.

Synthesis of $(\eta^5-C_5H_5)Fe(CO)_2SiPh_2H$ (I). To 100 mL of a cooled (0 °C) THF solution of $[(\eta^5-C_5H_5)Fe(CO)_2]^Na^+$ obtained from 5.0 g (14.1 mmol) of $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ was added dropwise 20 mL of a THF solution of Ph₂SiHCl (6.2 g, 28.2 mmol). The solution was stirred for 1 h and the temperature permitted to rise

(22) Pannell, K. H.; Bassindale, A. R. J. Organomet. Chem. 1982, 229,

to room temperature. At this time the solvent was removed and the resulting thick gum extracted into 100 mL of a 40:60 methylene chloride/hexane solution and filtered. The filtrate was concentrated to 10 mL and this solution placed upon a silica gel column, 2.5×20 cm. Elution with a 25:75 methylene chloride/hexane solvent mixture yielded a yellow band that upon collection, concentration, and recrystallization from a 20:80 methylene chloride/hexane solution yielded 5.1 g (51%) of the title complex.

Treatment of I with Lithium Diisopropylamide. To 30 mL of a cooled (0 °C) THF solution of I (2.0 g, 5.6 mmol) was added dropwise a 10-mL solution of LDA (5.6 mmol). Monitoring by infrared spectroscopy indicated that after 40 min the corresponding ferrate salt $[(\eta^5-C_5H_4SiPh_2H)Fe(CO)_2]^{-Li^+}$ had formed.^{23,24} To this solution was added 0.7 mL (11.3 mmol) of MeI, and the solution was stirred for 30 min. The solvent was removed under vacuum and the residue extracted with a 40:60 methylene chloride/hexane solvent mixture and purified by chromatography on a silica gel column, 2.5×20 cm, made up in hexane. Elution with an 85:15 hexane/methylene chloride solvent mixture produced a yellow band that was collected and after removal of the solvents yielded 1.5 g (72%) of IIa as an oil.

Reaction of the intermediate ferrate salt with Me_3SiCl was performed by a reverse addition procedure, i.e. addition of the ferrate salt to Me_3SiCl , and produced a 71% yield of IIb. Normal addition was complicated via the formation of secondary migrations due to the presence of excess LDA upon formation of IIb.

Hydrosilylation Reactions. In a typical reaction, a 100-mL round-bottomed flask equipped with a reflux condenser and magnetic stirring bar was charged with 2.20 g (6.11 mmol) of I and 1.3 mL (11.8 mmol) of phenylacetylene in 20 mL of toluene. To this mixture was added 2.0 mg of H₂PtCl₆. The solution was refluxed for 1 h after which time infrared monitoring of the Si-H stretching frequency showed that the reaction was complete. The solvent was removed under reduced pressure to yield a thick gum that was extracted into 10 mL of a 40:60 methylene chloride/ hexane solvent mixture. This was placed upon a silica gel column, 2.5×20 cm, eluted with a 30:70 mixture of the same solvents to collect all the hydrosilylation products. This procedure resulted in the recovery of a pale yellow semisolid (2.1 g, 4.52 mmol, 74%) that was shown by NMR spectroscopy to comprise of a 82:18 ratio of $(\eta^5-C_5H_5)Fe(CO)_2SiPh_2(Ph)C=CH_2$ (III) and trans- $(\eta^5-C_5H_5)Fe(CO)_2SiPh_2(Ph)C=CH_2$ C_5H_5)Fe(CO)₂SiPh₂CH=CHPh (IV). This procedure resulted in essentially the same ratio of products as determined by NMR analysis of the crude gum obtained prior to chromatography, but with significantly superior resolution. High-pressure liquid chromatographic analysis of this crude mixture indicated a trace amount (1%) of a material that may be the related $cis - (\eta^5 - \eta^5)$ $C_5H_5)Fe(CO)_2SiPh_2CH=CHPh.$

This crude reaction product was rechromatographed, eluted with an 85:15 hexane/methylene chloride solvent mixture, and the two major products were separated, complex III, the α -silylstyrene eluting first (1.6 g 3.4 mmol, 56%), and IV, the *trans-* β -silylstyrene eluting second (0.3 g, 0.6 mmol, 10%).

All other hydrosilylations were performed by using the same procedure for determining product distributions and purification if required.

Synthesis of VIb from IV by LDA Treatment. To a solution of 0.5 g (1.1 mmol) of IV in 10 mL of THF was added an equivalent of LDA in 2 mL of THF, and the mixture was stirred for 30 min at 0 °C. At this time infrared monitoring indicated the presence of the ferrate salt $[(\eta^5-C_5H_4SiPh_2-trans-CH=CHPh)Fe(CO)_2]^{-Li^+}$. This salt was quenched with an excess of Me₃SiCl and stirred for 30 min. Removal of the solvents, chromatography on silica gel, 2.5 × 20 cm column, made up in hexane and eluted with 20:80 methylene chloride/hexane solvent mixture, and final recrystallization from hexane yielded 0.39 g (0.73 mmol, 66%) of VIb.

In an analogous fashion we synthesized VIa in 55% yield and Va and Vb from III (65% and 57% yields, respectively).

Independent Synthesis of $(\eta^5-C_5H_4SiMe_3)Fe-(CO)_2SiPh_2-trans-CH=CHPh (IX)$. Into a three-necked flask was charged 0.57 g (2.27 mmol) of $(\eta^5-C_5H_5)Fe(CO)_2SiMe_3$ in 10

(23) Pannell, K. H.; Jackson, D. A. J. Am. Chem. Soc. 1976, 98, 4443.
 (24) Nitay, M.; Rosenblum, M. J. Organomet. Chem. 1977, 136, C23.

mL of THF. To this cooled solution (0 °C) was added an equivalent of LDA in THF, and the reaction mixture was stirred for 40 min at which time was added an equivalent of *trans*-(Cl)SiPh₂CH=CHPh dissolved in 10 mL of THF. The solution was permitted to warm to room temperature and stirred for 30 min. After removal of the solvents and extraction with a 40:60 methylene chloride/hexane solvent mixture, the crude material was placed on a silica gel column, 2.5×20 cm made up in hexane, and eluted with a 20:80 methylene chloride/hexane solvent mixture. The resulting material was recrystallized from hexane to yield 0.86 g (1.61 mmol, 71%) of the title compound.

Independent Synthesis of (75-C5H5)Fe(CO)2SiPh2-trans-

CH—**CHPh** (IV). To a solution of $[(\eta^5-C_5H_5)Fe(CO)_2]^-Na^+$ prepared from 1.6 g (9.04 mmol) of $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ in THF was added an equivalent of (Cl)SiPh₂-trans-CH=CHPh. The mixture was stirred for 30 min, and workup as above yielded IV (1.5 g, 3.2 mmol, 35%).

Acknowledgment. This research has been supported by a Texas Advanced Technology Research Award and the Robert A. Welch Foundation, Houston, TX. Financial support by the Dow Corning Corp. is gratefully acknowledged.

Synthesis and Characterization of Rhodium(I) Amino–Olefin Complexes

Marie E. Krafft* and Lawrence J. Wilson

Department of Chemistry, Florida State University, Tallahassee, Florida 32306-3006

Kay D. Onan

Department of Chemistry, Northeastern University, Boston, Massachusetts 02115

Received April 15, 1988

The syntheses of $[(CH_2CR_1CH_2CH_2NR_2R_3)RhClL complexes (R_1 = CH_3, H, R_2 = n-Bu, R_3 = H; R_1 = CH_3, H, R_2 = R_3 = CH_3, L = CO or dimer; 19-32 and 38-43) are reported. The complexes are prepared by the reaction of unsaturated amines with bis(<math>\mu$ -chloro)tetracarbonyldirhodium(I) (3) or bis(μ -chloro)tetrakis(ethylene)dirhodium(I) (4) at ambient temperature. Compound 19, [N-(trans-3-pentenyl)n-butylamine]carbonylrhodium(I) chloride, crystallized in the monoclinic space group $P2_1/c$ with cell dimensions a = 17.699 (5), b = 8.442 (1), and c = 20.119 (5) Å, and $\beta = 120.19$ (2)°.

Introduction

As part of our research program directed toward the regioselective functionalization of simple olefins by prior coordination to transition metals,¹ we found the need for Rh(I) complexes containing bidentate olefinic ligands. Numerous Rh(I) complexes with bidentate ligands are known;² however, none proved suitable for our purpose.

Diolefin complexes² would not be useful because of the question of regiocontrol during alkene functionalization if an unsymmetrical diolefin was utilized. We were interested in complexes, such as 1, which incorporated bidentate, monoolefin ligands where a heteroatom was tethered to the olefin by a carbon chain to yield a chelated ligand. Olefinic phosphines^{3,4} have been shown to give rise to Rh(I) complexes (e.g. 2) containing bidentate ligands.⁵

However, subsequent synthetic utility of the phosphine ligand after olefin functionalization was questionable. While allylic amines have been shown to give rise to polymeric materials^{6a,b} upon reaction with bis(μ -chloro)-tetracarbonyldirhodium(I) (3), we found that homoallylic and bishomoallylic amines reacted with both 3 and bis(μ -chloro)tetrakis(ethylene)dirhodium(I) (4) to give rise to a series of new complexes containing bidentate olefinic ligands.^{6c} We now report our results on the synthesis and characterization of these new Rh(I) complexes.

⁽¹⁾ Krafft, M. E. J. Am. Chem. Soc. 1988, 110, 968. Krafft, M. E. Tetrahedron Lett. 1988, 29, 999.

Dickson, R. S. Organometallic Chemistry of Rhodium and Iridium; Academic: London, 1983. Hughes, R. P. In Comprehensive Organometallic Chemistry; Wilkinson, G. Ed.; Pergamon: Oxford, 1982; Vol. 5, pp 277-540.
 Heifkamp, S.; Stufkens, D.; Vrieze, K. J. Organomet. Chem. 1978, Number 2018.

⁽³⁾ Heifkamp, S.; Stufkens, D.; Vrieze, K. J. Organomet. Chem. 1978, 152, 347. Clark, P. W.; Hartwell, G. E. J. Organomet. Chem. 1975, 96, 451.

⁽⁴⁾ Clark, P. W.; Hartwell, G. E. J. Organomet. Chem. 1975, 102, 387.
Clark, P. W.; Hanisch, P.; Jones, A. J. Inorg. Chem. 1979, 18, 2067.
Bennett, M. A.; Johnson, R. N.; Tomkins, I. B. J. Organomet. Chem.
1976, 118, 205. Bennett, M. A.; Johnson, R. N.; Tomkins, I. B. J. Organomet. Chem.
1977, 133, 231. Curtis, J. L. S.; Hartwell, G. E. J. Organomet. Chem. 1974, 80, 119.

⁽⁵⁾ For discussions on the mechanism of ligand exchange, see: Atwood, J. D. Inorganic and Organometallic Reaction Mechanisms; Brooks/Cole: Monterey, CA, 1985. Reference 6b. Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987. Heck, R. F. Organotransition Metal Chemistry, A Mechanistic Approach; Academic: New York, 1974.

^{(6) (}a) Fougeroux, P.; Denise, B.; Bonnaire, R.; Pannetier, G. J. Organomet. Chem. 1973, 60, 375. (b) Maisonnat, A.; Kalck, P.; Poilblanc, R. Inorg. Chem. 1974, 13, 2996. (c) Ibers^{6d} has shown that N-allylaniline reacts with 4 in THF to give a bidentate olefinic amine complex. We found that reaction of allylamine with 4 in CH₂Cl₂ gave rise to an uncharacterizable orange solid. (d) Aresta, M.; Quaranta, E.; Treglia, S.; Ibers, J. A. Organometallics 1988, 7, 577.