

Figure 2. X-Band ESR spectra of [(triphos)Rh{CH(COOMe)- $CH_2(COOMe)$]⁺ in CH_2Cl_2 at 100 K (a) and at 298 K (b).

three-line resolution in each perpendicular absorption is assigned to interaction with the basal phosphorus atoms $(A \simeq 18 \text{ G})$. The spectrum at 298 K consists of a doublet of doublets with $\langle g \rangle = 2.070 \ (\langle g_{calcd} \rangle = 2.072)$. The large value of $\langle A_{Papical} \rangle$ (234.7 G) is still present whereas the apparent coupling to only one basal phosphorus ($\langle A \rangle$ = 18 G) is consistent with a remarkable distortion in the coordination polyhedron.⁶

One-electron reduction of the Rh(II) succinyl restores the starting cis hydride (alkene) 2. Reasonably, a Rh(I) succinyl complex forms which transforms to 2 via β -H elimination as soon as generated at the electrode surface.

In the attempt of understanding why oxidation of 2 induces olefin insertion, the following additional experimental pieces of information are noteworthy. (i) The related cis hydride(ethylene) complex $[(triphos)RhH(C_2H_4)]^7$ (5) undergoes ethylene insertion across the Rh-H bond by reaction with either excess ethylene to form [(triphos)- $Rh(C_2H_5)(C_2H_4)]^7$ or 1 atm of CO to give [(triphos)Rh- $(C_2H_5)(CO)$].⁷ In contrast, ethylene insertion is not promoted by chemical or electrochemical oxidation. (ii) Compound 2 in THF solution is stable when treated with excess DMFU, ethylene, or CO even at reflux temperature. On the other hand, 2 (THF, room temperature) proves an efficient catalyst for the isomerization of the cis olefin dimethyl maleate (DMMA) to the trans isomer DMFU, thus indicating the occurrence of olefin insertion/ β -H elimination. In the light of these results, it is evident that the CO_2 Me substituents on the alkene play a key role in promoting the hydride (DMFU) \rightarrow succinyl conversion. In particular, the ester C=O groups can electronically and coordinatively saturate rhodium during the oxidation process. Obviously, this is most important to stabilize both the dicationic (3 or 3a) and monocationic (4) species.

Registry No. 1, 100333-94-6; 2, 117469-71-3; 3, 117469-73-5; 3a, 117469-75-7; 4, 117469-74-6.

Stepwise Reaction of CS₂ with the Nickelacyclopentene Complexes

 $(R_3P)_2NI(CH_2CMe_2-o-C_6H_4)$. Influence of the **Ancillary Phosphine Ligands**

Juan Cámpora,^{1a} Ernesto Carmona,*,^{1a} Enrique Gutlérrez-Puebla,^{1b} Manuel L. Poveda,^{1a} and Caridad Ruíz^{1b}

Departamento de Química Inorgánica e Instituto de Ciencia de Materiales Universidad de Sevilla-CSIC, Aptdo. 553 41071 Sevilla, Spain, and Instituto de Quimica Inorgânica Elhûyar y Departamento de Química Inorgánica Universidad Complutense de Madrid-CSIC 28040 Madrid, Spain

Received August 10, 1988

Summary: The reaction of the nickelacyclopentene

complexes $(R_3P)_2Ni(CH_2CMe_2-o-C_6H_4)$ (PR₃ = PMe₃, 1a; $(R_3P)_2 = Me_2PCH_2CH_2PMe_2$, dmpe, **1b**) with CS₂ follows a different course depending on the nature of phosphine coligands. Compound 1a provides (3 equiv of CS₂, 20 °C) the known Ni(C₂S₄PMe₃)PMe₃ (2) and the dithiolactone S==C(S)CH₂CMe₂-o-C₆H₄ (3) through the intermediacy of the Ni(0) species $(Me_3P)_2Ni(S=C(S)CH_2CMe_2-o-C_6H_4)$ (4a) which contains 3 as an η^2 -C=S ligand and can be isolated from 1a and CS2 (1 equiv, -90 °C). Complex 1b reacts with CS₂ to provide first a 1,1-dithiolate derivative, (dmpe)Ni(SSCCH₂CMe₂-o-C₆H₄) (5), and then the trithiocarbonate (dmpe)Ni(S2CS) (6) along with the thicketone S==CCH₂CMe₂-o-C₆H₄) (7). These two reactions can be respectively thought of as the insertion of CS2 into both Ni-C bonds of 1b and as the reductive disproportionation of two molecules of CS₂. In the latter process, the thiocarbonyl group becomes incorporated into the thioketone functionality of 7.

The reactivity of transition-metal complexes toward small, unsaturated molecules continues to arouse much attention.² We have recently shown that the nickelacyclopentene complex $(Me_3P)_2Ni(CH_2CMe_2-o-C_6H_4)$ (1a) reacts with unsaturated C1 molecules such as CO, CO₂, and CH₂O, with formation of products resulting from insertion of the unsaturated molecule into either the nickel alkyl or the nickel aryl carbon bonds.³ Only in the case of CO does reductive elimination (to Ni(0) and the corresponding ketone) follow insertion. In this paper we wish to present additional studies concerning the related reactions of 1a

and its dmpe analogue 1b, $(dmpe)Ni(CH_2CMe_2-o-C_6H_4)$ $(dmpe = Me_2PCH_2CH_2PMe_2)$, with CS₂. As shown in Scheme I, these correspond to a novel type of reactivity and have led to a variety of organic and inorganic species.⁴

⁽⁷⁾ Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Fujiwara, Y.; Jintoku, T.; Taniguchi, H. J. Chem. Soc., Chem. Commun. 1988, 299.

^{(1) (}a) Universidad de Sevilla. (b) Universidad Complutense de Ma-drid.

⁽²⁾ See, for example: Collman, J. P.; Hegedus, L. S.; Norton, J. R.;
Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987.
(3) Carmona, E.; Palma, P.; Paneque, M.; Poveda, M. L.; Gutiérrez-Puebla, E.; Monge, A. J. Am. Chem. Soc. 1986, 108, 6424.
(4) Ottigent and Application of Metal Application of Ap

⁽⁴⁾ Satisfactory analytical data (C, H, S; Pascher, Bonn and Analytical Service, University of Sevilla) have been obtained for all new compounds (see Table IV, supplementary material).

The room-temperature addition of CS_2 (3–4 equiv) to a diethyl ether solution of 1a produces a red-brown microcrystalline solid and a dark-red solution. Spectroscopic data for the former allows its identification as the complex $Ni(C_2S_4PMe_3)PMe_3$ (2) previously characterized by Ibers and co-workers,⁵ while from the red solution dark red crystals of the dithiolactone 3 can be isolated in very high yields. Formation of 2, a Ni(II) derivative containing a head-to-tail CS_2 dimer, suggests the intermediacy of a Ni(0) species, which could result from a reductive elimination reaction, following CS_2 insertion. To confirm this assumption and with the aim of isolating a nickeladithiolactone complex, (Me₃P)₂Ni(CH₂CMe₂-o-C₆H₄C(X)- \vec{X}) (X = S), analogous to the CO₂ insertion product (X = O),³ complex 1a was reacted with 1 equiv of CS_2 , at -90 °C. An amber, crystalline material, identified as the η^2 -C = Sdithiolactone species $(Me_3P)_2Ni(S=C(S))$ - $CH_2CMe_2-o-C_6H_4$) (4a) is instead obtained,⁶ although, as anticipated, it reacts with excess of CS_2 with formation of 2 and 3. It seems therefore likely that the reaction proceeds through the above-mentioned CS_2 insertion product which spontaneously undergoes reductive elimination with concomitant intramolecular C-S bond formation to yield the observed dithiolactone complex 4a. The structure of this complex has been unequivocally established by an X-ray study, whose results are shown in Figure 1, as an

Figure 1. ORTEP diagram for 4a and atom-labeling scheme. Important bond distances (Å) and angles (deg) are as follows: Ni-P1 = 2.180(3), Ni-P2 = 2.146(3), Ni-C1 = 1.939(11), Ni-S1= 2.129 (3), C1-S1 = 1.765 (11), C1-S2 = 1.784 (9); P1-Ni-P2= 105.7 (1), C1-Ni-S1 = 51.1 (3), Ni-C1-S1 = 70.0 (4), Ni-C1-S2 110.6(5), S1-C1-S2 = 116.5(5).

ORTEP perspective view.⁷ The triatomic NiCS linkage exhibits a bonding situation which is comparable with that found in η^2 -thicketone^{8,9} and -thicketene¹⁰ complexes. For instance, the coordinated C-S bond length of 1.77 (1) Å in 4a is essentially identical with the values of 1.769 (2) and 1.762 (4) Å, found respectively in molybdenum⁸ and vanadium⁹ thicketone compounds.

While addition of dmpe to solutions of 4a produces displacement of the coordinated PMe₃ ligands and formation of the related dmpe derivative (dmpe)Ni(S=C- $(S)CH_2CMe_2-o-C_6H_4$ (4b), the reaction of the dmpe complex 1b with CS_2 follows a different course to that described above for 1a. Thus, 1b slowly reacts with 1 equiv of CS_2 , with formation of an orange crystalline species identified¹¹ the 1,1-dithiolate as (dmpe)Ni- $(SSCCH_2CMe_2-o-C_6H_4)$ (5) which, in a formal sense, can be considered as the insertion product of CS_2 into both

⁽⁵⁾ Mason, M. G.; Swepston, P. N.; Ibers, J. A. Inorg. Chem. 1983, 22, 411

⁽⁶⁾ To a stirred solution of 1a in Et₂O (0.34 g, ca. 1 mmol, 20 mL) cooled at -90 °C was added 1 mL of a 1 M CS_2 solution in toluene. The reaction mixture was allowed to warm to room temperature, and the solvent was removed under vacuum. The residue was extracted with 10 mL of a 1:1 Et₂O-hexanes mixture, filtered, concentrated, and cooled at 123.8, 124.5, 126.6, 130.7 (s, CH Ar), 143.9, 149.5 (s, quaternary aromatic carbons).

⁽⁷⁾ Crystal data for $4a \cdot \frac{1}{2}Et_2O$ (C₁₇H₃₀S₂P₂Ni· $\frac{1}{2}C_4H_{10}O$): M_r 464.5, monoclinic, space group $P2_1/n$; a = 19.847 (8) Å, b = 9.343 (2) Å, c = 13.939 (3) Å, $\beta = 109.79$ (3)°, V = 2432 (1) Å³, Z = 4, $D_{calcd} = 1.27$ g/cm³, μ (Mo K α) = 11.01 cm⁻¹, T = 295 K, F(000) = 972, $R_F = 0.071$ for 2765 observed reflections.

⁽⁸⁾ Alper, H.; Silvawe, N. D.; Birnbaum, G.; Ahmed, F. J. Am. Chem.

Soc. 1979, 101, 6582. (9) Pasquali, M.; Leoni, P.; Floriani, C.; Chiesi-Villa, A.; Guastini, G. (10) Werner, H.; Kolb, O.; Schubert, U.; Ackermann, K. Chem. Ber.

^{1985. 118. 873.}

⁽¹¹⁾ To a stirred solution of 1b (0.34 g, ca. 1 mmol) in acetone (20 mL) 1 mL of a 1 M solution of CS_2 in toluene was added at room temperature, the reaction mixture was filtered, the solvent removed under vacuum, and the resulting solid extracted with 20 mL of acetone. The solution was filtered, concentrated, and cooled at -20 °C overnight to provide orange filtered, concentrated, and cooled at -20 °C overnight to provide orange crystals of 5 in ca. 75% yield. Representative spectroscopic data for 5: ¹H NMR (200 MHz, CD₂Cl₂, 22 °C) 3 1.33 (s, CM₂), 1.40 (pseudoquartet, P-Me, J_{HP,pp} = 5.5 Hz), 1.70 (pseudodublet, P-CH₂, J_{HP,pp} = 15.1 Hz), 2.50 (s, S₂CCH₂; ¹³CS₂-enriched sample; d, ²J_{HC} = 4.5 Hz); ³⁷Pl⁴H] NMR (CD₂Cl₂, 22 °C) δ 42.9 (s); ¹³Cl⁴H] NMR (CD₂Cl₂, 22 °C) δ 12.6 (pq, P-Me, J_{CP,pp} = 8.7 Hz), 27.4 (pt, P-CH₂, J_{CP,pp} = 23.9 Hz), 30.6 (s, CM₂), 42.8 (s, CM₂), 66.2 (s, S₂CC -), 67.0 (s, CH₂; ¹³CS₂-enriched sample; d, ¹J_{CC} = 35.6 Hz), 121.4, 124.8, 126.7 (s, 1:1:2 intensity ratio, C-H Ar), 148.8 (s, C_{Ar}-CM₂), 153.4 (s, C_{Ar}-CS₂; ¹³CS₂-enriched sample; d, ¹J_{CC} = 45.1 Hz). The formulation proposed for this complex has been confirmed by X-ray studies: Gutiérrez-Puebla, E., unpublished results. For related 1,1-di-thiolates see ref 10 and: Alper, H.; Chan, A. S. K. J. Am. Chem. Soc. 1973, 95, 4905. Alper, H.; Chan, A. S. K. Inorg. Chem. 1974, 13, 232.

nickel-carbon bonds. If 1b is reacted with an excess of CS_2 (ca. 3 equiv), the yellow, sparingly soluble trithiocarbonate $(dmpe)Ni(S_2CS)$ (6) and the violet thicketone S= $CCH_2CMe_2-o-C_6H_4$ (7) are instead obtained, as shown in eq 1. Note that, formally, this reaction corresponds to a

$$\begin{bmatrix} P \\ N_1 \\ C \end{bmatrix} + 2CS_2 \longrightarrow \begin{bmatrix} P \\ P \\ N_1 \\ S \end{bmatrix} = S + S = C \\ C \end{bmatrix}$$
(1)

reductive disproportionation of carbon disulfide $(2CS_2 +$ $2e \rightleftharpoons CS + CS^{2^{-}}$, with the thiocarbonyl unit becoming incorporated into the thicketone functionality. Interestingly, the reaction takes place without change in the oxidation state of the metal center, the required two electrons being provided (always in a formal sense) by the organic ligand in complex 1b.

As expected, compounds 6 and 7 are also formed when 5 is reacted with 1 equiv of CS_2 (Scheme I). Isotopic labeling studies, carried out with 5* (ca. 50% enriched in $^{13}\mathrm{CS}_2$) show that the carbon atom of the CS_3^{2-} ligand derives exclusively from the added CS₂. While more than one pathway can be envisaged for this reaction, an attractive proposal is to invoke the intermediacy of an elusive dithiirane, 12 R₁R₂CSS, 13 which, by sulfur transfer to CS₂, would provide the observed "disproportionation" products 6 and 7. Studies are under way to clarify these and other aspects of the CS_2 reactions herein reported.

Acknowledgment. Generous support (to E.C. and E.G.-P.) by the Comisión Asesora de Investigación Científica y Técnica (CAICYT) is very gratefully acknowledged. J.C. acknowledges a research grant from the Ministerio de Educación y Čiencia (MEC).

Supplementary Material Available: Tables of bond distances and angles, final fractional coordinates, and thermal parameters for 4a (Tables I-III) and microanalytical data for compounds 3-7 (Table IV) (7 pages); a listing of structure factors (29 pages). Ordering information is given on any current masthead page.

(12) Stable dithiiranes are apparently unknown. See Zoller, U. Het-erocyclic compounds; Hassner, A., Ed.; Wiley: London, 1983; Vol. 42, p 608.

(13) Note that dithiiranes are formally the products of reductive elimination of 1,1-dithiolate liggands, or, conversely, that 1,1-dithiolate complexes are the products of oxidative addition of a dithiirane to a transition-metal center.

Activation of C-H Bond of Ethylene by Dinuclear **Tetrahydride-Bridged Ruthenium Complex**

Hiroharu Suzuki,* Hidekl Omori, and Yoshihiko Moro-Oka

Research Laboratory of Resources Utilization Tokvo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan Received August 16, 1988

Summary: Tetrahydride complex (η^5 -C₅Me₅)Ru(μ -H)₄Ru- $(\eta^5-C_5Me_5)$ (1) reacts with ethylene to give a novel dinuclear divinyl complex, $(\eta^{5}-C_{5}Me_{5})Ru(CH_{2}=CH_{2})(CH=$ $CH_{2}_{2}Ru(\eta^{5}-C_{5}Me_{5})$ (2), via activation of a vinylic C-H bond.

Transition-metal polyhydride complexes have been shown to be of importance as the precursors of the active

Figure 1. 500-MHz ¹H NMR spectrum of $(\eta^5-C_5Me_5)Ru(CH_2=$ CH_2)(CH=CH₂)₂Ru(η^5 -C₅Me₅) (2) in C₆D₆ at 25 °C.

species for the alkane C-H activation reaction.¹ While these exists a fair body of examples of C-H bond cleavage of both alkanes and arenes with low-valent complexes of late transition metals, there are only several reported examples of intermolecular activation of vinylic C-H bond of alkenes with metal polyhydride complexes.²

Since we have reported the preparation of tetrahydride-bridged dinuclear ruthenium complex which causes a coordinatively highly unsaturated species under thermal conditions,³ we have investigated the reaction of a number of simple olefins with the tetrahydridodiruthenium 1. We report here a formation of a novel binuclear vinyl complex by the reaction of 1 with ethylene via a vinylic C-H activation reaction.

Treatment of the dinuclear tetrahydride-bridged complex $(\eta^5-C_5Me_5)Ru(\mu-H)_4Ru(\eta^5-C_5Me_5)$ (1) in toluene solution (20 °C) with an atmospheric pressure of ethylene for 1 day resulted in the formation of deep red powder, formulated as $(\eta^5-C_5Me_5)Ru(CHCH_2)_2(CH_2CH_2)Ru(\eta^5 C_5Me_5$) (2) (eq 1). Crystallization from toluene-pentane

⁽¹⁾ For example, see: (a) Shilov, A. E. The Activation of Saturated Hydrocarbons by Transition Metal Complexes; D. Reidel Publishing Co.: Dordrecht, 1984. (b) Crabtree, R. H. Chem. Rev. 1985, 85, 245. (c) Green,

(3) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Morooka, Y. Organometallics, in press.

^{Dordrecht, 1984. (b) Crabtree, K. H. Chem. Rev. 1985, 53, 245. (c) Green,} M. L. H.; O'Hare, D. Pure Appl. Chem. 1985, 57, 1987. (d) Halpern, J. Inorg. Chim. Acta 1985, 100, 41 and references cited therein.
(2) (a) Bhaduri, S.; Johnson, B. F. G.; Kelland, J. W.; Lewis, J.; Raithby, P. R.; Rehani, S.; Sheldrick, G. M.; Wong, K. J. Chem. Soc., Dalton Trans. 1979, 562. (b) Keister, J. B.; Shapley, J. R. J. Organomet. Chem. 1975, 85, C29. (c) Fryzuk, M. D.; Jones, T.; Einstein, F. W. B. Organometallics 1984, 3, 185. (d) Faller, J. W.; Felkin, H. Organo-metallics 1985, 4, 1488. (e) Baker, M. V.; Field, L. D. J. Am. Chem. Sce., 1986, 108, 7433, 7436. (f) Stoutland P. O: Bergman, R. G. J. Am. Chem. 1986, 108, 7433, 7436. (f) Stoutland, P. O.; Bergman, R. G. J. Am. Chem. Soc. 1985, 107, 4581.