SeC_6H_5)₂Li(THF)₂ (166.5°),¹³ or phosphorus in the analogous compound $(C_5H_5)_2Lu(\mu-P(C_6H_5)_2)_2Li(tmed)$ $(148.7°).$ ⁷ The Cp1-Lu-Cp2 angle and the mean value of the ten Lu-C(η^5) distances in 2 lie in the expected range; the cyclopentadienyl rings are planar. The length of the organolutetium-arsenic bonds (measured for the first time) are 2.896 (2) and 2.870 (2) **A.**

Acknowledgment. We thank the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft for generous support of this work.

Supplementary Material Available: Tables of data collection details, final fractional coordinates, thermal parameters, positions (7 pages); a listing of structure factor amplitudes (12 pages). Ordering information is given on any current masthead page.

(12) Schumann, **H.;** Albrecht, **I.; Hahn,** E. *Angew. Chem., Int. Ed.* **(13)** Schumann, **H.** *Polyhedron,* submitted for publication. *Engl.* **1985,24,985.**

Structure of the Stable Germaphosphene Mes,Oe=PAr: A Ge=P Connectlon with the Geometry of a True Double Bond

Martin Drager

Znstitut fur Anorganische Chemie und Analytische **Chemie der Johannes Gutenberg-Universität** Johann-Joachim-Becher-Weg 24, D-6500 Mainz, Germany

Jean Escudie,^{*} Claude Couret, Henri Ranalvonjatovo, **and Jacques Satge**

Laboratoire de Chlmie des Organomln6raux Universlt6 Paul Sabatier, 118, route de Narbonne 3 1062 Toulouse Cedex, France

Received November 10. 1987

Summary: **The structure of the stable germaphosphene** Mes₂Ge=PAr has been determined by X-ray crystallog**raphy (orthorhombic, Pna2,; a** = **1931.7 (4),** *b* = **997.5 (2),** *c* = **1794.6 (2) pm;** *V* = **3458.10' pm3;** *2* = **4;** *R* = **0.0540). The germanium-phosphorus double bond length (213.8 (3) pm) is substantially shorter than the standard** germanium-phosphorus single bond $(\sim 233 - 235 \text{ pm})$; this **rather important shortening (about 8.5%) and the essentially planar double-bond geometry support the existence of a true germanium-phosphorus double bond. Raman** emission of Ge=P bond is 503 cm⁻¹.

Compounds with double bonds to second- and third-row elements, once thought to be practically nonexistent, are now being synthesized and stabilized with increasing frequency owing **to** bulky substituents.' **This** is specially true for derivatives with dicoordinated phosphorus; many phosphaalkenes $-P=C<$,^{1g} phospha imines $-P=N$ diphosphenes $-P=P$ ^{1f,g} and phosphacumulenes $-P$ = $C=X^{1g}$ are known at the present time. But in the $M_{14}=P$ field $(M_{14} = Si, Ge, Sn)$, very few derivatives have been synthesized so far; some silaphosphenes² and a stannaphosphene3 have been stabilized and characterized, and only the germaphosphene **14a** has been isolated in a pure form.

This germaphosphene was obtained in a very good yield by dehydrofluorination of fluorogermylphosphine **2** with $tert$ -butyllithium.^{4a}

1 is thermally stable (until 150 "C) but is very air- and moisture-sensitive. The presence in 1 of *a* real double bond between germanium and phosphorus was proven by its chemical reactivity: electrophilic, nucleophilic, and radical addition reactions have been obtained^{4,6} (see Scheme I).

The double-bond character of the germanium-phosphorus connection was also supported by a strong Raman emission at **503** cm-' in good correlation with previous calculation⁹ (481 cm⁻¹ for $d_{\text{Ge-P}}$ = 216.9 pm).

However, the nature of the double bond (shortening in relation to the germanium-phosphorus single bond, planarity of germanium and phosphorus, ...) remained questionnable. Moreover, it must be noted that, if many low coordinated species of group 15 $(-P=N-, -P=P-, ...)$ and some doubly bonded compounds of group 14 ($Si=$ C, $Si=$ Si, Ge=Ge, ...) have been structurally characterized, no X-ray determination have been performed until now for heavy M_{14} = M_{15} derivatives. So we report here the X-ray structure of germaphosphene 1, first X-ray structure for this type of compound.

Experimental Section. The solutions of the germaphosphene 1 are highly air- and moisture-sensitive. So the synthesis of 1 needs high-vacuum line techniques and carefully deoxygenated solvents that must be freshly distilled over sodium/ benzophenone.

Synthesis of the Fluorogermylphosphine Mes₂Ge-(F)P(H)Ar **(2).** The lithiophosphide ArP(H)Li was prepared by addition of 11.3 mL (15.8 mmol) of a solution of tert-butyllithium (1.4 M in pentane) to a solution of **2,4,6-tri-tert-butylphenyl** phosphine (4.40 g, 15.8 mmol) in 20 mL of diethyl ether. After 1 h at room temperature, the red solution of lithiophosphide was slowly added to a suspension of dimesityldifluorogermane (5.50 g, 15.8 mmol) in pentane (30 mL). The reaction was immediate **as** shown by a rapid decoloration; the reaction mixture was stirred for 1 h at room temperature and filtered to eliminate LiF. After elimination of the solvents in vacuo, crude **2** was recrystallized in pentane at -20 "C to afford white crystals $(8.60 \text{ g}, \text{yield } 90\%; \text{ mp } 124 \text{ °C}).$

⁽¹⁾ For reviews on M=M compounds, see the following. (a) Si=Si: West, R. Science (Washington, D.C.) 1984, 225, 1109-14. West, R. Angew. Chem., Int. Ed. Engl. 1987, 26, 1201-11. (b) Si=M (M = group 14 and 15 elements): Raabe, G.; Michl, J. Chem. Rev. 1985, 85, 419-509. (c) Si=C (Brents Satge, J. Adv. Organomet. Chem. 1982, 21, 241–87. (f) M=M' (M, M'
= Si, Ge, Sn, P, As, Sb): Cowley, A. H.; Norman, N. C. Prog. *Inorg. Chem.*
1986, 34, 1–63. (g) P=X (X = group 14 and 15 elements): Lochschmidt,
S.; Schmidp

⁽²⁾ Smit, C. N.; Lock, F. M.; Bickelhaupt, F. Tetrahedron Lett. 1984, 25, 3011. Smit, C. N.; Bickelhaupt, F. Organometallics 1987, 6, 1156.

(3) Couret, C.; Escudie, J.; Satge, J.; Raharinirina, A.; Andriamizaka, J. D. J.

Figure 1. ORTEP drawing of Mes₂Ge=PAr. Numbering scheme **as** given in Table **11.** Thermal ellipsoids for Ge and P are scaled to enclose 30% of the electron density probability; C and H atoms are isotropic spheres with radii of 9 pm.

Synthesis of the Germaphosphene 1. To a solution of fluorogermylphosphine $\text{Mes}_2\text{Ge}(F)P(H)Ar$ (7.60 g, 12.52) mmol) in pentane (30 mL), cooled at -20 °C, was slowly added 8.95 mL (12.52 mmol) of a solution of tert-butyllithium (1.4 M in pentane). The reaction mixture becomes orange immediately; around -10 °C, a precipitate of lithium fluoride appears. The reaction mixture is then allowed to warm to room temperature, filtered to eliminate LiF, and partly concentrated. Crystallization at -20 **"C** in pentane afforded 5.52 g of pure germaphosphene (yield 75%) in the form of orange aggregates.

Single crystals were obtained by heating in a sealed tube at 100 **OC** 1 g of 1 in **5** mL of pentane until dissolution (after the solution was cooled to room temperature, orange-red crystals were formed). The solvent was decanted off, and the crystals were dried in vacuo. They are air- and moisture-sensitive, but much less than in solution, and can be handled in air for a short time (mp 155-160 °C; δ ⁽³¹P) $+175.4$).^{4a}

Table I summarizes crystal data and experimental details. Coordinates are given in Table 11. Table I11 contains the most important bond lengths and angles. Figure 1 shows the molecule found. **A** Raman spectrum was obtained with a spectrometer SPEX-1403 **(Kr** laser, 647 nm) from crystalline material in a sealed tube.

Results and Discussion. The most significant feature of this structure is the short germanium-phosphorus double bond length (213.8 (3) pm). So, the shortening (about 20 pm) in relation to the typical germanium-

Table I. Crystallographic Data for Mes₂Ge=PAr and Structure Determination Details

phosphorus single bond $(2.30-2.36 \text{ pm})^5$ is nearly 8.5% . This shortening is of course less important than in the case of carbon (13% between $\geq C-C \leq$ and $\geq C=C \leq$) and indicates a smaller π -bonding caused by less efficient p

⁽⁵⁾ Andrianarison, M.; Couret, C.; Declercq, J. P.; Dubourg, **A.;** Escudie, J.; Ranaivonjatovo, H.; Satge, J., submitted for publication. Fritz, G.; Hoppe, K. D.; Honle, W.; Weber, D.; Mujica, C.; Manriquez, V.; Von Schnering, H. G. J. Organomet. Chem. 1983, 249, 63. Tebbe, K. F.; Freckmann, Dahl, A. R.; Norman, A. D.; Shenav, H.; Schaeffer, R. J. Am. Chem. Soc. 1975,97,6364. Andrianarison, M.; Couret, C.; Declercq, J. P.; Dubourg, A,; Escudie, J.; Satge, J. *J. Chem.* Soc., *Chem. Commun.* 1987, 921.

Table 11. Fractional Coordinates for the Non-Hydrogen Atoms of MeszGe=PAr, Anisotropic Temperature Factors for Ge and P, and Isotropic Temperature Factors for C

	atom	x	у	\boldsymbol{z}	$U, \overline{A^2}$	atom	x	\mathcal{Y}	\boldsymbol{z}	$U, \, \mathsf{A}^2$	
	Ge	$-0.11360(4)$	$-0.7534(1)$	0.00000		\mathbf{P}	$-0.0929(1)$	$-0.5706(2)$	$-0.0580(1)$		
Aryl(1)											
	C(11)	$-0.0541(3)$	$-0.4513(7)$	0.0102(5)	0.043(1)	C(142)	0.0928(7)	$-0.1230(13)$	0.1573(7)	0.091(4)	
	C(12)	0.0193(3)	$-0.4287(7)$	0.0040(6)	0.046(1)	C(143)	0.1142(7)	$-0.3490(16)$	0.2136(9)	0.103(4)	
	C(121)	0.0637(4)	$-0.4656(9)$	$-0.0647(5)$	0.056(2)	C(144)	0.0146(7)	$-0.2143(13)$	0.2564(7)	0.089(4)	
	C(122)	0.1352(5)	$-0.3958(11)$	$-0.0601(7)$	0.074(2)	C(15)	$-0.0530(4)$	$-0.3283(9)$	0.1252(5)	0.052(2)	
	C(123)	0.0322(6)	$-0.4181(12)$	$-0.1371(6)$	0.076(3)	C(16)	$-0.0914(4)$	$-0.3912(8)$	0.0685(5)	0.044(1)	
	C(124)	0.0787(5)	$-0.6173(10)$	$-0.0682(7)$	0.075(3)	C(161)	$-0.1704(5)$	$-0.3766(10)$	0.0743(6)	0.062(2)	
	C(13)	0.0511(4)	$-0.3623(9)$	0.0630(5)	0.051(2)	C(162)	$-0.2093(7)$	$-0.3767(15)$	0.0020(10)	0.111(4)	
	C(14)	0.0179(4)	$-0.3186(9)$	0.1248(5)	0.052(2)	C(163)	$-0.1904(10)$	$-0.2386(16)$	0.1067(10)	0.119(5)	
	C(141)	0.0584(5)	$-0.2528(10)$	0.1893(6)	0.063(2)	C(164)	$-0.2008(7)$	$-0.4884(13)$	0.1247(7)	0.087(3)	
Mesityl(2)											
	C(21)	$-0.1387(4)$	$-0.8972(8)$	$-0.0677(5)$	0.044(1)	C(241)	$-0.1797(8)$	$-1.2229(15)$	$-0.2194(9)$	0.105(4)	
	C(22)	$-0.1924(5)$	$-0.8865(10)$	$-0.1206(6)$	0.058(2)	C(25)	$-0.1108(5)$	$-1.1191(11)$	$-0.1163(6)$	0.067(2)	
	C(221)	$-0.2392(6)$	$-0.7634(11)$	$-0.1220(7)$	0.075(3)	C(26)	$-0.0951(4)$	$-1.0140(9)$	$-0.0670(5)$	0.053(2)	
	C(23)	$-0.2032(5)$	$-0.9947(12)$	$-0.1675(6)$	0.068(2)	C(261)	$-0.0353(5)$	$-1.0285(12)$	$-0.0158(6)$	0.073(3)	
	C(24)	$-0.1642(6)$	$-1.1054(12)$	$-0.1669(7)$	0.079(3)						
Mesityl(3)											
	C(31)	$-0.1163(5)$	$-0.8079(11)$	0.1046(5)	0.057(2)	C(341)	$-0.1239(7)$	$-0.9671(16)$	0.3268(8)	0.100(4)	
	C(32)	$-0.1770(5)$	$-0.8708(11)$	0.1306(6)	0.061(2)	C(35)	$-0.0640(6)$	$-0.8493(12)$	0.2223(7)	0.075(3)	
	C(321)	$-0.2412(5)$	$-0.8772(12)$	0.0856(6)	0.075(3)	C(36)	$-0.0580(5)$	$-0.7956(10)$	0.1515(5)	0.058(2)	
	C(33)	$-0.1774(5)$	$-0.9205(11)$	0.2039(6)	0.065(2)	C(361)	0.0072(6)	$-0.7296(11)$	0.1253(7)	0.075(3)	
	C(34)	$-0.1215(5)$	$-0.9128(12)$	0.2481(7)	0.072(3)						
atom		U(11)		U(22)	U(33)	U(23)		U(13)	U(12)		
Ge		0.0570(5)		0.0402(4)	0.0508(5)		$-0.0029(5)$	$-0.0005(7)$	$-0.0064(4)$		
P		0.065(1)		0.042(1)	0.056(1)			$-0.003(1)$		$-0.010(1)$	

Table III. Bond Lengths (pm) and Angles (deg) with Esd's in Parentheses for Mes₂Ge=PAr

orbital overlap due to the larger size of the germanium and phosphorus atoms. But this shortening is in a typical range for organometallic doubly bonded compounds: similar values have been obtained in the case of silaalkenes $>S_i=C_i^{1b,c}$ disilenes $>S_i=S_i_i^{1a,b}$ and diphosphenes $-P=P-$ ^{1f_ig} In the germene Mes₂Ge=CR₂ (CR₂ = fluorenylidene) recently synthesized,^{6a} the shortening is slightly larger (10.4%).^{6b} In the cases of digermenes R'_{2} Ge=Ge R'_{2} , very different values are obtained according **to** substituents on germanium. When R' is a 2,6-diethylphenyl group,⁷ the shortening is similar (about **8.5%),** but when R' is a bis- (trimethybily1)methyl group,* the difference between the double- and single-bond length is only 4%: in this case, the Ge-Ge bond is exceedingly labile and the chemical properties of $Ge_2R'_4$ in solution are those of the monomer GeR'_2 . Moreover, the Ge=P bond length is in good agreement with calculations by Barthelat⁹ (SCF level with configuration interactions, 216.9 pm; ab initio using pseudopotential, 213.6 pm), and the Ge=P bond length agrees well with the sum of covalent radii (212 pm) of sp^2 germanium (112 pm) and sp^2 phosphorus (100 pm).^{1f}

The molecule adopts a nearly planar conformation of the central atoms C_2 Ge=PC (mean deviation 7 pm; individual displacements; Ge, -1.3 (1); P, -13.2 **(3);** C, +7.6 (€9, -3.6 (9), and +10.6 *(8)* pm). The deviation of the germanium atom from its direct coordination $(Mes-C_{ipso})₂$ $+$ P is only 2 pm (sum of angles on germanium 360 \degree). The twist between the cis and trans ligands at the Ge=P bond is 10 and 13°, respectively.

The angle at phosphorus of **107.5'** is significantly smaller than the idealized 120° expected for sp²-hybridized phosphorus. It is the reverse of the trend expected from steric consideration alone; this more acute angle, observed also in diphosphenes and phosphaalkenes, reflects an increase in p character in the P-C bond. The widened angle P-Ge-cis-Mes of 135° (vs 112° trans) demonstrates the steric repulsion between the cis mesityl and the 2,4,6 tri-tert-butylphenyl group. The geometry of mesityl and **Ar** groups shows standard bond lengths and angles and deserves no special comment.

Torsion of aryl and the two mesityl groups around the Ge=P center is approximately equal in sign and magnitude. The aromatic groups form a kind of a three-bladed propeller. There are no short intermolecular interactions between Ge and P: the bulky ligands shield the $Ge = P$ bond well against other molecules and can explain the stability in a monomeric form of this germaphosphene while other compounds of this type'are generally highly polymerisable and could only be characterized by trapping reactions.¹⁰

The results of this X-ray structure are in good agreement with a true germanium-phosphorus double bond already postulated after the study of the germaphosphene chemical

^{(6) (}a) Couret, C.; Escudie, J.; Satge, J.; Lazraq, M. J. Am. Chem. Soc.
1987, 109, 4411. (b) Lazraq, M.; Escudie, J.; Couret, C.; Satge, J.; Drager, M.; Dammel, R., submitted for publication.
(7) Snow, J. T.; Murakami, S

Soc., Chem. Commun. 1984, 480.

⁽⁹⁾ Barthelat, J. C., private communication; cited in **ref le.**

⁽¹⁰⁾ Couret, C.; Satge, J.; Andriamizaka, J. D.; Escudie, J. *J. Orga-nomet. Chem.* 1978, *157,* C35.

reactivity: we have only observed for 1 behavior of doubly bonded compound and never behavior of germylene $Mes₂Ge and phosphinidene ArP, as if the germanium$ phosphorus connection was very weak.

Rsgistry No. 1,96481-35-5; 2,96481-37-7; ArP(H)Li, **83115- 13-3; 2,4,6-tri-tert-butylphenylphosphine, 83115-12-2;** dimesityldifluorogermane, **96481-36-6.**

Supplementary Material Available: A listing of the hydrogen atom positions **(1** page); a listing of structure factor amplitudes **(12** pages). Ordering information is given on any current masthead page.

Synthesis of a Stable Dlsulfur Monoxide Precursor and Trapplng of Dlsulfur Monoxide wlth Transltlon-Metal Complexes

Greg A. Urove and Mark E. Welker"

Department of Chemistry, Wake Forest University Winston-Salem, North Carolina 27 109

Received January 2 1, 1988

Summary: A five-step synthesis of 4,5-diphenyl-3,6-dihydro-1,2-dithiin 1-oxide starting from 2,3-diphenylmaleic anhydride is described. When the dithiin 1-oxide was treated with coordinatively unsaturated transition-metal complexes, a transition-metal disulfur monoxide complex and 2,3-diphenylbutadiene were isolated.

The ability of transition metals to stabilize small, reactive sulfur fragments such as sulfur monoxide (SO) ,¹ disulfur (S_2) ,² and trisulfur (S_3) ^{2b,3} offers chemists a chance to explore the reactivity of these molecules under mild, controlable conditions. Our goal within this active area of research is to synthesize transition-metal complexes containing the disulfur monoxide (S_2O) moiety in a variety of different bonding modes. Only two **(1** and **2)** of a variety of possibilities are shown below. Our hope is that the complexed S₂O can be used as a template for the synthesis of thiosulfinate esters **(3).** The thiosulfinate esters **(3)** have shown interesting biological activities as antibacterials,⁴ antifungals,⁴ plant growth inhibitors, 5 and platelet aggregation inhibitors.⁶

There are no reports in the literature of transition-metal S_2O complexes obtained through the trapping of S_2O and

(2) (a) Herberhold, M.; Schmidkonz, B.; Ziegler, M. L.; Zahn, T. Angew. Chem., Int. Ed. Engl. 1985, 24, 515. (b) Herberhold, M.; Reiner, D.; Thewalt, U. Angew. Chem., Int. Ed. Engl. 1983, 22, 1000. (c) Muller, A.; Jaegermann, W.; Enemark, J. H. *Coord. Chem. Reu.* **1982,46, 245** and references cited therein.

(3) Bolinger, C. **M.;** Rauchfuss, T. B.; Wilson, S. R. *J. Am. Chem.* **SOC. 1981,103, 5620.**

(4) Cavallito, C. J.; Bailey, J. **H.** J. *Am. Chem.* **SOC. 1944, 60, 1950, 1952.**

1073. (5) Yanagawa, H.; Kato, T.; Kitahara, Y. *Tetrahedron Lett.* **1973,**

R. *J. Am. Chem.* Soc. **1986, 108, 7045.** (6) Block, **E.;** Ahmad, S.; Catalfamo, J. L.; Jain, M. K.; Apitz-Castro,

 $^{\alpha}$ (a) LiAlH₄, Et₂O, -20 °C. (b) LiAlH₄, Et₂O, -20 °C. (c) PBr₃, C_6H_6 , 25-45 °C, 1 h. **(d)** $Na_2S_2O_3$, THF/H₂O, 1:1, reflux, 1.5 h; (e) I_2 , reflux, 1 h. (f) mCPBA, $\tilde{C}H_2\tilde{C}I_2$, $0-25$ °C, 1 h.

few reports of transition-metal **S20** complexes 1 obtained through the oxidation of S_2 complexes $4.^{1,2a,7}$ The reported mononuclear S_2O complexes are presumed to contain η^2 -S₂O in all cases. Comparatively little is known about the reactivity of S₂O in these complexes. Methylation on oxygen with methyl fluorosulfonate has been reported for an iridium complex.7c Reaction with triphenylphosphine and oxidation of complexed S₂O have also been report $ed.^{7b,e}$

In order to be able to trap S₂O and study its reactivity, a method for clean, reproducible S_2O generation is required. Free disulfur monoxide **(5),** structurally similar to sulfur dioxide **(6),8** is an extremely reactive molecule

unless stored at very low pressures in the gas phase. 9 Disulfur monoxide has been produced in the past for synthetic purposes by the vacuum pyrolysis of S_0Cl_2 over \overline{Ag}_2S at 160 °C,¹⁰ by pyrolysis of thiirane 1-oxide,¹¹ and by pyrolysis of a mixture of cupric oxide and sulfur.¹¹ All of these methods produce S_2O which is contaminated to varying degrees with SO_2 and SO , making them impractical as S_2O sources for transition-metal complex trapping studies. We set out to synthesize an air-stable, crystalline compound (7) which we hoped would yield S₂O via a transition-metal-induced retro Diels-Alder reaction.¹²

(9) For a review of methods used to produce S_2O for spectroscopic studies see: Vasudeva Murthy, A. R.; Narayanan, T. R.; Sharma, D. K.
Int. J. Sulfur Chem., Part B 1971, 6, 161.
(10) Schenk, P. W.; Steudel, R. *Angew. Chem., Int. Ed. Engl.* 1964, 3,

61.

(11) Dcdson, R. **M.;** Srinivasan, V.; Sharma, K. S.; Sauers, R. F. *J. Org. Chem.* **1972, 37, 2367.**

⁽¹⁾ Schenk, W. A. *Ahgew. Chem., Int. Ed. Engl.* **1987, 26, 98** and references cited therein.

^{(7) (}a) Herberhold, M.; Hill, A. F. *J. Organomet. Chem.* **1986,309,** C29. (b) Hoots, J. E.; Lesch, D. A.; Rauchfuss, T. B. *Inorg. Chem.* **1984,23, 3130.** (c) Hoots, **J.** E.; Rauchfuss, T. B.; Wilson, S. R. J. *Chem.* Soc., *Chem. Commun.* **1983,** 1226. (d) Dirand-Colin, J.; Schappacher, M.; Ricard, L.; Weiss, R. *J. Less-Common Met.* **1977,54, 91.** (e) Schmid, **G.;** Ritter, G., *Chem. Ber.,* **1975,108,3008. (f'j** Schmid, **G.;** Ritter, G. *Angew. Chem., Int. Ed. Engl.* **1975, 14, 645.**

⁽⁸⁾ Meschi, D. J.; Meyers, R. J. J. *Mol. Spectrosc.* **1959, 3, 409.**