Experimental Section

Compounds and the Reactions. The cyclohex-2-enylstannanes were prepared and characterized as described previously.^{6,9,13} Reactions with sulfur dioxide in chloroform or methanol were conducted (at 0 °C), normally in NMR tubes, and examined directly by ¹H and ¹³C spectroscopy. The solvent was then removed, and the viscous gel or white solid remaining represented essentially pure insertion product (the cyclohex-2-enylsulfinate). IR spectroscopy established O-sulfinato products 3,4 The key ^{13}C and ¹H NMR spectra are located in Tables IV and V.

NMR Spectra. These were acquired by utilizing the conditions and solvents described fully in the preceding paper.

Registry No. 1, 113353-45-0; 2, 113353-46-1; 3, 113353-47-2; 4, 113378-70-4; 5, 113353-48-3; 6, 113353-49-4; 7, 113353-50-7; 8, 113353-51-8; 9, 113353-52-9; 10, 113353-53-0; 11, 89633-90-9; 12,

89633-91-0; 13, 113353-54-1; 14, 113353-55-2; 15, 89633-99-8; 16, 89633-98-7; 17, 89633-97-6; 18, 89633-96-5; SO2, 7446-09-5; (cis-5-methylcyclohex-2enyl)trimethylstannane, 74089-88-6; (trans-5-methylcyclohex-2-enyl)trimethylstannane, 74089-89-7; (cis-5methylcyclohex-2-enyl)triphenylstannane, 83269-35-6; (trans-5methylcyclohex-2-enyl)triphenylstannane, 83269-36-7; (cis-3,5dimethylcyclohex-2-enyl)trimethylstannane, 83269-39-0; (trans-3,5-dimethylcyclohex-2-enyl)trimethylstannane, 83269-40-3; (cis-5-(1,1-dimethylethyl)cyclohex-2-enyl)trimethylstannane, 84537-09-7; (trans-5-(1,1-dimethylethyl)cyclohex-2-enyl)trimethylstannane, 84537-11-1; (cis-4-(1,1-dimethylethyl)cyclohex-2-enyl)trimethylstannane, 89633-88-5; (trans-4-(1,1-dimethylethyl)cyclohex-2-enyl)trimethylstannane, 89633-89-6; (cis-4-(1,1-dimethylethyl)cyclohex-2-enyl)triphenylstannane, 89634-12-8; (trans-4-(1,1-dimethylethyl)cyclohex-2-enyl)triphenylstannane, 89634-11-7.

Chemistry of Heavy Carbene Analogues R_2M (M = Si, Ge, Sn). 12.¹ Concerted and Nonconcerted Insertion Reactions of the Germylene Me₂Ge into the Carbon-Halogen Bond

Jürgen Köcher,² Manfred Lehnig,* and Wilhelm P. Neumann

Lehrstuhl für Organische Chemie I, University of Dortmund, D-4600 Dortmund 50, Germany

Received October 22, 1986; Revised Manuscript Received December 17, 1987

During the reaction of Me₂Ge with CCl₃X (X = Cl, Br), PhCH₂X (X = Br, I), and Ph₂CHCl, ¹H CIDNP is observed in the products of net insertion of Me₂Ge into the carbon-halogen bond and in Me₂GeX₂ (X = Cl, Br). It is concluded that a two-step radical reaction takes place by an abstraction-recombination mechanism. No reaction takes place with alkyl halides that have a C-X bond dissociation energy of more than about 70 kcal/mol. Me_2Ge is generated thermally at 70–95 °C or photochemically from the 7-ger-mabenzonorbornadiene 1 and reacts in both cases in the singlet state. The activation energy for forming Me₂Ge from 1 is 19 kcal/mol for the reaction with CCl₄. Insertion products are also formed with the alkenyl halides CH_2 —CHCH₂X, PhCH—CHX (X = Cl, Br), and 2-bromobut-2-ene, but without showing CIDNP effects. Since Me_2GeX_2 was not found either, Me_2Ge reacts in these cases in a nonradical manner. It does not react with 1-chlorocyclohexene, but it does react with Me2GeX2 under formation of digermanes and/or oligogermanes without CIDNP.

Introduction

Carbenes, R₂C:, play an important role as intermediates in organic chemistry. Similarly, the chemistry of the heavy carbene analogues, the silvlenes R_2Si ,³ the germylenes R_2Ge ,⁴ and the stannylenes R_2Sn ,⁵ has received much attention in recent years. In principle, the heavy carbene analogues undergo the same types of reactions as the carbenes-addition and insertion-but there are characteristic differences that are still in need of investigation. A question that is still of great interest is the spin state of the reacting intermediate (singlet or triplet). For example, dimethylgermylenes generated by thermolysis from the 7-germabenzonorbornadiene 16 or pentamethyldigermane⁷ have been shown to undergo concerted 1,4-additions to 1,3-dienes (eq 1), indicating a singlet state for the reacting species.

Carbenes are known to undergo insertion into the carbon-hydrogen bond. From the beginning of carbene chemistry, two different reaction mechanisms were discussed. The first is a concerted one, meaning that the insertion occurs in a single step without further reaction intermediates via a three-center-type transition state (eq

0276-7333/88/2307-1201\$01.50/0 © 1988 American Chemical Society

⁽¹⁾ Part 11: Appler, H.; Neumann, W. P. J. Organomet. Chem. 1986, 314, 261.

Köcher, J. Dr. rer. nat. Thesis, University of Dortmund, 1985.
 (3) Gaspar, P. P. React. Intermed. (Wiley) 1978, 1, 228; 1981, 2, 335;

⁽a) Supply, 1985, 3, 333.
(4) Rivière, P.; Castel, A.; Satgé, J. J. Am. Chem. Soc. 1980, 102, 5413.
(5) Neumann, W. P. The Stannylenes R₂Sn in Organometallic and Coordination Chemistry of Ge, Sn, and Pb; Gielen, M., Harrison, P. G., 1972.

⁽⁶⁾ Schriewer, M.; Neumann, W. P. Angew. Chem., Int. Ed. Engl.

^{1981, 20, 1019;} J. Am. Chem. Soc. 1983, 105, 897.

⁽⁷⁾ Ma, E. C.-L.; Kobayashi, K.; Barzilai, M. W.; Gaspar, P. P. J. Organomet. Chem. 1982, 224, C 13.

2). The second is a two-step reaction via a radical pair

$$R_2 C_1 S \rightarrow HC \longrightarrow H^{C_1 R_2} HR_2 C_2 C \longrightarrow HR_2 C_2 C$$
 (2)

formed by hydrogen abstraction that collapses to the recombination product, the formal net insertion product (eq 3). It has been found that carbenes in the singlet (S) state

$$R_2C^{\dagger} + HC \xrightarrow{\frown} HR_2C^{\dagger} + C \xrightarrow{\frown} HR_2C - C \xrightarrow{\frown} (3)$$

react with C-H bonds in a concerted manner while from the triplet (T) state they react via an abstraction-recombination mechanism with radicals as intermediates.⁸

These two mechanisms can be distinguished by studying the minor reaction products; the abstraction-recombination reaction should give products typical for radical reactions such as abstraction, recombination, and disproportionation; the concerted reaction should not. However, the product analysis does not allow a distinction in every case and is not capable of differentiating between S and T states. A method that allows this is CIDNP⁹ (chemically induced dynamic nuclear polarization) through the observance of emission (E) and enhanced absorption (A) signals in the NMR spectra of the reaction products of radical pairs taken during or immediately after reaction (eq 4).^{10,11} It has been shown by CIDNP that S carbenes

Precursor S, I
$$\longrightarrow$$
 $R':R':S, I \longrightarrow$ $R-R', R_{\pm H} + R'_{\mp H}$ (4)
 $\stackrel{e}{\longrightarrow} R' + R' \longrightarrow$ $R - R, R' - R'$

do not react with halides in a concerted manner but are capable of abstracting halogen and reacting via radical pairs (eq 5).¹³

$$R_2C:^{S} + R'Hal \longrightarrow HalR_2C' R'^{S} \longrightarrow HalR_2C - R'$$
(5)

Germylenes do not react with the carbon-hydrogen bond but react with the carbon-halogen,¹⁴ metal-halogen,¹⁵ metal-carbon,¹⁶ metal-metal,¹⁷ and metal-hydrogen bonds,¹⁸ although thorough mechanistic studies have not been performed. The only mechanistic study concerns the insertion of Me₂Ge into the Sn-Cl bond of Me₃SnCl, giving Me₂ClGeSnMe₃ in greater than 90% yield.⁶ As radical reaction products such as Me₆Sn₂ or Me₂ClGeGeMe₂Cl are not present as byproducts, the occurrence of a one-step reaction has been assumed. In a preliminary communication we have shown by CIDNP that Me₂Ge generated

(8) Jones, M., Jr.; Moss, R. A. Carbenes; Wiley: New York, 1973, 1975; Vols. 1, 2.

(9) Closs, G. L.; Trifunac, A. D. J. Am. Chem. Soc. 1969, 91, 4554; Closs, G. L. In ref 8, Vol. 2, pp 159–184.
(10) Bargon, J.; Fischer, H.; Johnsen, U. Z. Naturforsch., A: Astro-

phys., Phys. Phys. Chem. 1967, 22A, 1551. Ward, H. R.; Lawler, R. G. J. Am. Chem. Soc. 1967, 89, 5518. Muus, L. T., Atkins, P. W., McLauchlan, K. A., Pedersen, J. B., Eds. Chemically Induced Magnetic Polarisation; D. Reidel: Dordrecht, Boston, 1977.

(11) For determining the phase of the nuclear polarization, the fol-lowing rule has been given by Kaptein:¹² $\Gamma_n = \mu \epsilon \Delta ga$ ($\Gamma_n = +, A; \Gamma_n = -, E$). $\mu = +$ for T and – for S precursor; $\epsilon = +$ for cage (c) products and – for escape (e) products; g = g values of the radicals involved; a = sign of the splitting parameter of the nucleus in the radical that leads to the product.

(12) Kaptein, R. J. Chem. Soc. D 1971, 732

(13) Roth, H. D. J. Am. Chem. Soc. 1971, 93, 1527. Roth, H. D. Acc. Chem. Res. 1977, 10, 85.

(14) Massol, M.; Barrau, J.; Rivière, P.; Satgé, J. J. Organomet. Chem. 1971, 30, 27. Joffe, A. I.; Nefedov, O. M. Zh. Vses. Khim. Ova. im. D.I. Mendeleeva 1979, 24, 475.
(15) Bulten, E. J.; Noltes, J. G. J. Organomet. Chem. 1969, 16, P8.
(16) Barrau, J.; Satgé, J. J. Organomet. Chem. 1978, 148, C9.

(17) Castel, A.; Escudié, J.; Rivière, P.; Satgé, J. J. Organomet. Chem.

1981, 210, 37

(18) Ma, E. C.-L.,; Paquin, D. P.; Gaspar, P. P. J. Chem. Soc., Chem. Commun. 1980, 381.

Figure 1. ¹H CIDNP during thermal decomposition of 1 in the presence of CCl₄: (a) before reaction; (b) during reaction at 80 °C taken ca. 1 min after beginning; (c) after reaction.

Table I. ¹H CIDNP during Thermal Decomposition of 1 with Organic Halides^a (See Figures 1-4)^b

δ	assignt	Figures	CIDNP
0.20	GeMe (1)	1-4	N
0.95 (0.98)	GeMe (1)	1-3 (4)	N
0.58	PhCH ₂ Ge <u>Me</u> 2Br	3	E
0.63	Ph ₂ CHGe <u>Me₂</u> Cl	4	E
0.80	Me ₂ ClGeCCl ₃	1	A ^c
0.90 (0.93)	Me ₂ GeCl ₂	1 (4)	$E (A)^c$
1.03	Me ₂ BrGeCCl ₃	2	E
1.15	Me_2GeBr_2	2, 3	Ac
2.57	Ph <u>CH</u> 2GeMe2Br	3	Е
3.95	Ph <u>2CH</u> GeMe2Cl	4	\mathbf{E}
0.52 - 0.56	oligogermanes	3	N
0.55 - 0.62	(GeGeMe ₂ Ge)	4	N
0.80	oligogermanes (GeMe ₂ Cl)	4	N
0.90-0.93	oligogermanes (GeMe ₂ Br)	3	N
2.22	$PhCH_3$	3	N
2.84	$PhCH_2CH_2Ph$	3	N
3.75	Ph_2CH_2	4	Ν
4.69	$Ph_2CHCHPh_2$	4	N

^a E = emission; A = enhanced absorption: N = no effect. ^b The signals not listed are due to impurities or not identified products. "The signal shows 30% intensity after the reaction stopped.

thermally from the 7-germabenzonorbornadiene 1 reacts with PhCH₂Br via an abstraction-recombination mechanism from its singlet state.¹⁹ In this paper CIDNP investigations of the reactions of photochemically generated germylenes Me₂Ge with PhCH₂Br will be described as well as reactions of Me_2Ge generated by thermolysis of 1 with other organic halides and with Me₂GeCl₂ and Me₂GeBr₂.

Results and Discussion

(A) Thermal and Photochemical Decomposition of 1. Thermal Decomposition in the Presence of CCl₄ and Me₂GeCl₂. Thermal and photochemical decomposition of 1 in toluene quantitatively gives tetraphenylnaphthalene and poly(dimethylgermylene) (eq 1 and 6).

$$Me_2Ge: \longrightarrow (Me_2Ge)_n$$
 (6)

CIDNP effects are not observed. Thermal decomposition of 1 in the presence of CCl₄ at 70 °C results in the formation of C_2Cl_6 , Me_2GeCl_2 and $Me_2ClGeCCl_3$ as the main products (eq 7).²⁰ The formation of these products sug-

$$Me_{2}Ge: S \xrightarrow{CCl_{4}} Me_{2}ClGe^{-CCl_{3}}S \xrightarrow{(E)} (7)$$

Table II. Kinetic Data of the Thermal Decomposition of 1

solv	<i>T</i> , °C	$t_{1/2}$, min	ref	
benzene	70	47	20	
CCl_4	70	40	20	
CCl	80	20	this work	
CCl₄	85	16.5	this work	
CCI	90	9	this work	
-				

gests radical reactions involving free germylenes (eq 3-5). CIDNP experiments confirm this presumption (see Figure 1 and Table I). When a solution of 1 and CCl_4 in toluene is warmed to 80 °C in the probe of a ¹H NMR spectrometer, the methyl resonance of Me_2GeCl_2 shows emission. When the reaction is finished, the Me_2GeCl_2 proton signal appears with absorption, as expected. Additionally, an enhanced absorption signal appears during the reaction due to the protons of a minor product that might be Me₂ClGeCCl₃.²⁰ For determining the spin state of the germylene, the sign of the g value difference of the two radicals forming the radical pair has to be used.¹¹ The gvalue of Me₂ClGe[•] is not known, but it is expected that it is very similar to the g value of Cl_3C^{\bullet} (g = 2.0091²¹). From the known g values of Me₃Ge[•] ($g = 2.0104^{22}$) and Cl₃Ge[•] ($g = 2.0070^{23}$), a g value of 2.008 might be estimated for Me₂ClGe[•], meaning $g(Me_2ClGe^{\bullet}) < g(Cl_3C^{\bullet})$. This gives the observed emission for Me₂GeCl₂ if Me₂Ge reacts from singlet states^{6,19} ($\mu < 0$, $\epsilon < 0$, $\Delta g < 0$, a > 0;²⁴ $\Gamma_n = -$) and enhanced absorption for Me₂ClGeCCl₃ ($\mu < 0, \epsilon > 0, \Delta g$ < 0, $a > 0;^{24} \Gamma_n = +$).

In a preliminary communication,²⁰ a two-step decomposition mechanism of 1 has been proposed, in which a biradical is generated by Ge-C bond scission in a first step, which is in turn scavenged by CCl₄ or leads to the germylene in a second step (eq 8). The CIDNP results

$$\underline{1} \longrightarrow Z - GeMe_2' \longrightarrow Z - GeMe_2CI \qquad (8)$$

$$- Me_2 Ge: \qquad Z - GeMe_2CI \qquad (8)$$

suggest the existence of free germylenes as reaction intermediates rather than of radicals 'Z-GeMe₂Cl (eq 8). Furthermore, it has been shown that it is not a biradical but instead a free germylene that is the reacting intermediate during reaction of 1 with dienes (eq 1).⁶ To provide support that this is in fact the case during the thermal decomposition of 1 with CCl₄, decomposition rates of 1 have been determined. Table II gives the results of the kinetic experiments. Data for the decomposition in benzene without scavenger are added.

The thermal decomposition of 1 follows a first-order rate law, in benzene with $\tau_{1/2} = 47$ min and in CCl₄ with $\tau_{1/2}$ = 40 min at 70 °C. This indicates the absence of or only a small scavenger effect. The activation energy for the decomposition of 1 in CCl_4 is 19 kcal/mol. As there is no indication of the formation of a biradical such as 'Z-GeMe₂• as an intermediate, it might be suggested that a

Figure 2. ¹H CIDNP during thermal decomposition of 1 in the presence of CCl₃Br: (a) before reaction; (b) during reaction at 90 °C taken ca. 1 min after beginning; (c) after reaction.

synchronous decomposition reaction takes place. This, however, is unlikely following Dewar's arguments²⁸ and can neither be proved nor disproved here. It has been shown that 7-phospha- and 7-silanorbornadienes decompose in an analogous manner.^{29,30}

Me₂Ge does not react with CHCl₃,²⁷ CH₂Cl₂,²⁷ CH₃Cl, and the higher alkyl chlorides $C_nH_{2n+1}Cl$ but instead polymerizes (eq 6). It does, however, react with Me_2GeCl_2 (eq 9).²⁷ The main reaction product is $Me_2ClGeGeMe_2Cl$;

$$Me_2GeCl_2 \xrightarrow{Me_2Ge}_{k_1} Me_2GeGeGeMe_2 \xrightarrow{n Me_2Ge}_{k_2} Me_2GeGeMe_2GeGeMe_2 (9)$$
ClCl
$$ClCl \qquad Cl \qquad Cl \qquad Cl$$

$$k_1 > k_2, n = 1, 2, ...$$

a minor product is $Me_2ClGeGeMe_2GeMe_2Cl$. Higher oligogermanes are also present. CIDNP effects are not observed.

The decomposition rate of 1 in the presence of Me₂GeCl₂ is comparable to that in the presence of CCl_4 . This can also be interpreted as favoring the existence of free germylenes as intermediates as well. Because of the absence of CIDNP effects, a one-step, nonradical reaction of Me₂Ge with Me_2GeCl_2 is likely, in analogy to the reaction path formulated with Me₂SnCl₂.⁶ However, the two-step pathway cannot be excluded unambiguously, as the radicals which might appear are identical or nearly so and the products of the radical and the nonradical reactions are identical.

(B) Thermal Decomposition of 1 in the Presence of CCl_3Br and Me_2GeBr_2 . Me_2GeBr_2 is the main product of the reaction of Me₂Ge with CCl₃Br.²⁰ A mechanism analogous to that of the reaction of Me_2Ge with CCl_4 is given in eq 10. Enhanced absorption is observed in the

$$Me_2Ge: S \xrightarrow{CCl_3Br} Me_2BrGe''CCl_3 \xrightarrow{S} \underbrace{CCl_3Br}_{Me_2} \underbrace{Me_2}_{GeBr_2} + CCl_3 \quad (10)$$

Me₂GeBr₂ proton signals (Figure 2; Table I). The emission line observed might be due to the Me₂BrGeCCl₃ protons. A more detailed analysis was not performed, as the g value of the dimethylbromogermyl radical Me₂BrGe[•] is not known and cannot be estimated from similar radicals. If Me_2Ge reacts from singlet states, it follows from the enhanced absorption observed in Me₂GeBr₂ that g- $(Me_2BrGe^{\bullet}) > g(Cl_3C^{\bullet}) = 2.0091 \ (\mu < 0, \epsilon < 0, \Delta g > 0, a)$ > 0;²⁴ $\Gamma_n = +$); Me₂BrGeCCl₃ would show emission ($\mu <$

⁽²⁰⁾ Neumann, W. P.; Schriewer, M. Tetrahedron Lett. 1980, 21, 3273. Schriewer, M. Dr. rer. nat. Thesis, University of Dortmund, 1981. Maslov,

Schriewer, M. LT. rer. nat. Thesis, University of Dortmund, 1981. Maslov, S., unpublished work from this laboratory. (21) Hudson, A.; Hussain, H. A. *Mol. Phys.* 1969, *16*, 199. (22) Bennett, S. W.; Eaborn, C.; Hudson, A.; Hussain, H. A.; Jackson, R. A. J. Organomet. Chem. 1969, *16*, P36. (23) Lloyd, R. V.; Rogers, M. T. J. Am. Chem. Soc. 1973, *95*, 2459. (24) A positive sign for $a_{\rm H}^{\rm CH_3}({\rm Me_2ClGe^*})$ and $a_{\rm H}^{\rm CH_3}({\rm Me_3C^*})^{25}$ and $\alpha_{\rm H}^{\rm CH_3}$ (Me₃Sn^{*}).²⁸ (26) Scheffler, K.: Stegmann, H. B. Elektronenepineses Summer Sum

⁽²⁵⁾ Scheffler, K.; Stegmann, H. B. Elektronenspinresonanz; Springer: Berlin, Heidelberg, New York, 1970. (26) Lehnig, M. Chem. Phys. 1975, 8, 419.

⁽²⁷⁾ Walczak, R. F. Staatsexamensarbeit, University of Dortmund, 1982

⁽²⁸⁾ Dewar, M. J. S. J. Am. Chem. Soc. 1984, 106, 209. Dewar, M. J.

S.; Chantranupong, L. J. Am. Chem. Soc. 1983, 105, 7161.
 (29) Marinetti, A.; Charrier, C.; Mathey, F.; Fischer, J. Organo-metallics 1985, 4, 2134. Mathey, F. Angew. Chem., Int. Ed. Engl. 1987, 26. 275.

⁽³⁰⁾ Barton, T. J.; Goure, W. F.; Witiak, J. L.; Wulff, W. D. J. Organomet. Chem. 1982, 225, 87.

Figure 3. ¹H CIDNP during thermal decomposition of 1 in the presence of PhCH₂Br: (a) during reaction at 85 °C taken 1–3 min after beginning; (b) after 1-h reaction.

0,
$$\epsilon > 0$$
, $\Delta g > 0$, $a > 0$;²⁴ $\Gamma_n = -$).

Alkyl bromides $C_nH_{2n+1}Br$ do not react with Me₂Ge. Me₂GeBr₂ shows reactivity similar to that of Me₂GeCl₂ (eq 11) without CIDNP. The insertion product

$$\begin{array}{c} \mathsf{Me}_2 \mathsf{GeBr}_2 \xrightarrow{\mathsf{Me}_2 \mathsf{Ge}}_{k_1} \xrightarrow{\mathsf{Me}_2 \mathsf{Ge}}_{r_1} \mathsf{Me}_2 \mathsf{Ge} \mathsf{GeMe}_2 \xrightarrow{\mathsf{n}, \mathsf{Me}_2 \mathsf{Ge}}_{k_2} \xrightarrow{\mathsf{Me}_2 \mathsf{Ge}}_{r_2} \mathsf{Ge} \mathsf{Me}_2 \mathsf{Ge} \mathsf{GeMe}_2 & (11) \\ & \mathsf{Br} \mathsf{Br} \\ & \mathsf{Br} \mathsf{Sr} \end{array}$$

 $Me_2BrGeGeMe_2Br$ is not observed, and the main products are $Me_2BrGeGeMe_2GeMe_2Br$ and $Me_2BrGe-(GeMe_2)_2GeMe_2Br$. It is assumed that the reaction of Me_2Ge with Me_2GeBr_2 is a one-step reaction, analogous to the Me_2Ge reactions with Me_2GeCl_2 and Me_3SnCl .

(C) Thermal and Photochemical Decomposition of 1 in the Presence of PhCH₂Br and Thermal Decomposition of 1 in the Presence of PhCH₂I and Ph₂CHCl. ¹H NMR spectra taken during and after the thermal decomposition of 1 in the presence of PhCH₂Br in chlorobenzene are shown in Figure 3. The assignment of the signals is given in Table I. The methyl as well as the methylene proton signals of PhCH₂GeMe₂Br show emission; the Me₂GeBr₂ proton signals enhanced absorption. The scheme shown in eq 12 explains the effects. With

$$Me_{2}Ge_{:}S \xrightarrow{PhCH_{2}Br} \xrightarrow{PhCH_{2}} GeMe_{2}Br$$

$$\xrightarrow{(E) \quad (E)} PhCH_{2}GeMe_{2}Br$$

$$\xrightarrow{(A)} GeMe_{2}Br_{2}$$

$$\xrightarrow{(A)} GeMe_{2}Br_{2}$$

$$\xrightarrow{(A)} GeMe_{2}Br_{2}$$

$$\xrightarrow{(A)} GeMe_{2}Br_{2}$$

$$\xrightarrow{(A)} GeMe_{2}Br_{2}$$

$$\xrightarrow{(A)} GeMe_{2}Br_{2}$$

 $g(PhCH_2^{\bullet}) = 2.0026^{31}$ and $g(Me_2BrGe^{\bullet}) > 2.009$ and with the assumption of singlet states of the reacting germylene, Kaptein's rule¹¹ gives emission for the methyl protons (μ < 0, $\epsilon > 0$, $\Delta g > 0$, a > 0;²⁵ $\Gamma_n = -$) as well as for the methylene protons ($\mu < 0$, $\epsilon > 0$, $\Delta g < 0$, a < 0;²⁵ $\Gamma_n = -$) of PhCH₂GeMe₂Br and enhanced absorption for Me₂GeBr₂ ($\mu < 0$, $\epsilon < 0$, $\Delta g > 0$, a > 0;²⁵ $\Gamma_n = +$), as observed. PhCH₂GeMe₂Br, toluene, and PhCH₂CH₂Ph are only side products of the reaction because Me₂Ge reacts more efficiently with Me₂GeBr₂ than with PhCH₂Br. This is shown independently by adding Me₂GeBr₂ to the reaction mixture, from the beginning. In this case, only traces of the benzylic products are formed.

Figure 4. ¹H CIDNP during thermal decomposition of 1 in the presence of Ph_2CHCl : (a) during reaction at 95 °C taken 1–3 min after beginning; (b) after reaction.

Photochemical decomposition of 1 in the presence of PhCH₂Br in the probe of a ¹H NMR spectrometer leads to the same product distribution and CIDNP pattern as during thermal decomposition of 1. This indicates the occurrence of a singlet germylene Me₂Ge during the photochemical decomposition of 1.

The thermal decomposition of 1 in the presence of $PhCH_2I$ leads to $PhCH_2GeMe_2I$ and to Me_2GeI_2 as the main products. The methylene proton signal of $PhCH_2GeMe_2I$ shows emission; further CIDNP effects are not observed. The explanation for the emission signal is analogous to that with $PhCH_2Br$ as the germylene trap. With $PhCH_2CI$, no reaction is observed.

The thermal decomposition of 1 in the presence of Ph_2CHCl leads to the CIDNP spectrum shown in Figure 4 and described in Table I. In analogy to the reaction with $PhCH_2Br$, the methine and the methyl proton signals of the net insertion product $Ph_2CHGeMe_2Cl$ and the abstraction product Me_2GeCl_2 show CIDNP as explained by the scheme shown in eq 13.

$$Me_{2}Ge: S \xrightarrow{Ph_{2}CHCI} Ph_{2}CH' GeMe_{2}CI \xrightarrow{(E)} Ph_{2}CHCI \xrightarrow{(A)} Ph_{2}CH' GeMe_{2}CI \xrightarrow{(A)} GeMe_{2}CI_{2}$$
(13)

 $g(Ph_2CH^*)$ is not known. It should be similar to $g(Ph_2CH^*) = 2.0026^{31}$ and $g(Ph_3C^*) = 2.0026^{32}$ leading to an analogous interpretation of the CIDNP effects as in the PhCH₂Br case. Some minor emission and enhanced absorption signals are due to side products and are not analyzed here. Me₂GeCl₂ formed during the reaction reacts with Me₂Ge to give oligogermanes as described in section A.

During the thermal decomposition of 1 in the presence of Ph_3CCl , ESR signals of the trityl radical can be observed.

Table III covers the results of the thermal decomposition of 1 with organic alkyl halides. Additionally, carbonhalogen bond energies of the investigated halides are

⁽³²⁾ Möbius, K.; Plato, M. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1969, 24A, 1078.

Table III. Reactions of Me₂Ge with the Carbon-Halogen (C-X) Bond of Some Organic Halides at 70-95 °C³¹

	C-X bond energy,			
compd	kcal/mol	reactn	CIDNP	
CCl₄	73	×	×	
CHĊl ₃	78			
CH ₂ CCl ₂	81			
CH ₃ Cl	84			
CCl ₃ Br	55	×	×	
$C_n H_{2n+1} - Cl$	80-84			
$C_n H_{2n+1}$ -Br	66-70			
PhCH ₂ Cl	70			
PhCH ₂ Br	55	×	×	
PhCH ₂ I	40	×	×	
Ph ₂ CHCl	60ª	×	×	
PhaCCl	50ª	×	ь	
allyl-Cl	68	×		
allvl-Br	57	×		
vinvl-Cl	89	$(\mathbf{X})^{c}$		
vinvl-Br	76	Xď		

^a The bond dissociation energies of Ph₂CHCl and Ph₃CCl are estimated from the values given for CH₃Cl and PhCH₂Cl. ^b Ph₃C[•] is observed by ESR, and CIDNP cannot be observed under these conditions. ^c The reaction occurs with PhCH=CHCl, but not with 1-chlorocyclohexene. ^d The reaction occurs with PhCH=CHBr as well as with 2-bromobut-2-ene.

given.³³ A comparison of the values shows that a bond energy of about 70 kcal/mol is the upper limit allowed for the halogen abstraction reaction of Me₂Ge from organic alkyl halides to take place. Germyl radicals behave differently; they are known to react with alkyl chlorides and bromides in processes that are independent of the carbon-halogen bond energies.^{34,35}

(D) Thermal Decomposition of 1 in the Presence of Allyl and Vinyl Halides. The thermal decomposition of 1 in the presence of allyl chloride and allyl bromide leads to the insertion product of Me_2Ge into the C-X bond in high yields (80%) (eq 14). Neither the formation of

 $\begin{array}{rcl} \text{Me}_2\text{Ge:} & + & \text{CH}_2=\text{CHCH}_2\text{X} & \xrightarrow{} & \text{CH}_2=\text{CHCH}_2\text{GeMe}_2\text{X} & \textbf{(14)} \\ & & \text{X}=\text{Cl}, \text{Br} \end{array}$

 Me_2GeCl_2 or Me_2GeBr_2 nor CIDNP has been observed. This indicates a one-step, nonradical reaction. A competition experiment between PhCH₂Br and CH₂—CHCH₂Br with Me_2Ge gave only CH_2 —CHCH₂GeMe₂Br (eq 14), indicating a higher activation energy of the two-step reaction of Me_2Ge with PhCH₂Br compared with the nonradical one with CH_2 —CHCH₂Br.

The decomposition of 1 in the presence of β -chlorostyrene gives the insertion product of Me₂Ge into the C-Cl bond, PhCH=CHGeMe₂Cl, as well as higher oligomers. With β -bromostyrene as the Me₂Ge trap, PhCH= CHGeMe₂Br is the exclusive product. As in the case of the allyl halides, neither Me₂GeCl₂ or Me₂GeBr₂ are formed nor are CIDNP effects observed in the reaction products, indicating the occurrence of a nonradical reaction. 1-Chlorocyclohexene does not trap Me₂Ge generated by thermolysis of 1. 2-Bromobut-2-ene as substrate gives the expected insertion product, bromine-containing oligogermanes, and polygermanes. No Me₂GeBr₂ is obtained, and CIDNP effects do not appear. A nonradical reaction is indicated here as well.

The results of the reactions of Me_2Ge with allyl and vinyl halides are collected in Table III; C–X bond dissociation energies are given as well. An upper limit of the bond

dissociation energy might exist above which no reaction takes place. The restricted number of data does not allow its determination, but it should be ≥ 89 kcal/mol.

It may be that the π -system of the allyl and vinyl halides is involved in the first reaction steps by formation of a π -complex,³⁶ followed by a different reaction path than in the case of alkyl halides. Germylenes are known to undergo smooth reactions with unsaturated systems such as styrenes,³⁶ 1,3-dienes,^{6,37} vinyl ketones,³⁸ α -diketones,³⁸ and alkynes.³⁹

Conclusion

The 7-germabenzonorbornadiene 1 decomposes thermally in the presence of alkyl and alkenyl halides with formation of insertion products if the bond dissociation energy does not exceed an upper limit. Free germylenes, Me_2Ge , are the reacting intermediates. However, the mechanism of the reactions is different for various halides. Whereas alkyl halides give side products and show CIDNP effects indicating a two-step radical reaction, alkenyl halides do not. Me_2GeCl_2 and Me_2GeBr_2 give insertion products, too, but show no CIDNP effects.

MNDO calculations have been performed for the similar reactions of Me_2Sn with Me_2SnCl_2 and Me_3SnCl that are one-step insertions and with MeI that is a two-step abstraction-recombination process.⁴⁰ In these cases, the differences of the activation energies between the concerted and the nonconcerted mechanism are about 10 kcal/mol. Similar calculations would be valuable in the germylene case in order to better understand the different behavior of Me_2Ge toward alkyl halides and Me_2GeX_2 (X = Cl, Br).

Experimental Section

General Comments. The solvents were dried and distilled under argon. ¹H NMR spectra were taken on a 60-MHz Varian EM-360A spectrometer and GC-MS spectra with a CH 7 (Varian) in connection with a Varian Aerograph 1740–1. For further details see the foregoing communications.¹ The ESR spectrum was taken with a Varian E-109 E spectrometer.

CIDNP Experiments. 1 (50 mg, 0.09 mmol) and a threefold excess of the halide were added to 0.5 mL of solvent, PhCl, or, if D lock was used, PhCl with C_6D_6 (3:1), filled under argon into an NMR tube, and transferred to the probe of the ¹H NMR spectrometer (Bruker HFX 90, pulsed, or Perkin-Elmer R 32, CW) which was preheated to the reaction temperature (80-95 °C). In the CW case, the spectrum was scanned at a rate of 2 ppm/min. The pulsed spectra were taken with 32 scans meaning 2 min. The photochemical experiments were performed with a suitably modified spectrometer (HFX 90) allowing irradiation during the taking of a spectrum.²⁶ The unfiltered light of an Hg-Xe highpressure lamp (Hanovia 977-B1, 1000 W) was used. The light was focussed with quartz lenses to a quartz light pipe leading to the sensitive part of the spectrometer. Quartz NMR tubes were used. Emission lines could be detected directly in the spectra. For distinguishing between enhanced absorption and the absence of a CIDNP effect, the reaction was interrupted, and the ¹H NMR spectrum was compared with the ¹H NMR spectrum taken during the reaction.

Kinetic Experiments. The kinetic experiments were performed by observing the disappearance of the GeMe ¹H NMR signals of 1. At 80–90 °C, they were carried out in the heated probe of the ¹H NMR spectrometer as described under "CIDNP Experiments". At 70 °C, 30 mg of 1 (0.056 mmol) was added to 0.5 mL of CCl₄ or benzene with traces of toluene, filled under argon into the NMR tube, and heated in a thermostat ("Unistat", Firma

⁽³³⁾ Egger, K. W.; Cocks, A. T. Helv. Chim. Acta 1973, 56, 1516.
(34) Carlsson, D. J.; Ingold, K. U. J. Am. Chem. Soc. 1968, 90, 7047.
(35) Lehnig, M.; Werner, F.; Neumann, W. P. J. Organomet. Chem.
1975, 97, 375.

⁽³⁶⁾ Köcher, J.; Neumann, W. P. Organometallics 1985, 4, 400.

 ⁽³⁷⁾ Köcher, J.; Neumann, W. P. J. Am. Chem. Soc. 1984, 106, 3861.
 (38) Michels, E.; Neumann, W. P. Tetrahedron Lett. 1986, 27, 2455.

⁽³⁸⁾ Michels, E.; Neumann, W. P. 1 etrahearon Lett. 1986, 27, (39) Krebs. A.; Berndt, J. Tetrahedron Lett. 1983, 24, 4083.

⁽⁴⁰⁾ Dewar, M. J. S.; Friedheim, J. E.; Grady, G. L. Organometallics

^{1985, 4, 1784.}

Huber). The methyl proton signal of toluene was used as an internal standard. The following values of the relative concentrations c/c_0 were found at 70 °C:

$t (\min)$	0	19	36	58	78
$c/c_{o}(\mathrm{CCl}_{4})$	1	0.70	0.54	0.35	0.27
$c/c_0(C_6H_6)$	1	0.75	0.59	0.43	0.32

Determination of Products and Product Yields. The products and product yields were determined from the ¹H NMR spectra after completing the reactions (see Figures 1-4). The chemical shifts were measured against Me₄Si and determined by adding authentic samples of Me2GeCl2, Me2GeBr2, PhCH3, Ph₂CH₂, PhCH₂CH₂Ph, and Ph₂CHCHPh₂. In order to identify the further reaction products, the reactions were repeated under dry argon at 70-80 °C and analyzed by GC or GC-MS. A methylation or ethylation of the reaction mixture proved to be necessary before analysis, since otherwise only molecular fragments could be detected.

For methylation or ethylation of the compounds containing C-Br bonds, about 8 mmol of MeMgBr or EtMgBr in Et₂O was added to the reaction mixture at 0 °C and the solution stirred at 0 °C for $1/_2$ h and at room temperature for 1 h. After H₂O and NH₄Cl were added at 0 °C, the phases were separated and the aqueous phase was extracted twice with 50 mL of Et_2O . The combined organic phases were washed with H₂O and dried with Na₂SO₄. The solvent was removed, and the tetraphenylnaphthalene precipitated with n-pentane. The crude product was either investigated directly by GC-MS or after distillation by GC-MS, as described below.

Thermal and Photochemical Decomposition of 1.20 1 (0.3 g, 0.56 mmol) was heated at 70 °C for 3 h in 3 mL of benzene. The formation of poly(dimethylgermylene) (δ 0.4) was demonstrated by treatment of the reaction mixture with I2 leading to Me_2GeI_2 in quantitative yield (δ 0.90). Evaporation of the solvent and recrystallization from $CH_2Cl_2/EtOH$ quantivatively gave tetraphenylnaphthalene (mp 250 °C; δ 6.9–7.3 (br signals)). The photochemical decomposition of 1 without a scavenger in the probe of the ¹H NMR spectrometer also lead to poly(dimethylgermylene) and tetraphenylnaphthalene (see also "CIDNP Experiments").

Thermal Decomposition of 1 in CCl₄.^{6,20} 1 (0.2 g, 0.4 mmol) was heated at 70 °C for 3 h in 3 mL of CCl₄. GC analysis (column 4m OV17) demonstrated the presence of C_2Cl_6 and Me_2GeCl_2 in yields of 100% and 95%, respectively. The ¹H NMR spectrum showed that further products were present, probably Me₂ClGeCCl₃ (δ 0.80), which is expected to decompose thermally,¹⁴ and tetraphenylnaphthalene, which was precipitated with EtOH in quantitative yield.

Thermal Decomposition of 1 in the Presence of Me₂GeCl₂.²⁷ 1 (0.53 g, 1.0 mmol) was heated at 70 °C for 2 h in 2 mL of benzene with 35 mg of Me₂GeCl₂ (0.2 mmol). GC analysis demonstrated the formation of a major and two minor products. GC-MS analysis (column 4m OV17) showed Me₂ClGeGeMe₂Cl as the major product and Me₂ClGeGeMe₂GeMe₂Cl as one of the minor products (6:1). $Me_2ClGeGeMe_2Cl: MS$ (70 eV), m/e(relative intensity) 241 (m⁺ – Cl, 19), 205 (m⁺ – 2Cl, 10), 157 (m⁺ $Me_{3}Ge$, 3), 139 ($Me_{2}GeCl^{+}$, 8), 89 ($MeGe^{+}$, 33). $Me_2ClGeGeMe_2GeMe_2Cl: MS$ (70 eV), m/e (relative intensity) 343 (m⁺ - Cl, 23), 221 (m⁺ - MeGeCl, 31), 205 (m⁺ - Me₂GeCl₂, 7), 189 (m⁺ – Me₃GeCl₂, 9), 139 (Me₂GeCl⁺, 8), 119 (Me₃Ge⁺, 100), 104 (Me₂Ge⁺, 7), 89 (MeGe⁺, 40). The ¹H NMR spectrum showed two signals at δ 0.52 and 0.56 (GeGeMe₂Ge) and at δ 0.76 ppm (Me_2ClGe) .

Thermal Decomposition of 1 in the Presence of Me₂GeBr₂. 1 (1.0 g, 1.9 mmol) and 0.6 g of Me₂GeBr₂ (0.3 mL, 2.4 mmol) were heated at 75 °C for 4 h in 10 mL of benzene. The reaction mixture was methylated with MeMgBr.⁴¹ GC-MS analysis demonstrated the formation of Me_8Ge_3 and $Me_{10}Ge_4$ as the methylation products (1:1). Me₈Ge₃: MS (70 eV), m/e (relative intensity) 338 (m⁺, 4), $323 (m^+ - Me, 7), 221 (m^+ - Me_3Ge, 32), 206 (m^+ - Me_4Ge, 13),$ 191 (Me₃Ge₂⁺, 2), 119 (Me₃Ge⁺, 100), 104 (Me₂Ge⁺, 6), 89 (MeGe⁺, 25). $Me_{10}Ge_4$: MS (70 eV), m/e (relative intensity) 440 (m⁺, 7), 425 (m⁺ – Me, 4), 323 (m⁺ – Me₃Ge, 26), 308 (m⁺ – Me₄Ge, 3),

(41) Lesbre, M.; Mazerolles, P.; Satgé, J. The Organic Compounds of Germanium; Wiley: London, 1971.

221 (m⁺ – Me₅Ge₂, 52), 206 (m⁺ – Me₆Ge₂, 13), 176 (Me₂Ge₂⁺, 2), 119 (Me₃Ge⁺, 100), 104 (Me₂Ge⁺, 5), 89 (MeGe⁺, 19). Me₆Ge₂ was not found.

Thermal Decomposition of 1 in the Presence of PhCH₂Br. 1 (0.5 g, 0.95 mmol) and 0.5 g of PhCH₂Br (0.35 mL, 2.9 mmol) were heated at 80 °C for 4 h in 5 mL of benzene. GC-MS analysis demonstrated the formation of PhCH₂GeMe₂Br. The presence of Me₂GeBr₂ (yield 5%: δ 1.15), PhCH₃ (yield ca. 5%: δ 2.22), and PhCH₂CH₂Ph (yield ca. 15%: δ 2.84) was demonstrated by adding authentic material to the reaction mixture. After methylation, the formation of $PhCH_2GeMe_3^{42}$ was shown by ¹H NMR and GC-MS by using authentic material which was prepared from Me₃GeCl and PhCH₂MgBr.⁴¹ Me₈Ge₃, Me₁₀Ge₄, and Me₁₂Ge₅ were detected by GC-MS as well. After ethylation of the reaction mixture with EtMgBr,⁴¹ PhCH₂GeMe₂Et and Et₂Me₆Ge₃ were detected by GC-MS. PhCH₂GeMe₂Br: MS (70 eV), m/e (relative intensity) 274 (m⁺, 12), 259 (m⁺ - Me, 11), 195 (m⁺ - Br, 7), 183 (GeMe₂Br⁺, 7), 153 (GeBr⁺, 10), 139 (GeC₅H₅⁺, 17), 91 (PhCH₂⁺, 100), 65 (C₅H₅⁺, 55). PhCH₂GeMe₃: MS (70 eV), m/e (relative intensity) 210 (m⁺, 10), 195 (m⁺ – Me, 18), 165 (PhCH₂Ge⁺, 3), 119 (GeMe₃⁺, 100), 105 (Me₂GeH⁺, 12), 91 (PhCH₂⁺, 72), 65 $(C_5H_5^+, 26)$; ¹H NMR (CCl_4) δ 0.12 (s, 6 H, GeMe), 2.18 (s, 2 H, PhCH₂), 6.9–7.2 (m, 5 H, Ph). Me₁₂Ge₅: MS (70 eV), m/e (relative intensity) 544 (m⁺, 6), 529 (m⁺ - Me, 3), 425 (m⁺ - Me₃Ge, 14), 323 ($Me_7Ge_3^+$, 30), 308 ($Me_6Ge_3^+$, 9), 221 ($Me_5Ge_2^+$, 45), 206 $\begin{array}{l} (Me_4Ge_2^+, 12), 529 \ (m^+ - Me, 3), 425 \ (m^+ - Me_3Ge, 14), 323 \ (m^+ - Me_5Ge_2, 30), 308 \ (m^+ - Me_6Ge_2, 9), 221 \ (m^+ - Me_7Ge_3, 45), 206 \ (Me_4Ge_2^+, 12), 191 \ (Me_3Ge_2^+, 9), 176 \ (Me_2Ge_2^+, 3), 119 \ (Me_3Ge^+, 9), 176 \ (Me_2Ge_2^+, 3), 119 \ (Me_3Ge_2^+, 9), 176 \ (Me_3Ge_2^+, \$ 100), 104 (Me₂Ge, 4) 89 (MeGe⁺, 16). PhCH₂GeMe₂Et: MS (70 eV), m/e (relative intensity) 224 (m⁺, 4), 209 (m⁺ – Me, 5), 195 (m⁺ – Et, 100), 179 (PhCH₂GeCH₂⁺, 24), 165 (PhCH₂Ge⁺, 19), 151 (PhGe⁺, 9), 139 (GeC₅ \dot{H}_{5}^{+} , 10), 89 (MeGe⁺, 37), 65 (C₅ \dot{H}_{5}^{+} 44). Et₂Me₆Ge₃: MS (70 eV), m/e (relative intensity) 366 (m⁺, 5), 351 (m⁺ – Me, 2), 337 (m⁺ – Et, 7), 309 (Me₆Ge₃H⁺, 10, 220 (Me₃Ge₂Et⁺, 11), 205 (Me₃Ge₂CH₂⁺, 18), 191 (Me₃Ge₂⁺, 11), 133 (Me₂GeEt⁺, 53), 119 (Me₃Ge⁺, 35), 105 (Me₂GeH⁺, 100), 89 $(MeGe^+, 49).$

Thermal Decomposition of 1 in the Presence of Me₂GeBr₂ and PhCH₂Br. 1 (162 mg, 0.30 mmol), 143 mg of PhCH₂Br (0.1 mL, 0.84 mmol), and 42 mg of Me₂GeBr₂ (0.02 mL, 0.16 mmol) were heated at 80 °C for 4 h in 4 mL of benzene. As shown by ¹H NMR, benzylic products were only formed in traces (<5%).

Photochemical Decomposition of 1 in the Presence of **PhCH₂Br.** 1 (0.29 mg, 0.05 mmol) and 29 mg of PhCH₂Br (0.02 mL, 0.17 mmol) in 0.2 mL of PhCl/C₆D₆ were irradiated in a quartz tube in the probe of the ¹H NMR spectrometer for 20 min. The products formed are identical with those formed during the thermal decomposition of 1 with PhCH₂Br (¹H NMR). The product yields were identical as well.

Thermal Decomposition of 1 in the Presence of PhCH₂I. 1 (1.0 g, 1.9 mmol) and 1.2 g of $PhCH_2I$ (0.7 mL, 5.6 mmol) were heated at 75 °C in 10 mL of benzene. PhCH₃ (yield ca. 10%; δ 2.10) and PhCH₂CH₂Ph (yield ca. 20%, δ 2.74) were present as products which was demonstrated by adding authentic material to the reaction mixture. After methylation, the presence of PhCH₂GeMe₃ and GeMe₄ was demonstrated by ¹H NMR and GC-MS using authentic material and of Me₈Ge₃, Me₁₀Ge₄, and $Me_{12}Ge_5$ by GC-MS (yield ca. 70%). A singlet (δ 2.53) which shows emission during the reaction was assigned to the methylene protons of PhCH₂GeMe₂I (yield 10-20%), a further singlet (δ 1.26 ppm) to the methyl protons of Me_2GeI_2 (yield 10-20%)

Thermal Decomposition of 1 in the Presence of Ph₂CHCl. 1 (1.0 g, 1.9 mmol) and 1.1 g of Ph₂CHCl (1.0 mL, 5.6 mmol) were heated at 75 °C for 4 h in 10 mL of benzene. Ph₂CHCHPh₂ was identified by ¹H NMR (yield 5-10%, δ 4.69) using authentic material. After methylation, Ph₂CHGeMe₃⁴³ was detected by ¹H NMR and GC-MS using authentic material which was prepared from Me₃GeCl and n-BuLi/Ph₂CH₂⁴⁴ (yield ca. 5%). Me₈Ge₃, $Me_{10}Ge_4$, and $Me_{12}Ge_5$ were identified by GC-MS (yield ca. 5%). $Ph_2CHGeMe_3$: MS (70 eV), m/e (relative intensity) 286 (m⁺, 4),

⁽⁴²⁾ Mironov, V. F.; Dzhurinskaya, N. G.; Gar, T. K.; Petrov, A. D. Izv.
Akad. Nauk SSSR, Khim. Nauki 1962, 460.
(43) Bott, R. W.; Eaborn, C.; Swaddle, T. W. J. Chem. Soc. 1963, 2342.
(44) Brook, A. G.; Warren, C. M.; McGriskin, M. E. J. Am. Chem. Soc. 1959, 81, 981.

271 (m⁺ - Me, 3), 167 (Ph₂CH⁺, 39), 119 (Me₃Ge⁺, 100), 89 $(MeGe^+, 8)$, 77 $(Ph^+, 31)$; ¹H NMR $(CCl_4) \delta 0.15$ (s, 6 H, GeMe), 3.68 (s, 1 H, Ph₂CH), 7.10 (s, 10 H, Ph).

Thermal Decomposition of 1 in the Presence of Ph₃CCl. 1 (30 mg, 0.06 mmol) and 30 mg of Ph₃CCl (0.11 mmol) in 0.5 mL of PhCl were filled into an ESR tube, and the tube was heated up to 75 °C in the cavity of the ESR spectrometer. After some minutes, the trityl radical was observed ($a_0 = 2.53$ G, $a_m = 1.14$

G, $a_p = 2.76$ G). Thermal Decomposition of 1 in the Presence of CH₂=C-HCH₂Cl. 1 (1.0 g, 1.9 mmol) and 4.7 g of CH₂=CHCH₂Cl (5.0 mL, 61 mmol) were heated at 70 °C for 4 h in 10 mL of benzene. After the benzene was removed and the mixture methylated all volatile compounds including CH2=CHCH2GeMe3 were separated from the reaction mixture by distilling in vacuo at room temperature and collecting in a trap cooled with dry ice. The mixture contained ether, CH2=CHCH2GeMe3, and traces of benzene. Most of the ether was removed from the mixture by using a microcolumn. The residue was CH_2 =CHCH₂GeMe₃ with traces of benzene and ether. CH2=CHCH2GeMe3⁴⁵ was detected by ¹H NMR and GC-MS by using authentic material that was prepared from Me₃GeCl and CH_2 =CHCH₂MgBr.⁴¹ Yield of CH_2 =CHCH₂GeMe₂Cl: ca. 80% (¹H NMR). CH_2 = CHCH₂GeMe₃: MS (70 eV), m/e (relative intensity) 160 (m⁺, 2), 145 (m⁺ - Me, 19), 119 (Me₃Ge⁺, 100), 105 (Me₂GeH⁺, 16), 89 (MeGe⁺, 34); ¹H NMR (Et₂O) δ 0.17 (s, 6 H, GeMe), 1.62 (d, 2 H, CH₂), 4.51-4.95 (m, 2 H, =CH₂), 5.35-6.10 (m, 1 H, =CH).

Thermal Decomposition of 1 in the Presence of CH₂=C-HCH₂Br. 1 (1.5 g, 2.8 mmol) and 2.8 g of CH₂=CHCH₂Br (2 mL, 23 mmol) were heated at 25 °C for 4 h in 25 mL of benzene. The volatiles were distilled off at room temperature under reduced pressure, and the residue was stirred in 10 mL of *n*-pentane at room temperature for 1.5 h. The tetraphenylnaphthalene was precipitated, and CH2=CHCH2GeMe2Br was obtained as crude product: ¹H NMR (CCl₄) δ 0.80 (s, 6 H, GeMe), 2.17 (d, 2 H, CH₂), 4.62-5.20 (m, 2 H, =-CH₂), 5.42-6.27 (m, 1 H, =-CH). After methylation and following the same procedure as described in the case of allylic chloride, CH2=CHCH2GeMe3 was detected by GC-MS analysis.

Thermal Decomposition of 1 in the Presence of PhCH₂Br and CH2=CHCH2Br. 1 (200 mg, 0.37 mmol), 172 mg of PhCH₂Br (0.12 mL, 1.00 mmol), and 1.13 mg of CH₂=CHCH₂Br (0.08 mL, 0.93 mmol) were heated at 70 °C in 10 mL of benzene for 4 h. The ¹H NMR spectrum after reaction is identical with that after decomposition of 1 with CH2=CHCH2Br alone; benzylic products were not found.

Thermal Decomposition of 1 in the Presence of PhCH= CHCl. 1 (1.0 g, 1.9 mmol) and 0.8 g of PhCH=CHCl (5.8 mmol) were heated at 75 °C for 4 h in 10 mL of benzene. After methylation, the crude product was divided into two fractions by distillation. The first fraction (bp 60 °C at 1 Torr) contained PhCH=CHCl and PhCH=CHGeMe₃; the second fraction (bp 180 °C at 0.5 Torr) contained PhCH=CHGeMe2GeMe3 and PhCH=CHGeMe₂GeMe₂GeMe₃. All the products were detected by GC-MS analysis; PhCH=CHGeMe₃⁴⁶ was detected additionally via ¹H NMR of authentic material prepared from Me₃GeCl and PhCH=CHMgBr.⁴¹ PhCH=CHGeMe₃ (Z and E): MS (70 eV), m/e (relative intensity) 222 (m⁺, 23), 207 (m⁺ – Me, 100), 191 (m⁺ - 2 Me - H, 15), 177 (m⁺ - 3 Me - H, 9), 151 (GePh⁺,

23), 119 (Me₃Ge⁺, 17), 105 (Me₂GeH⁺, 78), 89 (MeGe⁺, 39), 77 (Ph⁺, 24). PhCH=CHGeMe₂GeMe₃: MS (70 eV), m/e (relative intensity) 324 (m⁺, 1), 309 (m⁺ - Me, 5), 221 (Me₅Ge₂⁺, 3), 207 (Me₂GeC₂H₂Ph⁺, 100), 191 (MeGeC₂HPh⁺, 8), 151 (GePh⁺, 11), 119 (Me₃Ge⁺, 38), 105 (Me₂GeH⁺, 60), 89 (MeGe⁺, 26). PhCH=CHGeMe₂GeMe₂GeMe₃: MS (70 eV), m/e (relative intensity) 309 (Me₂GeMe₂GeC₂H₂Ph⁺, 24), 221 (Me₅Ge₂⁺, 8), 207 $(Me_2GeC_2H_2Ph^+, 83), 151 (GePh^+, 15), 119 (Me_3Ge^+, 100), 105$ (Me₂GeH⁺, 54), 89 (MeGe⁺, 24).

Thermal Decomposition of 1 in the Presence of PhCH= CHBr. 1 (1.5 g, 2.8 mmol) and 0.5 g of PhCH=CHBr (0.4 mL, 3.1 mmol) were heated at 75 °C for 4 h in 20 mL of benzene. After methylation, 300 mg of a clear liquid were obtained by distillation (bp 60 °C at 0.2 Torr) containing a mixture of PhCH=CHBr and PhCH=CHGeMe₃ (data, see above). Further insertion products, such as PhCH=CHGeMe₂GeMe₃, were not found.

Thermal Decomposition of 1 in the Presence of MeCH= CMeBr. 1 (1.0 g, 1.9 mmol) and 0.8 g of MeCH=CMeBr (0.6 mL, 5.9 mmol) were heated at 75 °C for 4 h in 10 mL of benzene. After methylation, the crude reaction mixture was distilled (bp 100 °C at 15 Torr), and MeCH=CMeGeMe₂GeMe₃ and MeCH=CMeGeMe₂GeMe₂GeMe₃ were detected by GC-MS. Poly(dimethylgermylene) was identified by ¹H NMR. MeCH= CMeGeMe₂GeMe₃: MS (70 eV), m/e (relative intensity) 276 (m⁺, 4), 261 (m⁺ – Me, 11), 221 (Me₅Ge₂⁺, 2), 207 (Me₄Ge₂H⁺, 8), 159 $(Me_2GeC_4H_7^+, 100), 144 (MeGeC_4H_7^+, 2), 129 (GeC_4H_7^+, 4), 119$ $(Me_{3}Ge^{+}, 50), 105 (Me_{2}GeH^{+}, 50), 89 (MeGe^{+}, 25).$ MeCH= CMeGeMe₂GeMe₂GeMe₃: MS (70 eV), m/e (relative intensity) 378 (m⁺, 5), 363 (m⁺ - Me, 6), 261 (Me₄Ge₂C₄H₇⁺, 27), 206 (Me₄Ge₂⁺, 21), 191 (Me₃Ge₂⁺, 6), 159 (Me₂GeC₄H₇⁺, 75), 129 (GeC₄H₇⁺, 6), 119 (Me₃Ge⁺, 100), 105 (Me₂GeH⁺, 100), 89 (MeGe⁺, 100), 105 (Me₃Ge⁺, 100), 105 (Me₃Ge⁺), 100 21)

Thermal decomposition of 1 in the presence of CH_2Cl_2 , alkyl chlorides $C_n H_{2n+1}Cl$, 1-chlorocyclohexene, and alkyl bromides $C_nH_{2n+1}Br.$ 1 (1.0 g, 1.9 mmol) and an approximately threefold excess of the halide were heated at 75 °C for 4 h in 10 mL of benzene. The poly(dimethylgermylene) formed was detected by ¹H NMR (δ 0.4); see "Decomposition of 1 without Scavenger".

Acknowledgment. We thank the Fonds der Chemischen Industrie and the Minister für Wissenschaft und Forschung, Düsseldorf, for support of this work.

Registry No. 1, 76054-64-3; (Me₂Ge)_n, 74963-95-4; Me₂GeI₂, 1184-77-6; CCl₄, 56-23-5; C₂Cl₆, 67-72-1; Me₂GeCl₂, 1529-48-2; Me₂ClGeCCl₃, 84174-04-9; Me₂ClGeGeMe₂Cl, 22702-77-8; Me₂ClGeGeMe₂GeMe₂Cl, 22702-79-0; Me₂GeBr₂, 1730-66-1; Me₈Ge₃, 1066-63-3; Me₁₀Ge₄, 14938-41-1; PhCH₂Br, 100-39-0; PhCH₂GeMe₂Br, 90030-12-9; PhCH₃, 108-88-3; PhCH₂CH₂Ph, 103-29-7; PhCH₂GeMe₃, 2848-62-6; Me₁₂Ge₅, 13189-68-9; $PhCH_{2}GeMe_{2}Et,\ \bar{1}13352\text{-}21\text{-}9;\ Et_{2}Me_{6}Ge_{3},\ 94845\text{-}52\text{-}0;\ PhCH_{2}I,$ 620-05-3; GeMe₄, 865-52-1; PhCH₂GeMe₂I, 113352-22-0; Ph₂CHCl, 90-99-3; Ph₂CHCHPh₂, 632-50-8; Ph₂CHGeMe₃, 2848-62-6; Ph₃CCl, 76-83-5; CH₂=CHCH₂Cl, 107-05-1; CH₂=CHCH₂GeMe₃, 762-66-3; CH₂=CHCH₂Br, 106-95-6; CH₂=CHCH₂GeMe₂Br, 113352-23-1; PhCH=CHCl, 622-25-3; PhCH=CHGeMe₃, 14629-97-1; PhCH=CHGeMe₂GeMe₃, 113352-24-2; PhCH= CHGeMe₂GeMe₂GeMe₃, 113352-25-3; PhCH=CHBr, 103-64-0; MeCH=CMeBr, 13294-71-8; MeCH=CMeGeMe₂GeMe₃, 113352-26-4; MeCH=CMeGeMe₂GeMe₂GeMe₃, 113352-27-5; CHCl₃, 67-66-3; CH₂Cl₂, 75-09-2; CH₃Cl, 74-87-3; CCl₃Br, 75-62-7; PhCH₂Cl, 100-44-7; CH₂=CHCl, 75-01-4; CH₂=CHBr, 593-60-2; PhCHGeMe₂Cl, 113352-28-6; Me₂BrGeCCl₃, 113352-29-7; Ph₂CH₂, 101-81-5; tetraphenylnaphthalene, 751-38-2; 1-chlorocyclohexene, 930-66-5.

⁽⁴⁵⁾ Petrov, A. D.; Mironov, V. F.; Dolgii, I. E. Isv. Akad. Nauk SSSR, Khim. Nauki 1956, 1146.
(46) Nametkin, N. S.; Durgar yan, S. G.; Tikhonova, L. I. Dokl. Akad.

Nauk SSSR 1967, 172, 867.