New Ni(0)-CO-Monocoordinated Bis(phosphine) **Complexes and Their Utility as Precursors of** Heterobimetallic Systems: The Structure of $NiPtCl_2(\mu-CO)(\mu-dppm)_2$

David G. Holah,*[†] Alan N. Hughes,[†] Vincent R. Magnuson,*[‡] Hameed A. Mirza,[†] and Kenneth O. Parker[‡]

Department of Chemistry, Lakehead University Thunder Bay, Ontario, Canada P7B 5E1, and Department of Chemistry, University of Minnesota --- Duluth Duluth, Minnesota 55812

Received November 10, 1987

Summary: The syntheses and characterizations of Ni-(CO)₂(dppm-P)₂ and Ni(CO)(diphos)(diphos-P), which contain monocoordinated bis(phosphine) ligands, are reported. The former reacts readily with $PtCl_2(COD)$ to give NiPtCl₂(μ -CO)(μ -dppm)₂, the structure of which shows that each metal (1) is bonded to a terminal chloride and (2) has a different structure, the Pt being almost square planar while the Ni is considerably distorted from square planarity.

The most general synthetic route to the enormous number of transition metal-carbonyl-phosphine complexes now known is to react metal carbonyls with phosphines.¹ A less common approach is to treat either already substituted metal carbonyls² or metal(0) phosphine complexes³ with CO. We report here an alternative route that involves the reaction of CO-saturated solutions of Ni(II)⁴ (or Co-(II)^{5,6}) salts and phosphines, such as PPh_3 or Ph_2P - $(CH_2)_n PPh_2$ (n = 1, dppm; n = 2, diphos), with NaBH₄ or NaBH₃CN under a variety of conditions, thereby avoiding the, sometimes inconvenient, use of metal carbonyls.

With PPh₃ and Ni(II), the major product is $Ni(CO)_2$ -(PPh₃)₂ (i.e., the same product as is observed⁷ from reactions of Ni(CO)₄ with PPh₃), but with the bis(phosphines), hitherto unknown metal-CO-phosphine complexes containing monocoordinated phosphine ligands are produced. For example, the NiCl₂·6H₂O/dppm/CO/NaBH₄ system vields⁸ colorless crystals of tetrahedral Ni(CO)₂(dppm-P)₂ (1) which rapidly rearranges in solution (unless the solution is cooled or an excess of free dppm is present) to give $Ni_2(CO)_2(\mu$ -CO)(μ -dppm)₂.^{4,9} Similar reactions using diphos instead of dppm produce¹⁰ (along with other compounds) Ni(CO)(diphos)(diphos-P) (2).

There is obvious potential for the use of 1 and 2 in the synthesis of bimetallic systems,¹¹ and, indeed, 1 reacts very rapidly with, for example, $PtCl_2(COD)$, $NiCl_2 \cdot 6H_2O$, $Rh_2Cl_2(CO)_4$, and $Mo(CO)_5(THF)$ in CH_2Cl_2 under dry nitrogen. From 1 and PtCl₂(COD), an intensely colored purple solution is produced from which purple crystals of NiPtCl₂(μ -CO)(μ -dppm)₂ (3) have been isolated.¹² The

[†]Lakehead University.

Figure 1, from which it is clear that the Ni and Pt atoms are each bonded to a terminal chlorine atom and are bridged by two dppm ligands and one carbonyl group. The metal, chlorine, and the carbonyl carbon atoms are essentially coplanar with the largest atom-to-plane distance from the least-squares plane through Pt, Ni, C1, Cl1, and Cl2 being 0.10 Å. The fact that P3 and P4 are approximately perpendicular to this plane and the P3-Pt-P4 and Cl2-Pt-C1 bond angles are 172.7° and 161.4°, respectively, indicate that the Pt atom is in an approximately squareplanar environment. In contrast, the geometry about the Ni atom is considerably removed from square planarity, with P1-Ni-P2 and Cl1-Ni-C1 bond angles of 145.7° and

(1) For some recent examples, see: Porschke, K. R.; Tsay, Y. H.; Kruger, C. Inorg. Chem. 1986, 25, 2097. Lisic, E. C.; Hanson, B. E. Inorg. Chem. 1986, 25, 812. Clucas, J. A.; Foster, D. F.; Harding, M. M.; Smith, A. K. J. Chem. Soc., Dalton Trans. 1987, 277. Brown, G. M.; Finholt, J. E.; King, R. B.; Biboer, J. E. Inorg. Chem. 1987, 21, 2139.

(2) King, R. B.; Raghuveer, K. S. Inorg. Chem. 1984, 23, 2482.
(3) Corain, B.; Bressan, M.; Favero, G. Inorg. Nucl. Chem. Lett. 1971,

7.197

(4) Holah, D. G.; Hughes, A. N.; Mirza, H. A.; Thompson, J. D. Inorg.

Chim. Acta 1987, 126, L7. (5) Carriedo, C.; Gomez-Sal, P.; Royo, P.; Martinez-Carrera, S.; Garcia-Blanco, S. J. Organomet. Chem. 1986, 301, 79. (6) Elliot, D. J.; Holah, D. G.; Hughes, A. N. Inorg. Chim. Acta 1988,

142. 195.

142, 195. (7) Chatt, J.; Hart, F. A. J. Chem. Soc. 1960, 1378. (8) Ni salt:dppm:NaBH₃CN ratio of 1:3:3.5, CO atmosphere, in C_6H_6/C_2H_5OH (1:1) at 20 °C for 2 h; product crystallized from the re-action filtrate; yield 40%. Anal. Calcd for Ni(CO)₂(dppm)₂: C, 70.69; H, 5.02. Found: C, 70.59; H, 5.22. IR (Nujol): ν (CO) 1992 (s), 1930 (s) cm⁻¹. ³¹P{¹H} NMR at 32.3 MHz: AA'XX' pattern, δ_A 26.13, $\delta_X - 23.74$, $J_{AA'} = 16.50$, $J_{AX} = 108.25$, $J_{AX'} = 2.27$, $J_{XX'} = 0$ Hz. ³¹P spectrum analyzed by the method of: Becker, E. D. High Resolution NMR: Theory and Chemical Applications, 2nd ed.; Academic: New York, 1981; pp 167-171 with assignments confirmed by a simulated spectrum using the 167–171 with assignments confirmed by a simulated spectrum using the Bruker ITRCAL program on a BNC 28 computer. Absolute signs for the

 (a) Stanley, G. G.; Osborn, J. A.; Bird, P. H. Abstracts of Papers, 190th National Meeting of the American, Chemical Society, Chicago IL; American Chemical Society: Washington, DC, 1985; INOR-365. More re-Cently, $Ni_2(CNMe)_3(dppm)_2$ has been shown to have a similar structure: DeLaet, D. L.; Fanwick, P. E.; Kubiak, C. P. Organometallics 1986, 5, 1807.

(10) Ni salt:diphos:NaBH₃CN ratio of 1:3:3, CO atmosphere, in C_6H_6/C_2H_5OH (1:2) at 20 °C for 2 h; solid obtained by concentrating the reaction filtrate under reduced pressure; yield 90%. Anal. Calcd for Ni(CO)(diphos)₂: C, 72.05; H, 5.48. Found: C, 72.09; H, 5.66. ³¹P{¹H} NMR at 32.3 MHz: A₂MX pattern, δ_A 43.96, δ_M 30.92, δ_X -12.20, $J_{AM} =$

19.0, $J_{AX} = 39.2$ Hz. (11) For recent reviews, see: Puddephatt, R. J. Chem. Soc. Rev. 1983, 12, 99. Balch, A. L. In Homogeneous Catalysis with Metal Phosphine Complexes; Pignolet, L., ed.; Plenum: New York, 1983. See also the extensive work of Shaw and co-workers, e.g.: Jacobsen, G. B.; Shaw, B. L.; Thornton-Pett, M. J. Chem. Soc., Dalton Trans. 1987, 2751. Blagg, L.; Hornton-Pett, M. J. Chem. Soc., Datton Trans. 1987, 2151. Blagg. A.; Robson, R.; Shaw, B. L.; Thornton-Pett, M. J. Chem. Soc., Dalton Trans. 1987, 2171. Jacobsen, G. B.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1987, 2005. Blagg, A.; Shaw, B. L.; Thornton-Pett, M. J. Chem. Soc., Dalton Trans. 1987, 769. Fontaine, X. L. R.; Higgins, S. J.; Langrick, C. R.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1987, 777. See also ref 15 below.

(12) PtCl₂(COD):1 ratio of 1:1 in CH₂Cl₂ at 20 °C; purple crystals precipitated over 2 days after adding C₂H₅OH; yield 25%. IR: ν (CO) (bridging) 1756 cm⁻¹. Anal. Calcd for NiPtCl₂(CO)(dppm)₂·0.33CH₂Cl₂: C, 53.63; H, 3.92. Found: C, 53.72, H, 4.16.

(13) Crystal data: $C_{61}H_4C_2NiOP_4Pt; M$, 1131.14; monoclinic; space group $P_{21}/$, i a = 19.511 (12) Å, b = 18.122 (9) Å, c = 13.936 (10) Å, β = 99.72 (5)°; D_{calcd} = 1.47 g cm⁻³; Z = 4, λ (Mo K α) = 35.7 cm⁻¹. A total of 5785 independent reflections with $I > 3\sigma(I)$] were collected (CAD-4 Enraf-Nonius diffractometer using Mo radiation) and used in the solution (Patterson) and refinement. Enraf-Nonius SDP programs were used in all calculations. Positional and thermal parameters for all non-hydrogen atoms were refined. All phenyl carbon atoms were refined isotropically; all other atoms were refined anisotropically. Hydrogen atoms were omitted. The crystal lattice contains a fractional amount of solvent, probably methylene chloride. Unfortunately, no satisfactory model could be found for this disordered solvent. The largest peak in the final difference-Fourier map, other than that attributed to disordered CH₂Cl₂, was 1.13 e A⁻³. This peak is 0.27 Å from the Pt atom. Final R and $R_{\rm w}$ values are 0.069 and 0.106, respectively.

0276-7333/88/2307-1233\$01.50/0 © 1988 American Chemical Society

[‡]University of Minnesota—Duluth.

Figure 1. ORTEP of drawing of [PtNi(u-CO)(u-dppm)2Cl2] showing 50% probability thermal ellopsoids. For clarity, only phenyl carbons bonded to phosphorus atoms have been included. Selected bond lengths (Å): Pt-Ni, 2.689 (2); Pt-Cl2, 2.374 (5); Pt-C1, 2.03 (1); Pt-P3, 2.306 (4); Pt-P4, 2.323 (4); Ni-Cl1, 2.274 (4); Ni-Cl, 1.77 (2); Ni-P1, 2.207 (4); Ni-P2, 2.209 (4); Cl-O1, 1.22 (2). Bond angles (deg): P3-Pt-P4, 172.8 (1); P3-Pt-Cl2, 91.8 (2); P3-Pt-C1, 87.5 (4); P4-Pt-Cl2, 91.3 (2); P4-Pt-C1, 91.6 (4); Cl2-Pt-C1, 161.6 (5); P1-Ni-P2, 146.0 (2); P1-Ni-Cl1, 92.6(2); P1-Ni-C1, 87.1 (5); P2-Ni-Cl1, 105.8 (2); P2-Ni-C1, 90.5 (5); Cl1-Ni-C1, 149.9 (5); Pt-C1-Ni, 89.8 (6); Pt-C1-O1, 125 (1); Ni-C1-O1, 145 (1).

150.1°, respectively. The Pt-Pt distances in $Pt_2(\mu$ $dppm)_2(\mu-HgCl_2)Cl_2$ and $Pt_2(\mu-dppm)_2Cl_2$ are 2.712 and 2.651 Å, respectively.¹⁴ The Pt-Ni distance of 2.689 (2)

(14) Sharp, P. R. Inorg. Chem. 1986, 25, 4185. Manojlovic-Muir, Lj.; Muir, K. W.; Solomun, T. Acta Cryst., 1979, B35, 1237.

A therefore implies the presence of metal-metal bonding which would be consistent with 18- and 16-electron counts on Ni(0) and Pt(II), respectively,¹⁵ a formulation which is supported by the fact that 3 in CH₂Cl₂ reverts to Ni₂- $(CO)_2(\mu$ -CO) $(\mu$ -dppm $)_2$ and PtCl₂(dppm). The structure of 3 is quite different from that of the related compound $Pt_2Cl_2(\mu-CO)(\mu-dpam)_2$ (dpam = the arsenic analogue of dppm).16

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada, the Senate Research Committee of Lakehead University, and the University of Minnesota-Duluth Computer Center for their generous financial support of this work.

Registry No. 1, 113894-20-5; 2, 32423-72-6; 3, 113894-21-6; Ni(CO)₂(PPh₃)₂, 13007-90-4; Ni₂(CO)₂(µ-CO)(µ-dppm)₂, 106251-27-8; PtCl₂(COD), 12080-32-9; Rh₂Cl₂(CO)₄, 14523-22-9; Mo(C-O)5(THF), 53248-43-4; Ni, 7440-02-0; Pt, 7440-06-4.

Supplementary Material Available: Summary of crystal data, data collection parameters, and refinement details and tables of positional and thermal parameters and interatomic distances and bond angles (13 pages), a listing of observed and calculated structure factors for the X-ray structural analysis of $NiPtCl_2(\mu$ -CO)(μ -dppm)₂ (58 pages). Ordering information is given on any current masthead page.

Additions and Corrections

Richard G. Ball, Michael R. Burke, and Josef Takats*: Synthesis and Comparative Study of Iron Triad M- $(CO)_4(\eta^2$ -alkyne) Complexes (M = Fe, Ru, Os; Alkyne = Bis(trimethylsilyl)acetylene). 1987, 6, 1918-1924.

An error occurred in the reported coalescence temperature, T_c , and the corresponding $\Delta G^*_{T_c}$ for carbonyl scrambling in Ru(CO)₄(η^2 -BTMSA) appearing in Table V. The correct values are $T_c = -64$ °C and $\Delta G^*_{Tc} = 9.0$ kcal/mol. As a consequence, the trend in ΔG^* for carbonyl scrambling now should be Fe = Ru < Os. Furthermore, although the inverse relationship between ΔG^* and $\Delta \delta$ and $\Delta \nu_{\rm CC}$, shown graphically in Figure 4, is still correct, the linear relationship between these properties as the metal is changed is no longer valid. Admittedly the consequences of the error in $T_{\rm c}$ are not insignificant; nevertheless, they do not adversely effect the major conclusions of the paper. In particular, the importance of both σ/π components of the metal alkyne interaction in this series of compounds is valid. The unexpectedly similar $\Delta G^*_{T_c}$ for carbonyl scrambling of the Fe and Ru compounds further emphasizes the special behavior of Ru and other second-row transition metals when compared to their first- and

third-row congeners. We regret the error and the attendant changes.

Yan-Lung Shi, Yi-Ci Gao, Qi-Zhen Shi,* David L. Kershner, and Fred Basolo*: Oxygen Atom Transfer Reactions to Metal Carbonyls. Kinetics and Mechanism of CO Substitution Reactions of $M(CO)_6$ (M = Cr, Mo, W) in the Presence of (CH₃)₃NO. 1987, 6, 1528-1531.

Table V on page 1531 should be corrected as follows.

compd	nucleophile	<i>T</i> , ⁰C	$k, M^{-1} s^{-1}$	ref	
Cr(CO) ₆	N ₃ -	30.0	9.7×10^{-3}	12	
-	$PhCH_2MgCl$	27.0	0.053	13b	
$Mo(CO)_6$	PhCH ₂ MgCl	27.0	0.091	13b	
W(CO) ₆	CN-	95.0	5.2×10^{-3}	11b	
	PhCH ₂ MgCl	27.0	0.108	13b	
	Me ₃ NŌ	25.0	0.366	а	

In the abstract and the text, PhCH₂MgCl should replace PhCH₂MgBr.

⁽¹⁵⁾ The Fe-Pt bond distance in $(OC)_3Fe(\mu$ -dppm) $(\mu$ -CO)PtBr₂ is almost identical at 2.647 (4) Å. Jacobsen, G. B.; Shaw, B. L.; Thornton-Pett, M. J. Chem. Soc., Dalton Trans. 1987, 3079. (16) Brown, M. P.; Keith, A. N.; Manojlovic-Muir, Lj.; Muir, K. W.;

Puddephatt, R. J.; Seddon, K. R. Inorg. Chim. Acta 1979, 34, L 223.