

Figure 1. ORTEP of drawing of [PtNi(u-CO)(u-dppm)2Cl2] showing 50% probability thermal ellopsoids. For clarity, only phenyl carbons bonded to phosphorus atoms have been included. Selected bond lengths (Å): Pt-Ni, 2.689 (2); Pt-Cl2, 2.374 (5); Pt-C1, 2.03 (1); Pt-P3, 2.306 (4); Pt-P4, 2.323 (4); Ni-Cl1, 2.274 (4); Ni-Cl, 1.77 (2); Ni-P1, 2.207 (4); Ni-P2, 2.209 (4); Cl-O1, 1.22 (2). Bond angles (deg): P3-Pt-P4, 172.8 (1); P3-Pt-Cl2, 91.8 (2); P3-Pt-C1, 87.5 (4); P4-Pt-Cl2, 91.3 (2); P4-Pt-C1, 91.6 (4); Cl2-Pt-C1, 161.6 (5); P1-Ni-P2, 146.0 (2); P1-Ni-Cl1, 92.6(2); P1-Ni-C1, 87.1 (5); P2-Ni-Cl1, 105.8 (2); P2-Ni-C1, 90.5 (5); Cl1-Ni-C1, 149.9 (5); Pt-C1-Ni, 89.8 (6); Pt-C1-O1, 125 (1); Ni-C1-O1, 145 (1).

150.1°, respectively. The Pt-Pt distances in $Pt_2(\mu$ $dppm)_2(\mu-HgCl_2)Cl_2$ and $Pt_2(\mu-dppm)_2Cl_2$ are 2.712 and 2.651 Å, respectively.¹⁴ The Pt-Ni distance of 2.689 (2)

(14) Sharp, P. R. Inorg. Chem. 1986, 25, 4185. Manojlovic-Muir, Lj.; Muir, K. W.; Solomun, T. Acta Cryst., 1979, B35, 1237.

A therefore implies the presence of metal-metal bonding which would be consistent with 18- and 16-electron counts on Ni(0) and Pt(II), respectively,¹⁵ a formulation which is supported by the fact that 3 in CH₂Cl₂ reverts to Ni₂- $(CO)_2(\mu$ -CO) $(\mu$ -dppm $)_2$ and PtCl₂(dppm). The structure of 3 is quite different from that of the related compound $Pt_2Cl_2(\mu-CO)(\mu-dpam)_2$ (dpam = the arsenic analogue of dppm).16

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada, the Senate Research Committee of Lakehead University, and the University of Minnesota-Duluth Computer Center for their generous financial support of this work.

Registry No. 1, 113894-20-5; 2, 32423-72-6; 3, 113894-21-6; Ni(CO)₂(PPh₃)₂, 13007-90-4; Ni₂(CO)₂(µ-CO)(µ-dppm)₂, 106251-27-8; PtCl₂(COD), 12080-32-9; Rh₂Cl₂(CO)₄, 14523-22-9; Mo(C-O)5(THF), 53248-43-4; Ni, 7440-02-0; Pt, 7440-06-4.

Supplementary Material Available: Summary of crystal data, data collection parameters, and refinement details and tables of positional and thermal parameters and interatomic distances and bond angles (13 pages), a listing of observed and calculated structure factors for the X-ray structural analysis of $NiPtCl_2(\mu$ -CO)(μ -dppm)₂ (58 pages). Ordering information is given on any current masthead page.

Additions and Corrections

Richard G. Ball, Michael R. Burke, and Josef Takats*: Synthesis and Comparative Study of Iron Triad M- $(CO)_4(\eta^2$ -alkyne) Complexes (M = Fe, Ru, Os; Alkyne = Bis(trimethylsilyl)acetylene). 1987, 6, 1918-1924.

An error occurred in the reported coalescence temperature, T_c , and the corresponding $\Delta G^*_{T_c}$ for carbonyl scrambling in Ru(CO)₄(η^2 -BTMSA) appearing in Table V. The correct values are $T_c = -64$ °C and $\Delta G^*_{Tc} = 9.0$ kcal/mol. As a consequence, the trend in ΔG^* for carbonyl scrambling now should be Fe = Ru < Os. Furthermore, although the inverse relationship between ΔG^* and $\Delta \delta$ and $\Delta \nu_{\rm CC}$, shown graphically in Figure 4, is still correct, the linear relationship between these properties as the metal is changed is no longer valid. Admittedly the consequences of the error in $T_{\rm c}$ are not insignificant; nevertheless, they do not adversely effect the major conclusions of the paper. In particular, the importance of both σ/π components of the metal alkyne interaction in this series of compounds is valid. The unexpectedly similar $\Delta G^*_{T_c}$ for carbonyl scrambling of the Fe and Ru compounds further emphasizes the special behavior of Ru and other second-row transition metals when compared to their first- and

third-row congeners. We regret the error and the attendant changes.

Yan-Lung Shi, Yi-Ci Gao, Qi-Zhen Shi,* David L. Kershner, and Fred Basolo*: Oxygen Atom Transfer Reactions to Metal Carbonyls. Kinetics and Mechanism of CO Substitution Reactions of $M(CO)_6$ (M = Cr, Mo, W) in the Presence of (CH₃)₃NO. 1987, 6, 1528-1531.

Table V on page 1531 should be corrected as follows.

compd	nucleophile	<i>T</i> , °C	k, M ⁻¹ s ⁻¹	ref
Cr(CO) ₆	N ₃ -	30.0	9.7×10^{-3}	12
	PhCH ₂ MgCl	27.0	0.053	13b
$Mo(CO)_6$	PhCH ₂ MgCl	27.0	0.091	13b
W(CO) ₆	CN-	95.0	5.2×10^{-3}	11b
	PhCH ₂ MgCl	27.0	0.108	13b
	Me ₃ NÕ	25.0	0.366	а

In the abstract and the text, PhCH₂MgCl should replace PhCH₂MgBr.

⁽¹⁵⁾ The Fe-Pt bond distance in $(OC)_3Fe(\mu$ -dppm) $(\mu$ -CO)PtBr₂ is almost identical at 2.647 (4) Å. Jacobsen, G. B.; Shaw, B. L.; Thornton-Pett, M. J. Chem. Soc., Dalton Trans. 1987, 3079. (16) Brown, M. P.; Keith, A. N.; Manojlovic-Muir, Lj.; Muir, K. W.;

Puddephatt, R. J.; Seddon, K. R. Inorg. Chim. Acta 1979, 34, L 223.