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Summary: The indenyl complex [ ( T ~ ' - C ~ H , ) R ~ ( ~ ~ ~ - C ~ H ~ ) ~ ]  
(1) is a catalyst for intermolecular hydroacylation, the 
addition of aldehydes to alkenes. Aldehyde decarbon- 
ylation is not a significant process with aromatic alde- 
hydes and 1. The model system PhCHO + CpH4 gives 
propiophenone cleanly with turnover rates of up to ca. 4 
h-' at 100 OC and 1000 psi charge of CpH4. Deuterium- 
labeling studies were conducted by in situ pH NMR spec- 
troscopy under catalytic conditions using a specially de- 
signed high-pressure NMR tube. Other aldehydes and 
formates also add to ethylene using 1. 

There has been much recent effort to develop systems 
that will activate C-H bonds in organic substrates.' Many 
late-transition-metal complexes, particularly rhodium and 
iridium compounds, oxidatively add aldehyde C-H bonds 
in processes that lead to substrate decarbonylation.2 The 
possibility of adding an aldehyde C-H bond across an 
alkene (hydroacylation) as a general route to ketones is an 
intriguing alternative. Although intramolecular hydro- 
acylation has been studied in detail,3a* the intermolecular 
reaction is not ~ell-precedented.~~-~ We report herein our 
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discovery5 that the indenyl complex [ (v5-C9H7)Rh(q2- 
C2H4),] (1)6 is an active catalyst (or catalyst precursor) for 
the intermolecular addition of simple aldehydes to 
ethylene. 

1 
R-C(=O)-H + C2H4 - R-C(=O)-C2H5 (1) 

Initial experiments conducted in glass reactors at  80 "C 
and 80 psi charge of C2H4 in c&h, gave slow propiophenone 
production with 1 as catalyst and PhCHO as substrate (eq 
1). No organic side products were observed by high-field 
FTNMR spectroscopy; however, some catalyst decompo- 
sition to bulk Rh was observed. Under increased C2H4 
pressure (ca. 1000 psi a t  25 "C), temperatures around 100 
"C can be employed, allowing turnover rates of up to ca. 
4 h-' with no observable decomposition to metallic Rh.' 

Importantly, aldehyde decarbonylation is not a signif- 
icant side reaction a t  either ethylene pressure when aro- 
matic aldehydes are used. Several runs, conducted under 
the above conditions, were monitored by in situ multinu- 
clear FTNMR spectroscopy using a specially fabricated 
high-pressure sapphire NMR tube.8 With use of 
C6H513CH0 (ca. 90% 13C), only C6H23CH0 and C6H5l3c- 
(0)C2H5 were observed by 13C(lH) NMR spectroscopy; no 
resonances due to Rh13C0 or dissolved I3CO were detected, 
consistent with the absence of any significant quantities 
of decarbonylation products. 

In a series of experiments conducted in Hastelloy 
pressure reactors, several potential catalysts were examined 
for activity under the above conditions: 1, [(v5-C5H5)Rh- 
(v2-C2H4),1 (2),  [(acac)Rh(v2-C2H4)21 (3),4d and 
[ (PPh3)3RuC12] (4).4c Only 1 provided propiophenone in 
significant quantities; 3 and 4 were completely inactive and 
2 produced only traces of propiophenone after extensive 
reaction periods. Other aromatic aldehydes (e.g. p -  
CF3C6H,CH0, p-CH3C6H4CHO) undergo clean hydro- 
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Figure 1. Two possible mechanisms (A, top; B, bottom) for the 
rhodium-catalyzed intermolecular hydroacylation reaction. The 
v-indenyl ligand is omitted for clarity. 

acylation with et.hylene using 1. Methyl formate adds to 
ethylene yielding CH302CCH2CH3 as the only organic 
product although this reaction is quite slow with 2-3 
turnovers observed in 24 h. Dry formaldehyde also reacts 
with ethylene in the presence of 1. Proton and 13C NMR 
and GC/MS studies (using (H2CO), and (H213CO),) in- 
dicate that both CH3CH2CH0 and CH3CH2C(0)CH2CH3 
are formed in approximately equal yields within 3 h at 100 
"C. Two factors limit the catalytic utility of the form- 
aldehyde reaction: (1) the limited solubility of dry (H2CO), 
and (2) the deactivation of 1 via formation of [ (indeny1)- 
Rh(CO)] compounds as evidenced by 'H and 13C NMR and 
solution IR spectroscopy. Interestingly, 4-pentenal does 

not give cyclopentanone via intramolecular hydroacylation 
with 1 but rather undergoes rapid alkene isomerizationg 
yielding 3-pentenal as the primary reaction product. 

The reaction of aldehydes with Rh(1) centers usually 
proceeds via oxidative addition of the aldehyde C-H bond. 
Presumably, the hydroacylation reaction involves this C-H 
additionZds3* followed by insertion of ethylene into the 
Rh-H bond4f and subsequent reductive elimination of the 
alkyl-acyl groups4' (mechanism A). An alternative, 
mechanism B, involving the C-H addition to Rh followed 
by ethylene insertion into the Rh-acyl bondlo and subse- 
quent reductive elimination of the alkyl-hydride groups 
is also possible. 

The reaction of C6D&D0 with C2H, in C6H6 using 1 as 
catalyst allowed us to examine certain aspects of the alkene 
insertion process. Analysis by 'H, 2H, and 13C(lH) NMR 
spectroscopy as well as GC/MS, using selected ion mon- 
itoring for accurate integrations of MS peak areas, showed 
that virtually all the propiophenone produced contained 
exactly one deuterium atom in the ethyl group, statistically 
scrambled between methyl and methylene sites (eq 2). 

1 
C~DSCDO i- C2H4 - 

C6D5C(O)CH&H2D + C6D,C(O)CHDCH3 (2) 
3 2 

In addition, recovered aldehyde showed little loss of 
deuterium (GC/MS), and in situ 2H NMR spectroscopy 
showed no deuterium incorporation into unreacted 
ethylene. Therefore, insertion of ethylene into the Rh-D 
bond must take place rapidly and reversibly, and this 
equilibrium must be established significantly faster than 
either aldehyde reductive elimination or product forma- 
tion. The results suggest that only one ethylene is bound 
to Rh during C-H(0) activation, consistent with the dis- 
sociative mechanisms shown in Figure 1. The labeling 
study alone does not allow us to distinguish between 
mechanisms A and B, as a rapid side equilibrium involving 
ethylene insertion into Rh-H(D) and @-H-(-D-) elimination 
in B would be consistent with our results. However, 
mechanism B would be expected to result in the formation 
of a$-unsaturated ketones (e.g. CH2=CHC(0)Ph) via 
@-hydride elimination from an Rh-CH2CH2C(0)Ph spec- 
ies;" we do not observe such products. 

Further studies aimed at elucidation of the scope and 
mechanism of the reaction are in progress. 
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Summary: Reaction of diethylaluminum chloride with the 
macrocyclic tetradentate secondary amine 1,4,8,1 l-tet- 
raazacyclotetradecane in chlorobenzene affords the 
crystalline complex [ AI(C,H,)] 2[C,oH,oN,] [AI(C,H,)CI,] ,. 
The title compound crystallizes in the monoclinic space 
group P2,/n with unit cell parameters a = 11.871 (9) A, 
b = 9.052 (7) A, c = 14.299 ( 1 )  A, p = 115.19 (4)', and 
D,,, = 1.31 g ~ m - ~  for Z = 2. Least-squares refine- 
ment based on 1310 observed reflections with intensities 
I 1  341)  in the range of 2.00' I 28 I 50.0' converged 
at R = 0.0789 (R ,  = 0.0949). The mean AI-N distance 
in the title compound is 1.956 (6) A while the mean AI-CI 
distance is 2.168 (3) A. 

Although the nitrogen-based macrocyclic ligand 
1,4,8,11-tetraazacyclotetradecane' was reported decades 
prior to Pedersen's discovery of dibenzo-18-cr0wn-6~" the 
chemistry of aza macrocycles has not developed in parallel 
with that of their oxygen analogues. Nonetheless, the 
interaction of nitrogen-based macrocyclic ligands with 
transition-metal ions resulting in unusual or unique co- 
ordination complexes has been well-documented in the 
l i t e r a t~ re .~ - l~  

The interaction of aluminum alkyls with macrocyclic 
ligands has proven to be a particularly fruitful area of 
organoaluminum chemistry. The reaction of crown ethers 
with aluminum alkyls has resulted in several [A1R3],-CE 
(CE = crown ether) complexes.'"lB The significance of 
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Figure 1. A view of the [Al(C?H5)]2[C10H20N41 [Al(C2H&!212 
molecule showing the atom-labeling scheme. Thermal ellipsoids 
show 50% probability levels. Hydrogen atoms have been omitted. 
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Figure 2. Organoaluminum products resulting from bridge 
cleavage of the proposed transient mixed alkyl-halo isomer of 
diethylaluminum chloride. 

these unusual organometallic products is due to the fact 
that they often serve as precursors to a class of nonstoi- 
chiometric organoaluminum inclusion compounds known 
as liquid c1athrates.l' An examination of the organo- 
aluminum chemistry of nitrogen- and sulfur-based mac- 
rocycles representa an interesting extension of this work. 
We have reported a series of novel aluminum alkyl-ni- 
trogenlGZ1 and macrocyclic complexes. Herein, 
we report the synthesis24 and structure of [Al(C,H,)]?- 
[C10H20N4] [Al(C2H5)Cl2l2 isolated from reaction of di- 
ethylaluminum chloride with 1,4,8,11-tetraazacyclotetra- 
decane, Cl0HZ4N4, in chlorobenzene. In addition to rep- 
resenting the first X-ray structural report of an alkyl- 
aluminum halide-macrocyclic amine complex, the title 
compound is interesting in that it may possibly result from 
reaction of disproportionation products of diethyl- 
aluminum chloride with the macrocycle. 

X-ray intensity data were collected on a Nicolet R3m/V 
diffractometer using an w-scan technique with Mo K a  
radiation (A = 0.710 73 A) at  26 "C. The title compound 
crystallizes in the monoclinic space group R 1 / n  with unit 
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(24) Reaction of 1,4,8,11-tetraazacyclotetradecane (2.00 mmol) with 

diethylaluminum chloride (Aldrich Chemical Co.; purity > 97%) (8.00 
mmol) in chlorobenzene (25 mL), under an atmosphere of nitrogen, af- 
fords the title compound after considerable heating (120 "C) and subse- 
quent cooling. The system was frequently vented to relieve pressure. 
Upon cooling to room temperature, a multitude of colorless, rectangular, 
extremely air-sensitive, X-ray quality crystals deposited on the walls of 
the reaction vessel (in quantitative yield): mp 245 "C dec; 'H NMR 

(t, 6 H, Al(CHzCH3)), 1.444 (t, 6 H, A1(CH2CH3)). The resonance for the 
macrocycle consisted of a complex multiplet, 6 2.720-4.340 (m, 20 H). 

(CDC13) 6 0.164 (q, 4 H, AI(CH&H,)), 0.740 (q, 4 H, AI(CHZCH,), 1.192 
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