thesized reproducibly.<sup>12</sup> Consequently, further studies of these molecules await the development of rational syntheses that will produce them in good yield. Experiments toward this goal are now underway.

Acknowledgment. The support of this work by the National Science Foundation, Grant CHE 85-19289 (J. W.G. and R.E.C.), and by the donors of the Petroleum Research Fund, administered by the American Chemical Society, is gratefully acknowledged.

Registry No. 1, 114197-81-8.

Supplementary Material Available: Table VII, least-squares plane calculation for 1 (1 page); Table VI, observed and calculated structure factors for 1 (8 pages). Ordering information is given on any current masthead page.

# Assembly, Disassembly, and Reassembly of a Large Mercury Cobalt Carbonyl Cluster, Hg<sub>9</sub>Co<sub>6</sub>(CO)<sub>18</sub>

Joseph M. Ragosta and James M. Burlitch\*

Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853

Received June 9, 1987

The reaction of an aqueous basic solution of  $Hg(CN)_2$  with  $Hg[Co(CO)_4]_2$  in methanol/water formed the largest mercury-containing cluster yet reported,  $Hg_9Co_6(CO)_{18}$  (1). A single-crystal X-ray structure determination on the bis(acetone) solvate,  $Hg_9Co_6(CO)_{18} \cdot 2(CH_3)_2CO$  [ $P2_1/c$ ; a = 14.339 (5) Å, b = 21.024 (6) Å, c = 18.535 (8) Å,  $\beta = 94.48$  (3)°; V = 5570 (36) Å<sup>3</sup>; Z = 4;  $R_1 = 8.1\%$ ,  $R_2 = 12.0\%$ ], showed 1 to have fac-(CO)<sub>3</sub>Co fragments at the corners of a rectangular trigonal prism with a mercury atom at the center of each edge. In addition to forming a 1:3 adduct with Et<sub>4</sub>N<sup>+</sup>I<sup>-</sup>, cluster 1 reacted with HgX<sub>2</sub> compounds forming monocobalt compounds (CO)<sub>3</sub>Co(HgX)<sub>3</sub> (X = I (2), Cl (3), CF<sub>3</sub>CO<sub>2</sub>). The chloro derivative 3 re-formed 1 in high yield when treated with Ph<sub>3</sub>P. Possible mechanisms are discussed. Compound 2 was used to form analogous derivatives,  $(CO)_3Co(HgY)_3$ :  $Y = p-CH_3C_6H_4SO_3$  with silver toluenesulfonate and Y = Ph with phenyllithium. It also formed an 1:1 adduct with n-Bu<sub>4</sub>NI.

#### Introduction

When an attempt was made to recover the starting material from an aborted preparation of  $Na^+Co(CO)_4^-$  from  $Hg[Co(CO)_4]_2$  and sodium amalgam in methanol, a small quantity of a dark red solid was obtained from the reaction mixture after it had been quenched with aqueous  $Hg(CN)_2$ . Elemental analysis established the empirical formula as  $Hg_3Co_2(CO)_6$ , and the simplicity of the infrared spectrum suggested a highly symmetrical structure.

In this paper, we report an improved preparation of this compound,  $Hg_9Co_6(CO)_{18}$  (1) the largest mercury-con-taining cluster yet prepared, and describe some of its reactions.<sup>1</sup> Those with compounds of type HgX<sub>2</sub> provide the first entry point to the chemistry of  $(CO)_3CoHgX_3$ compounds from which 1 may be regenerated with surprising efficiency.

Large clusters containing mercury are relatively rare. Prior to preliminary reports of this work.<sup>2,3</sup> the only known mixed-metal clusters containing more than two mercury atoms were  $Cp_2Nb[HgS_2CN(Et)_2]_3$ ,<sup>4</sup> Hg[NiCp(GePh\_3)-HgGePh\_3]\_2,<sup>5</sup> Hg<sub>6</sub>Rh<sub>4</sub>[P(Me)\_3]\_12,<sup>6</sup> [Os<sub>3</sub>(CO)\_{11}Hg]\_3,<sup>7</sup> [Cp-(CO)<sub>3</sub>MoHgMo]<sub>4</sub>,<sup>8</sup> [(MeCp)(CO)\_2MgHg]\_4,<sup>9</sup> and [Cp-

 $(CO)_2 ReHg]_4$ .<sup>10</sup> Except for the last named compound, the structures of these compounds are known; their chemistry has not been reported.

### **Experimental Section**

Unless stated otherwise, all operations were carried out in flame-dried glassware under a purified argon atmosphere, using apparatus and techniques described elsewhere.<sup>11,12</sup> Weighing and preparation of analytical and spectroscopic samples of air-sensitive solids were done in a Vacuum Atmospheres Corp. drybox under prepurified nitrogen. Melting points were observed in sealed capillaries under argon. Molecular weights were determined cryoscopically on freshly prepared samples by using sulfolane as solvent and benzophenone as a standard.<sup>13</sup> Thin-layer chromatography (TLC) was done by using Whatman KC18F plates (200- $\mu$ m C-18 adsorbant on glass).

Infrared (IR) spectra were obtained on a Perkin-Elmer Model 337 spectrometer, calibrated with the 1944 cm<sup>-1</sup> line of polystyrene. Unless stated otherwise, elemental analyses were carried out by Galbraith Laboratories, Knoxville, TN, or Analytische Laboratorien, Elbach, Germany. Alternatively, freshly prepared sampes were decomposed by treatment with nitric acid and analyzed for Co and Hg by inductively coupled plasma emission spectroscopy using a Jarrell-Ash 975 spectrophotometer; such analyses were performed by the analytical laboratory of the Cornell University Department of Pomology. Iodide analyses were carried out on similarly prepared samples by the Volhard method.<sup>14a</sup> Proton

<sup>(1) 1,2;2,3;1,3;1,4;2,5;3,6;4,5;5,6;4,6-</sup>Nonakis(µ2-mercurio)-trigonalprismato-hexakis[fac-(tricarbonato)cobalt].

<sup>(2) (</sup>a) Burlitch, J. M.; Ragosta, J. M. Abstr. Pap.—Am. Chem. Soc. 1984, 187th, INOR 222. (b) Ragosta, J. M.; Burlitch, J. M. J. Chem. Soc., Chem. Commun. 1985, 1187. (c) Ragosta, J. M.; Burlitch, J. M. Organometallics 1986, 5, 1517.

<sup>(3)</sup> Parts of this work were taken from: Ragosta, J. M. Ph.D. Thesis, Cornell University, 1986.

<sup>(4)</sup> Kergoat, R.; Kubicki, M. M.; Guerchair, J. E.; Norman, N. C.;
(7) Orpen, A. G. J. Chem. Soc., Dalton Trans. 1982, 633.
(5) Zakharov, L. N.; Struchkov, Y. T.; Titova, S. N.; Bychkov, V. T.;
Domrachev, G. A.; Razuvaev, G. A. Cryst. Struct. Commun. 1980, 9, 549.
(6) Jones, R. A.; Real, F. M.; Wilkinson, G.; Galas, A. M. R.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1981, 126.

<sup>(7)</sup> Fajardo, M.; Holden, H. D.; Johnson, B. F. G.; Lewis, J.; Raithby,
P. R. J. Chem. Soc., Chem. Commun. 1984, 24.
(8) Deutscher, J.; Fadel, S.; Ziegler, M. L. Angew. Chem., Int. Ed.

<sup>(9)</sup> Gade, W.; Weiss, E. Angew. Chem., Int. Ed. Engl. 1981, 20, 803.

<sup>(10)</sup> Kolobova, N. E.; Valueva, Z. P.; Kazmirchuk, E. I.; Andranov, V. G.; Struchkov, Y. T. Bull. Acad. Sci. USSR, Chem. Ser. 1984, 33, 847.
(11) Burlitch, J. M.; Theyson, T. W. J. Chem. Soc., Dalton Trans.

<sup>1974, 828.</sup> 

<sup>(12) (</sup>a) Burlitch, J. M. How to Use Ace NO-AIR Glassware, Bulletin No. 3841; Ace Glass Co.: Vineland, NJ. (b) For a description of our IR cell, see: Gysling, H. J.; Thunberg, A. L. In *Physical Methods of Chem*istry, 2nd ed.; Rossiter, B. W., Hamilton, J. F., Eds.; Interscience: New York, 1985. (13) Knight, J. A.; Wilkins, B., Jr.; Davis, D. K.; Sicilio, F. Anal. Chim.

Acta 1961, 25, 317.

<sup>(14) (</sup>a) Day, R. J., Jr.; Underwood, A. L. Quantitative Analysis, 4th ed.; Prentice-Hall: Englewood Cliffs, NJ, 1980; p 217. (b) For a review of the use of FAB MS, see: Bruce, M. I.; Liddell, M. J. Appl. Organomet. Chem. 1987, 1, 191.

NMR spectra were recorded on a Varian CFT20, Varian XL200, or Bruker WM300 spectrometer and were calibrated by using residual <sup>1</sup>H peaks in he deuteriated solvents. Carbon and fluorine NMR spectra were recorded on a JEOL FX90Q spectrometer and were calibrated by using solvent peaks and CFCl<sub>3</sub> (external), respectively. Mass spectra were obtained by thermal desorption on an AEI MS902 mass spectrometer equipped with a VG Datasystem 2000 computer; EI ionization (70 eV) was used in all cases. Continuous FAB MS was done on a VG Ind. Model 70-SE using *m*-nitrobenzyl alcohol.<sup>14b</sup> UV/vis spectra were recorded on a Hewlett-Packard 8450A spectrophotometer.

All solvents were reagent grade and were dried and degassed prior to distillation directly into the reaction vessel under an argon atmosphere. Distilled water was deionized on an ion-exchange resin and degassed by several freeze-pump-thaw cycles. The following materials were prepared by literature methods: Hg-[Co(CO)<sub>4</sub>]<sub>2</sub>,<sup>15</sup> Hg(O<sub>2</sub>CCF<sub>3</sub>)<sub>2</sub>,<sup>16</sup> (Ph<sub>3</sub>P)<sub>2</sub>HgCl<sub>2</sub>,<sup>17</sup> Hg[Et<sub>2</sub>NCS<sub>2</sub>]<sub>2</sub>,<sup>18</sup> and Na<sub>3</sub>Co(CO)<sub>3</sub>.<sup>19</sup> All other starting materials were reagent grade and were used without further purification.

Preparation of 1 (from Sodium Amalgam). Into a 500-mL three-necked flask, equipped with a Teflon stopcock at the bottom, a mechanical stirrer, and a gas inlet tube, was distilled 200 mL of methanol from Mg(OMe)<sub>2</sub>. Sodium amalgam (prepared from sodium (3.5 g, 0.150 mol) and 40 mL of mercury) was added followed by ca. 5 g of  $Hg[Co(CO)_4]_2$  with stirring. A vigorous reaction ensued with considerable gas and heat evolution. The gas was determined to be a mixture of CO and  $H_2$  by GLC. The vessel was cooled in an ice bath, and, after 20 min, the remainder of the  $Hg[Co(CO)_4]_2$  (22.5 g, 41.5 mmol total) was added. The mixture was stirred for 30 min with cooling. During this time the solid dissolved and no further gas evolution occurred. The mixture was allowed to warm to room temperature, and stirring was continued for 1 h; a yellowish brown solution resulted. Addition of more sodium amalgam (half of the original amount) caused rapid gas evolution but no change in color.

After having stood for 24 h, the amalgam was drained off and the solution was transferred to a filter tube containing Celite filter aid. A small portion (ca. 25 mL) was reserved for another experiment, and the remaining solution was filtered into 900 mL of a stirred, degassed aqueous solution of  $Hg(CN)_2$  (17.6 g, 50.0 mmols) over a 1-h period. An orange precipitate formed immediately and gradually turned dark red during the addition. The solid was filtered in air, washed with water until the washings were neutral, and aspirated dry. The resulting dark red-brown powder (13.6 g) was triturated with 600 mL of acetone; a substantial portion did not dissolve. The orange-red solution was filtered, concentrated to ca. 100 mL by rotary evaporation at reduced pressure, filtered from 1.7 g of a dark, burgundy colored solid (A), and then evaporated to dryness giving 3.25 g of an orange-red crystalline solid (B).

From B, 2.4 g of Hg[Co(CO)<sub>4</sub>]<sub>2</sub>, mp 75-78 °C (lit.<sup>20</sup> (mp 81-82 °C), was obtained by trituration with methanol (100 mL) and evaporation of the extracts to dryness. An analytically pure sample of 1 (1.4 g, 3.8%) was obtained from solid A by two recrystallizations from acetone: IR (KBr) 2050 w (sh), 2015 vs, 1975 s (sh), 1930 w (sh), 532 m, 515 m cm<sup>-1</sup>; IR (THF) 2050 w (sh), 2015 s, 1964 m, 1925 w (sh) cm<sup>-1</sup>; IR (DMSO) 2010 s, 1968 m cm<sup>-1</sup>. Anal. Found by M. L. Pascher. (Calcd for  $Hg_9Co_6(CO)_{18}$ : Hg, 67.42 (67.79); Co, 12.99 (13.28); O, 10.76 (10.81); C, 8.82, 8.16, 7.99 (8.12)) H, 0.0 (0.00).

Another sample, prepared in essentially the same way and exhibiting the same IR bands, provided the following information. UV/vis (acetone):  $\lambda$ (max) 254, 336 nm. A mass spectrum showed no ions heavier than Hg<sup>+</sup> using thermal desorption or fast atom bombardment (FAB). Continuous FAB techniques, however, gave a very nice spectrum. In the region, m/e > 1700, there were isotope

 (15) Dighe, S. V.; Orchin, M. Inorg. Chem. 1962, 1, 965.
 (16) Brown, H. C.; Rei, M. H. J. Am. Chem. Soc. 1969, 91, 5646. (17) Evans, R. C.; Mann, F. G.; Peiser, H. S.; Purdie, D. J. Chem. Soc. 1940. 1209

clusters centered at the following: m/e (relative intensity) 2662 (M<sup>+</sup>, 25), 2549 (9), 2435 (10), 2406 (14), 2394 (11), 2263 (11), 2005 (70), 1977 (100), 1910 (20), 1890 (13), 1861 (40), 1748 (35), 1720 (11), and 1709 (9). The isotope distribution of the parent ion was nearly Gaussian and was very similar to the calculated distribution. This compound, as the bis(acetone) solvate, was used for the single-crystal X-ray analysis. As shown by the elemental analysis and IR specroscopy, the compound readily lost solvent of crystallization.

Preparation of 1 Using Ba(OH)<sub>2</sub>. Addition of a solution of 2.50 g (7.93 mmol) of  $Ba(OH)_2 \cdot 8H_2O$  in 75 mL of degassed distillated water to a solution of 5.00 g (19.5 mmol) of  $Hg(CN)_2$  in 75 mL of methanol, followed by stirring for 5 min, gave a cloudy colorless solution. This solution was added to a solution of 5.00 g (9.22 mmol) of  $Hg[Co(CO)_4]_2$  in 100 mL of methanol over a 30-min period with stirring in the dark, causing gas evolution and a color change from yellow-orange to dark red-brown. This suspension was stirred for 14 h in the dark and then filtered through a "coarse" frit in air, giving a yellow filtrate and a brown solid which was washed with 5 L of distilled water and then dried for 6 h under aspirator suction. The red-brown solid was washed with 400 mL of toluene and dried in air for 1 h, giving a red-black solid. The solid was extracted with 400 mL of acetone, giving a burgundy solution and some red-black acetone-insoluble material. The solution was filtered through filter paper and slowly cooled to –78 °C to afford 0.55 g (7%) of dark burgundy-colored microcrystals of 1. Found (Calcd for Hg<sub>9</sub>Co<sub>6</sub>(CO)<sub>18</sub>): Hg, 68.2 (67.8); Co, 13.0 (13.3); mol wt, 2817 (2663). The IR spectrum in THF (2015 (vs) and 1965 (m) cm<sup>-1</sup>) was the same as that prepared by the above method.

The acetone-insoluble material, formed in variable yields in the range 2-4 g (20-50%), did not react (IR) with a THF solution of  $HgI_2$ ,  $HgCl_2$ , or P-*n*-Bu<sub>3</sub>. Found (Calcd for  $[HgCo(CO)_3]_n$ ): Hg, 58.1 (58.4); Co, 16.9 (17.2). IR (Nujol): ν(CO) 2035 (s), 1980 (m) cm<sup>-1</sup>.

Reaction of 1 with HgI<sub>2</sub>. Preparation of 2. Addition of 0.790 g (1.74 mmol) of  $HgI_2$  to a solution of 0.514 g (0.193 mmol) of 1 in 30 mL of THF caused the solution to change from dark burgundy to light red-orange with  $\nu(CO)$  2062 (s) and 2024 (m) cm<sup>-1</sup>. TLC (50:50 THF/CH<sub>2</sub>Cl<sub>2</sub>) showed only one component to be present  $(R_f 0.46)$ . The product, isolated by removing the solvent by TTVD (trap-to-trap vacuum distillation), was soluble in THF and acetone but insoluble in toluene, CH<sub>2</sub>Cl<sub>2</sub>, and MeOH; mp decomposition without melting at about 50 °C. The yield was 87%, based on the formula  $(CO)_3Co(HgI)_3$ . Attempts to recrystallize the product by slowly cooling a THF, acetone, or THF/hexane solution were unsuccessful. Slow diffusion of hexane into a THF solution gave a mixture of red, orange, and yellow solids. Another sample prepared by the above reaction, followed by removal of the solvent by TTVD, appeared to be homogeneous and to be pure by IR spectroscopy. A mass spectrum showed only peaks due to Hg<sup>+</sup>, I<sup>+</sup>, and Co<sup>+</sup>. Found (Calcd for (CO)<sub>3</sub>Co(HgI)<sub>3</sub>, 2): Hg, 52.9 (53.5); Co, 5.15 (5.24); I, 33.6 (33.8); mol wt, 1094 (1125). IR (THF/CH<sub>2</sub>Cl<sub>2</sub>, 1:1):  $\nu$ (CO) 2056 (s), 2048 (w, sh), 2012  $(m) cm^{-1}$ 

In a similar experiment, the  $HgI_2$  was added in portions, 3 equiv (relative to 1) at a time. After 3 equiv had been added, the product had  $\nu(CO)$  (THF) 2034 (s) and 1989 (m) cm<sup>-1</sup>. After 6 equiv had been added, the spectrum showed  $\nu$ (CO) 2051 (s) and 2000 (m) cm<sup>-1</sup>, and after 9 equiv had been added, the spectrum showed  $\nu$ (CO) 2063 (s) and 2022 (m) cm<sup>-1</sup>.

Reaction of 1 with HgCl<sub>2</sub>. Preparation of 3. Addition of a solution of 0.410 g (1.51 mmol) of HgCl<sub>2</sub> in 20 mL of THF to a solution of 0.447 g (0.168 mmol) of 1 in 30 mL of THF with stirring over a 2-h period caused the formation of a yellow-orange suspension. The suspension was allowed to settle, the light blue supernatant liquid was decanted, and the yellow-orange solid was dried in vacuo. The solid was insoluble or very slightly soluble in THF, acetone, ethanol, methylene dichloride, methanol, toluene, and DMSO. UV/vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda$ (max) 295, 377 nm. Found (Calcd for (CO)<sub>3</sub>Co(HgCl)<sub>3</sub>, 3): Hg, 72.3 (70.71); Co, 6.82 (6.92). IR (Nujol): 2049 (s), 2012 (m)  $cm^{-1}$ .

Reaction of 1 with HgBr<sub>2</sub>. Preparation of 4. When a solution of 0.096 g (0.036 mmol) of 1 in 30 mL of THF was added to a solution of 0.120 g (0.333 mmol) of HgBr<sub>2</sub> in 30 mL of THF, a yellow-orange precipitate formed. The mixture was allowed to

<sup>(18)</sup> Kubicki, M. M.; Kergoat, R.; Guerchais, J. E.; Mercier, R.;
Douglade, J. J. Cryst. Mol. Struct. 1981, 11, 43.
(19) Ellis, J. E.; Barger, P. T.; Winzenburg, M. L. J. Chem. Soc., Chem.

Commun. 1977, 686.

<sup>(20)</sup> King, R. B. Organometallic Syntheses; Academic: New York, 1965; Vol. 1, p 102.

settle, and the pale yellow supernatant liquid was decanted. The yellow-orange solid was dried in vacuo. The product presumed to be (CO)<sub>3</sub>Co(HgBr)<sub>3</sub> (4) was insoluble in THF, acetone, toluene, ethanol, acetonitrile, and thiophene. No ions heavier than Hg<sup>+</sup> were observed in the mass spectrum. IR (KBr): 2044 (s), 1999 (m, sh) cm<sup>-1</sup>. The product was dissolved in 20 mL of pyridine, giving a red solution with no IR carbonyl absorptions and a gray precipitate. The solution was filtered through a "medium" frit containing Celite, and the solvent was removed via TTVD, giving a red solid. The solid became blue when dried in vacuo. Recrystallization by slowly cooling a toluene solution to -60 °C gave turquoise (py)<sub>2</sub>CoBr<sub>2</sub>.<sup>21</sup> Found (Calcd for (C<sub>5</sub>H<sub>5</sub>N)<sub>2</sub>CoBr<sub>2</sub>): Br, 41.54 (42.40); N, 7.28 (7.43); C, 31.84 (31.86); H, 2.75 (2.68).

**Reaction of 1 with Et<sub>4</sub>NI. Preparation of 5.** When 0.360 g (1.40 mmol) of Et<sub>4</sub>N<sup>+</sup>I<sup>-</sup> was added to a solution of 0.300 g (0.113 mmol) of 1 in 30 mL of THF, the appearance of the solution did not change. The mixture was stirred for 4 h in the dark and then was filtered through a "medium" frit containing Celite to remove unreacted Et<sub>4</sub>N<sup>+</sup>I<sup>-</sup>, giving a clear dark red solution. The solvent was removed via TTVD, and the solid was recrystallized from toluene/THF (2:1), giving red-black needlelike crystals. IR (CH<sub>2</sub>Cl<sub>2</sub>): 2050 (w), 2009 (s), 1965 (m) cm<sup>-1</sup>. <sup>1</sup>H NMR (acetone-d<sub>6</sub>):  $\delta$  3.48 (q, 2 H, J = 7.2 Hz, CH<sub>2</sub>), 1.39 (t, 3 H, J = 7.2 Hz, CH<sub>3</sub>). Found (Calcd for Hg<sub>9</sub>Co<sub>6</sub>(CO)<sub>18</sub>·(Et<sub>4</sub>NI)<sub>3</sub>, 5): Co, 10.2 (10.3); C, 12.85 (14.69); H, 1.70 (1.76); I, 10.66 (11.08), N, 0.9 (1.2).

Reaction of 1 with  $(CF_3CO_2)_2$ Hg. Preparation of 6. When 0.193 g (0.453 mmol) of  $(C\bar{F}_3C\bar{O}_2)_2Hg$  was added to a solution of 0.134 g (0.0503 mmol) of 1 in 10 mL of THF in the dark, the solution immediately changed from burgundy to lemon yellow with  $\nu(CO)$  2052 (s) and 2010 (m) cm<sup>-1</sup>. The solvent was removed by TTVD, and 40 mL of toluene was added in the dark, giving a light-sensitive, yellow solution with a small amount of off-white solid. The mixture was filtered in the dark through a "medium" frit containing Celite, and the resulting yellow solution was slowly cooled to -60 °C, giving 0.25 g (76%) of well-formed yellow to yellow-green crystals, mp 103-104 °C dec. Found (Calcd for  $(CO)_{3}Co(HgO_{2}CCF_{3})_{3}$ · $^{1}/_{2}(C_{6}H_{5}CH_{3}), 6)$ : Hg, 52.65 (53.27); Co, 6.49 (5.21); C, 12.78 (13.29); H, 0.39 (0.35). The presence of toluene was confirmed by  $^1H$  NMR.  $^{19}F$  NMR (CDCl\_3):  $\delta$  –74.54 (s, br, CF<sub>3</sub>). A mass spectrum showed no ions heavier than Hg<sup>+</sup>. When crystals were warmed to room temperature, they became opaque and noncrystalline, as shown by X-ray diffraction, so newly grown crystals were mounted under dim incandescent lights in 0.5-mm X-ray capillaries that contained a small amount of mother liquor. These crystals gave good X-ray rotation photographs, but on continued exposure to the X-ray beam, even at -60 °C, the crystals became black and non-crystalline.

**Reaction of 1 with Hg**( $S_2CNEt_2$ )<sub>2</sub>. When 0.557 g (1.12 mmol) of Hg( $S_2CNEt_2$ )<sub>2</sub> was added to a solution of 0.330 g (0.124 mmol) of 1 in 30 mL of acetone, the color changed from deep red to orange. On stirring for 10 min in the dark, the solution became green with gray precipitate. The solution was filtered through a "medium" frit containing Celite, giving a dark green solution. On cooling to -60 °C, a dark green, crystalline precipitate formed which was identified as  $Co(S_2CNEt_2)_2$  by comparison of its IR and <sup>13</sup>C and <sup>1</sup>H NMR spectra with those of an authentic sample.<sup>22</sup>

Attempted Reaction of 1 with  $(p-CH_3C_6H_5)_2Hg$ . Addition of 0.173 g (0.452 mmol) of  $(p-CH_3C_6H_5)_2Hg$  (Eastman) to a solution of 0.126 g (0.0473 mmol) of 1 did not change the IR spectrum of the solution. The  $(p-CH_3C_6H_5)_2Hg$  was isolated by slowing cooling the solution and identified by comparison of its <sup>1</sup>H NMR spectrum with that of an authentic sample. The supernatant liquid contained 1 as shown by its IR spectrum.

**Preparation of**  $(p - CH_3C_6H_4SO_3Hg)_3Co(CO)_3$  (7). To a solution of 2, prepared from 0.056 g (0.021 mmol) of 1 with 0.087 g (0.192 mmol) of HgI<sub>2</sub> in 20 mL of THF, was added 0.110 g (0.394 mmol) of solid p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>Ag (Eastman). The mixture was stirred for 1 h, in which time the solution changed from red-orange to yellow and a flocculent white precipitate formed. The mixture was filtered through a "medium" frit containing Celite, giving a clear yellow solution with  $\nu$ (CO) 2069 (s) and 2025 (m) cm<sup>-1</sup>. The product, isolated by removing the solvent by TTVD, was soluble in THF, acetone, and methylene chloride but not in toluene or

diethyl ether. TLC (acetone eluent) gave one spot at  $R_{\ell}$  0.49. With THF/CH<sub>2</sub>Cl<sub>2</sub> (1:1) eluent, there was also only one spot ( $R_f$  0.63). Slow cooling of a solution of the product in  $CH_2Cl_2$ /hexanes (2:1) gave a yellow powder that decomposed at room temperature in the dark over a 2-week period, giving a yellow product which was insoluble in THF or acetone. Found (Calcd for (p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>Hg)<sub>3</sub>Co(CO)<sub>3</sub>): Hg, 48.1 (47.82); Co, 4.57 (4.68); mol wt, 1295 (1258). <sup>1</sup>H NMR (acetone- $d_6$ ):  $\delta$  7.75 (d, 2 H, J = 8.1 Hz, CH), 7.29 (d, 2 H, J = 7.9 Hz, CH), 2.38 (s, 3 H, CH<sub>3</sub>). A similar reaction with AgNO<sub>3</sub> gave a yellow product with  $\nu(CO)$ (THF) 2074 (s) and 2029 (m)  $cm^{-1}$ . The product was soluble in THF, acetone, and methanol but not in toluene or methylene chloride. Likewise,  $AgBF_4$  (Alfa) gave a yellow product ( $\nu$ (CO) (THF) 2094 (s) and 2050 (m) cm<sup>-1</sup>) that decomposed on standing at room temperature for several days. Neither product was characterized.3

Reaction of 2 with n-Bu<sub>4</sub>N<sup>+</sup>I<sup>-</sup>. Preparation of 8. To a solution of 2, prepared from 0.308 g (0.116 mmol) of 1 with 0.474 g (1.04 mmol) of HgI<sub>2</sub> in 30 mL of THF, was added 0.507 g (1.37 mmol) of  $n-Bu_4N^+I^-$ , causing the solution to change from light red-orange to deep red with  $\nu$ (CO) 2016 (s) and 1964 (m) cm<sup>-1</sup>. The solvent was removed by TTVD, and the product was recrystallized by slowly cooling a methylene dichloride/toluene (3:1) solution to -60 °C. The deep red crystals formed were well-shaped rhombohedra, but on warming the solution to room temperature, a dark red oil was formed. This oil was recrystallized again, but the crystals did not diffract X-rays well enough for a unit-cell determination or single-crystal structure analysis. These crystals also changed to an oil on standing. The product decomposed slightly on standing at room temperature in the dark, giving a partially insoluble product over a 4-week period. Found (Calcd for  $(C_4H_9)_4N(CO)_3Co(HgI)_3I$ , 8): Hg, 40.8 (40.3); Co, 3.65 (3.94); I, 34.6 (34.0); C, 16.78 (15.27); H, 1.87 (2.43); N, 1.01 (0.94). <sup>1</sup>H NMR (acetone-d<sub>6</sub>) δ 3.48 (m, 2 H, CH<sub>2</sub>, 1.82 (m, 2 H, CH<sub>2</sub>), 1.47 (m, 2 H, CH<sub>2</sub>), 0.99 (t, 3 H, J = 7.1 Hz, CH<sub>3</sub>).

Reaction of 2 with PhLi. Preparation of 9. To a solution of 2, prepared by the reaction of 1.154 g (0.433 mmol) of 1 and 1.770 g (3.90 mmol) of HgI<sub>2</sub> in 30 mL of THF and cooled to -78°C, was added 7.8 mmol (4.58 mL of a 1.7 M solution) of phenyllithium (Aldrich) in diethyl ether/cyclohexane, causing the formation of a dark red suspension. The mixture was filtered through a "medium" frit containing Celite, giving a clear dark red solution. The solvent was removed by TTVD, and the solid was dried in vacuo. Methylene dichloride (30 mL) was distilled in, giving a clear red solution with  $\nu$ (CO) 2020 (s) and 1969 (m) cm<sup>-1</sup> and an undissolved gray solid. Toluene (25 mL) was distilled in, and the dark red solution was filtered through a "medium" frit containing Celite. The solvent was removed by TTVD, and the resulting red solid was washed with toluene. <sup>1</sup>H NMR (acetone- $d_6$ ):  $\delta$  7.85-7.10 (m, C<sub>6</sub>H<sub>5</sub>). IR (CH<sub>2</sub>Cl<sub>2</sub>): 2006 (s), 1957 (m) cm<sup>-1</sup>. A mass spectrum showed peaks due to  $C_6H_5^+$ , Hg<sup>+</sup>, and  $(CO)_{3}Co(HgC_{6}H_{5})^{+}$  (m/e (relative intensity) 77 (100), 202 (20), 408 (1)). Found (Calcd for  $(CO)_3Co(HgC_6H_5)_3$ , 9): Hg, 62.0 (61.6); Co, 5.91 (6.04); I, 1.3 (0.0).

Attempted Preparation of  $(CO)_3Co(HgBr)_3$  from Na<sub>3</sub>-Co(CO)<sub>3</sub> and HgX<sub>2</sub>. To a stirred solution of 2.96 g (8.2 mmol) of HgBr<sub>2</sub> in 40 mL of THF was added 0.58 g (2.1 mmol) of Na<sub>3</sub>Co(CO)<sub>3</sub> as a suspension in THF (40 mL). The mixture became dark brown, and a finely divided, gray-white solid precipitated. The solution was filtered through a "medium" frit and cooled to -60 °C, but no precipitate formed. The product was precipitated as a yellowish brown solid by addition of hexane (150 mL): IR (KBr) 2055 (ms), 2010 (m) cm<sup>-1</sup>; IR (Nujol) 2075 (m), 2025 (m) cm<sup>-1</sup>. Since conditions to recrytallize the product could not be found and since its solubility properties and IR spectra indicated it was not the desired product, it was not characterized further.

**Collection of X-ray Diffraction Data.** Attempts to grow crystals of 1 by slow cooling of an acetone solution gave dark burgundy crystals which fragmented on warming to room temperature. Crystals of  $Hg_9Co_6(CO)_{18}\cdot 2C_3H_6O$  were prepared by slowly evaporating a solution of 1 in acetone. Since these crystals readily lost solvent, a crystal was selected and mounted in a glovebag under an acetone-saturated nitrogen atmosphere. The crystal was mounted on the tip of a 0.3-mm Lindemann glass capillary that was sealed into a 0.5-mm capillary containing a small

 <sup>(21)</sup> King, H. C.; Koros, E.; Nelson, S. M. J. Chem. Soc. 1963, 5449.
 (22) Uden, P. C.; Bigley, I. E. Anal. Chem. Acta 1977, 94, 29.

Table I. Experimental Conditions and Data from the X-ray Structure Analysis of Hg<sub>9</sub>Co<sub>6</sub>(CO)<sub>18</sub>•2C<sub>3</sub>H<sub>6</sub>O

| Table | II. | <b>Fractional Coordinates</b>                      | for |
|-------|-----|----------------------------------------------------|-----|
|       | Hg  | $({}_{9}Co_{6}(CO)_{18} \bullet 2C_{3}H_{6}O^{a})$ |     |

| Crystal Data                                   |                                                       |  |  |  |  |  |
|------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| cryst shape                                    | tabular                                               |  |  |  |  |  |
| cryst faces (dist                              | $2\bar{1}\bar{1}, \bar{2}11 (0.032); 0\bar{1}2, 021,$ |  |  |  |  |  |
| to cryst center                                | $01\bar{2}, 0\bar{2}\bar{1}$ (0.25); $12\bar{1},$     |  |  |  |  |  |
| (mm))                                          | $\bar{1}\bar{2}1, 1\bar{2}1, \bar{1}2\bar{1}$ (0.14)  |  |  |  |  |  |
| cryst dimens, mm                               | $0.55 \times 0.30 \times 0.065$                       |  |  |  |  |  |
| cell parameters                                | a = 14.339 (5), $b = 21.024$                          |  |  |  |  |  |
| ···· <b>P</b> ··· ··· ···                      | (6), $c = 18.535$ (8) Å:                              |  |  |  |  |  |
|                                                | $\beta = 94.48 (3)^{\circ}$                           |  |  |  |  |  |
| cell vol. Å <sup>3</sup>                       | 5570.4 (36)                                           |  |  |  |  |  |
| Z                                              | 4                                                     |  |  |  |  |  |
| $rac{1}{2}$                                    | 3.31                                                  |  |  |  |  |  |
| Laue symmetry                                  | monoclinic                                            |  |  |  |  |  |
| space group                                    | $P_{2}/c$ $C_{5}^{5}$ No $14^{24}$                    |  |  |  |  |  |
| systematic absences                            | $0b0 \ b = 2n + 1$                                    |  |  |  |  |  |
| systematic absences                            | $b_{0l} l = 2n + 1$                                   |  |  |  |  |  |
| formula                                        | $C H C_0 H a O$                                       |  |  |  |  |  |
| mol mt                                         | 9770 A                                                |  |  |  |  |  |
| mor we                                         | 2115.4                                                |  |  |  |  |  |
| Data Col                                       | lection and Reduction                                 |  |  |  |  |  |
| radiatn                                        | Μο Κα                                                 |  |  |  |  |  |
| $\mu$ . cm <sup>-1</sup>                       | 270.9                                                 |  |  |  |  |  |
| takeoff angle, deg                             | 6.2                                                   |  |  |  |  |  |
| scan type                                      | ω                                                     |  |  |  |  |  |
| scan speed, deg min <sup>-1</sup>              | 1.5-29.3                                              |  |  |  |  |  |
| scan width, deg                                | 1.0                                                   |  |  |  |  |  |
| bkgd(total);scan ratio                         | 0.75:1                                                |  |  |  |  |  |
| std reflectns and freq                         | 3/60                                                  |  |  |  |  |  |
| variate of <i>L</i>                            | <4%                                                   |  |  |  |  |  |
| $2\theta$ limits, deg                          | 0.0-45.0                                              |  |  |  |  |  |
| criterion for observn                          | $4\sigma(F)$                                          |  |  |  |  |  |
| total reflectns measd                          | 5689                                                  |  |  |  |  |  |
| refletns in unique set                         | 5464                                                  |  |  |  |  |  |
| obsd refletns                                  | 2624                                                  |  |  |  |  |  |
| transmissn range <sup>a</sup> %                | 1-18                                                  |  |  |  |  |  |
| transmissi range, 70                           | 1 10                                                  |  |  |  |  |  |
| Structure Solution and Refinement <sup>b</sup> |                                                       |  |  |  |  |  |
| solution                                       | direct methods and difference Fourier                 |  |  |  |  |  |
| refinement                                     | block-diagonal least squares                          |  |  |  |  |  |
| anisotropic convergence <sup>c</sup>           | $R_1 = 0.081; R_2 = 0.120$                            |  |  |  |  |  |
| max shifts in parameters                       | position, 0.14; thermal, 0.43                         |  |  |  |  |  |
| in final cycle $(\delta/\sigma)$               |                                                       |  |  |  |  |  |
| error of fit <sup>d</sup>                      | 4.75                                                  |  |  |  |  |  |
| data/parameters                                | 8.4                                                   |  |  |  |  |  |
| ·-                                             | $\frac{1}{2}$                                         |  |  |  |  |  |

<sup>a</sup>Analytical absorption correction using ABSORB.<sup>25</sup> <sup>b</sup>Structure solution and refinement was done by using REDUCE<sup>26</sup> and CRYS-TALS<sup>27</sup> on a PRIME 850 computer operated by the Cornell Univratio on a fitting boso computer operation by the control of the second result of the second result. The second result is the second result of the second rescecee result of the second result of the second result of the

amount of mother liquor. The crystal was mounted on a Syntex  $P2_1$  automated four-circle diffractometer and was centered with 15 reflections having  $15^{\circ} < 2\theta < 21^{\circ}$ . Details of the crystal data, data collection, data reduction, and structure solution and refinement are presented in Table I. Metal atoms were given anisotropic thermal parameters and other atoms were refined isotropically. Hydrogen atoms were not included. Atomic coordinates, bond distances, and bond angles are given in Tables II, III, and IV, respectively. Thermal parameters are given in Table V. A PLUTO<sup>23</sup> drawing of the molecule is shown in Figure 1.

## **Results and Discussion**

**Preparation of Hg<sub>9</sub>Co<sub>6</sub>(CO)<sub>18</sub>.** Following its initial isolation as a byproduct, as described in the Introduction,

1978. (27) Watkin, D. J.; Carruthers, J. R. CRYSTALS; Chemical Crystallo-

graphic Laboratory, University of Oxford: Oxford, England, 1981.

| atom  | x/a                    | y/b         | z/c         | $U(iso), Å^2$ |
|-------|------------------------|-------------|-------------|---------------|
| Hg(1) | 0.1414 (4)             | -0.1727 (2) | 0.9505 (3)  | 0.073         |
| Hg(2) | 0.0865 (4)             | -0.2080(2)  | 0.7924 (3)  | 0.072         |
| Hg(3) | 0.2978 (4)             | -0.1987(2)  | 0.8499 (3)  | 0.071         |
| Hg(4) | 0.1416 (4)             | 0.0305 (2)  | 0.8823 (3)  | 0.075         |
| Hg(5) | 0.0844(4)              | -0.0110 (2) | 0.7265 (3)  | 0.077         |
| Hg(6) | 0.2964(4)              | 0.0033(2)   | 0.7807 (3)  | 0.075         |
| Hg(7) | 0.2990 (4)             | -0.0669(2)  | 0.9295 (3)  | 0.072         |
| Hg(8) | 0.0013 (4)             | -0.0867(2)  | 0.8541(3)   | 0.074         |
| Hg(9) | 0.2239(4)              | -0.1234(2)  | 0.7076 (3)  | 0.076         |
| Co(1) | -0.0244 (13)           | -0.2000(7)  | 0.8949 (9)  | 0.078         |
| Co(2) | 0.2291 (13)            | -0.2432 (7) | 0.7262(8)   | 0.068         |
| Co(3) | 0.3168(12)             | -0.1756 (7) | 0.9865 (9)  | 0.070         |
| Co(4) | -0.0235 (12)           | 0.0300 (7)  | 0.8207 (9)  | 0.072         |
| Co(5) | 0.2288(13)             | -0.0136 (8) | 0.6493 (9)  | 0.076         |
| Co(6) | 0.3171 (13)            | 0.0509 (7)  | 0.9083 (10) | 0.078         |
| C(11) | -0.005 (11)            | -0.286 (7)  | 0.915 (8)   | 0.11 (5)      |
| 0(11) | 0.015 (8)              | -0.334 (5)  | 0.929 (5)   | 0.13 (4)      |
| C(12) | -0.058 (7)             | -0.173 (4)  | 0.966 (5)   | 0.05 (3)      |
| O(12) | -0.097 (6)             | -0.159 (4)  | 1.029 (4)   | 0.10 (3)      |
| C(13) | -0.136 (10)            | -0.201 (6)  | 0.842(7)    | 0.10 (4)      |
| O(13) | -0.182 (6)             | -0.209 (3)  | 0.794 (4)   | 0.07 (2)      |
| C(21) | 0.224 (9)              | -0.312 (6)  | 0.775 (6)   | 0.08 (4)      |
| O(21) | 0.222 (6)              | -0.363 (4)  | 0.792(4)    | 0.10 (3)      |
| C(22) | 0.332(11)              | -0.247 (6)  | 0.700 (7)   | 0.09 (4)      |
| O(22) | 0.410 (9)              | -0.247 (5)  | 0.682 (6)   | 0.15 (4)      |
| C(23) | 0.157 (9)              | -0.253 (5)  | 0.648 (6)   | 0.07 (4)      |
| O(23) | 0.102 (8)              | -0.259 (5)  | 0.605 (6)   | 0.13 (4)      |
| C(31) | 0.303(12)              | -0.266 (8)  | 0.998 (8)   | 0.12 (6)      |
| O(31) | 0.295 (8)              | -0.312 (5)  | 1.022 (6)   | 0.14(4)       |
| C(32) | 0.424(11)              | -0.173 (6)  | 0.973 (7)   | 0.10(4)       |
| O(32) | 0.514(7)               | -0.166(4)   | 0.971(5)    | 0.11(3)       |
| O(33) | 0.296 (9)              | -0.136 (6)  | 1.062 (7)   | 0.08(4)       |
| O(33) | 0.293(7)               | -0.115(5)   | 1.124 (b)   | 0.13(4)       |
| O(41) | 0.000(11)              | 0.104(6)    | 0.781(6)    | 0.12(0)       |
| C(41) | 0.013(7)               | 0.100(4)    | 0.774(3)    | 0.10(3)       |
| O(42) | -0.132(3)              | -0.003(3)   | 0.773(0)    | 0.07(3)       |
| C(42) | -0.130(0)<br>-0.071(0) | -0.014(4)   | 0.727(4)    | 0.09(3)       |
| O(43) | -0.097 (6)             | 0.044(0)    | 0.000 (7)   | 0.03(4)       |
| C(51) | 0.007(0)               | 0.040(4)    | 0.638(5)    | 0.11(3)       |
| O(51) | 0.210(7)               | 0.121(4)    | 0.636(5)    | 0.00(0)       |
| C(52) | 0.334(11)              | -0.033 (6)  | 0.622(7)    | 0.09(4)       |
| O(52) | 0.410 (8)              | -0.048(5)   | 0.608 (6)   | 0.14(4)       |
| C(53) | 0.167(11)              | -0.056 (7)  | 0.576 (8)   | 0.10 (5)      |
| O(53) | 0.126 (9)              | -0.064 (6)  | 0.529 (7)   | 0.16 (5)      |
| C(61) | 0.311 (13)             | 0.121 (9)   | 0.878 (9)   | 0.15 (7)      |
| O(61) | 0.299 (7)              | 0.180 (5)   | 0.850 (5)   | 0.12(3)       |
| C(62) | 0.437(10)              | 0.034 (5)   | 0.902 (6)   | 0.08 (4)      |
| O(62) | 0.514 (9)              | 0.035 (5)   | 0.912 (6)   | 0.14 (4)      |
| C(63) | 0.306 (11)             | 0.070 (7)   | 0.990 (9)   | 0.12 (5)      |
| O(63) | 0.293 (7)              | 0.075 (4)   | 1.064 (5)   | 0.12(3)       |
| C(1)  | 0.588 (20)             | -0.038 (13) | 0.732 (15)  | 0.28 (13)     |
| C(2)  | 0.541 (14)             | -0.110 (8)  | 0.786 (9)   | 0.14 (6)      |
| O(2)  | 0.446 (7)              | -0.107 (4)  | 0.790 (5)   | 0.11 (3)      |
| C(3)  | 0.581 (12)             | -0.184 (7)  | 0.801 (8)   | 0.13 (6)      |
| C(4)  | 0.507(15)              | 0.123 (9)   | 0.696 (10)  | 0.18 (8)      |
| C(5)  | 0.569 (17)             | 0.126(12)   | 0.637(13)   | 0.20 (9)      |
| U(5)  | 0.564 (9)              | 0.191 (7)   | 0.628 (7)   | 0.18 (5)      |
| U(6)  | 0.614 (19)             | 0.075 (13)  | 0.582 (14)  | 0.25(12)      |

<sup>a</sup> The standard deviation of the least significant figure is given in parentheses.

attempts to prepare 1 by the addition of a solution of NaOH and  $Hg(CN)_2$  in methanol/water to a methanol solution of  $Hg[Co(CO)_4]_2$  gave variable yields of 1 and frequently resulted in the formation of a finely divided, red-black, intractable solid with  $\nu(CO)$  2035 (s) and 1980 (m)  $cm^{-1}$ , instead of 1, a dark, burgundy-red solid. Use of Ba(OH)<sub>2</sub>, instead of NaOH, along with thorough washing and drying of the product, provided a convenient, albeit low-yield (7-10%), synthesis (eq 1). In most cases, sub-

$$Ba(OH)_{2} + Hg(CN)_{2} + Hg[Co(CO)_{4}]_{2} \rightarrow Hg_{9}Co_{6}(CO)_{18} + [HgCo(CO)_{3}]_{n} + CO + ? (1)$$

<sup>(23)</sup> Motherwell, W. D. S. PLUTO78; Cambridge Crystallographic Data Centre: Cambridge, England, 1978.

<sup>(24)</sup> Lonsdale, K.; Henry, N. F. M., Eds. International Tables for X-ray Crystallography; Kynoch: Birmingham, England, 1969; Vol. 1.
(25) Templeton, L. K.; Templeton, D. H. ABSORB, University of California: Berkeley, CA, 1973.

<sup>(26)</sup> Leonowicz, M. E. REDUCE; Cornell University: Ithaca, New York,

Table III. Selected Bond Distances (Å) of Hg<sub>9</sub>Co<sub>6</sub>(CO)<sub>18</sub> • 2C<sub>3</sub>H<sub>6</sub>O<sup>a</sup>

|                                           |            |                |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          | _     |
|-------------------------------------------|------------|----------------|-----------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-------|
| Hg(1)-Hg                                  | (2) 3.066  | (7) Hg(        | 1)-Hg(3)  | 3.076 (7)            | Hg(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -Hg(3)  | 3.13     | 8 (8) |
| Hg(4)-Hg                                  | (5) 3.068  | $H_{g}(4)$     | 4)-Hg(6)  | 3.077 (8)            | Hg(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -Hg(6)  | 3.14     | 1 (8) |
|                                           |            | Hg(trig)-]     | Hg(trig)( | average) =           | 3.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,      |          | - (*) |
| Hg(1)                                     | I)-Hg(7)   | 3.216          | (7)       | Hg(1)-Hg             | z(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.153   | (7)      |       |
| Hg(2                                      | 2)-Hg(8)   | 3.086          | (7)       | Hg(2)-Hg             | z(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.161   | (7)      |       |
| Hg(3                                      | $H_{g}(7)$ | 3.138          | (6)       | Hg(3)-Hg             | r(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.185   | (7)      |       |
| Hg(4                                      | H - Hg(7)  | 3.122          | (7)       | Hg(4)-Hg             | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.199   | (7)      |       |
| Hg(5                                      | b) - Hg(8) | 3.160          | (7)       | Hg(5)-Hg             | (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.133   | (7)      |       |
| Hg(e                                      | Hg(7)      | 3.127          | (7)       | Hg(6)-Hg             | (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.130   | (7)      |       |
|                                           | F          | Ig(trig)-H     | g(square) | (average) =          | 3.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | (.)      |       |
|                                           |            |                |           | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |       |
| Hg(1                                      | -Co(1)     | 2.580          | (19)      | Hg(1)-Co             | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.552   | (18)     |       |
| Hg(2                                      | 2)-Co(1)   | 2.579          | (18)      | Hg(2)-Co             | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.574   | (18)     |       |
| Hg(3                                      | -Co(2)     | 2.599          | (16)      | Hg(3)-Co             | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.573   | (17)     |       |
| Hg(4                                      | )-Co(4)    | 2.547          | (18)      | Hg(4)-Co             | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.561   | (20)     |       |
| Hg(5)                                     | )-Co(4)    | 2.571          | (18)      | Hg(5)-Co             | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.609   | (18)     |       |
| Hg(6                                      | 6)-Co(5)   | 2.575          | (17)      | Hg(6)-Co             | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.564   | (18)     |       |
|                                           |            | Hg(trig        | )-Co(ave  | rage) = 2.5'         | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | . ,      |       |
|                                           |            |                |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |       |
| Hg(7                                      | )-Co(3)    | 2.521          | (16)      | Hg(7)-Co             | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.525   | (16)     |       |
| Hg(8                                      | )-Co(1)    | 2.535          | (16)      | Hg(8)-Co             | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.548   | (15)     |       |
| Hg(9                                      | )-Co(2)    | 2.541          | (15)      | Hg(9)–Co             | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.553   | (17)     |       |
|                                           |            | Hg(squar       | e)-Co(av  | /erage) = 2.         | 537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |          |       |
| Co(1)-C(11                                | 1 86 (     | 16) Co(1       | 0(10)     | 1 54 (10)            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0(10)   |          |       |
| $C_{0}(2) = C(2)$                         | 1.00(      | 10) Co(1)      | ) - C(12) | 1.54 (10)            | Co(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(13)   | 1.81     | (14)  |
| $C_0(2) = C(2)$                           | 1.72(      | 13) Co(2)      | ) - C(22) | 1.59 (15)            | Co(2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(23)   | 1.72     | (13)  |
| $C_{0}(3) = C_{0}(3)$                     | ) 1.92 (   | 17) Co(3)      | ) - C(32) | 1.58 (16)            | Co(3)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(33)   | 1.67     | (13)  |
| $C_{0}(4) = C(4)$                         | 1.77(      | 16) Co(4)      | )-C(42)   | 1.82(12)             | Co(4)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(43)   | 1.67     | (13)  |
| $C_{0}(0) = C_{0}(0)$                     | ) 1.63 (   | 10) Co(5       | )-C(52)   | 1.68(15)             | Co(5)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(53)   | 1.80     | (16)  |
| 0(6)-0(61                                 | .) 1.57 (. | 19) $C_{0}(6)$ | -C(62)    | 1.76(14)             | Co(6)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(63)   | 1.59     | (16)  |
| Co-C(average) = 1.71                      |            |                |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |       |
| C(11) = O(11)                             | ) 1.07 (   | 15) C(19)      | -0(12)    | 1.96 (11)            | C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0(10)   | 1 00     | (10)  |
| C(21) = O(21)                             | 1107(      | (12) = C(12)   | -0(22)    | 1.30(11)<br>1.90(15) | C(13) - C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0(13)   | 1.08     | (13)  |
| C(31) = O(31)                             | 108(       | (22) = C(22)   | -0(22)    | 1.20(15)<br>1.20(15) | C(23) = C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O(23)   | 1.09     | (13)  |
| C(01) = O(01)                             | 1.00(.)    | C(32)          | O(32)     | 1.30(15)             | C(33) - C(33 | O(33)   | 1.24     | (13)  |
| 2(51) - 0(51)                             | 1.10(1)    | (13)  C(42)    | O(42)     | 1.20 (12)            | C(43)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0(43)   | 1.32     | (13)  |
| (61) - 0(61)                              | 1.24(1)    | (02)           | -0(32)    | 1.18 (15)            | C(53)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0(53)   | 1.03     | (16)  |
| -0(01)                                    | ) 1.30 (1  | (62)           | -0(62)    | 1.11(14)             | C(63)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U(63)   | 1.39     | (15)  |
| C=O(average) = 1.20                       |            |                |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |       |
| C(1)-C(2) 1.97 (29) $C(4)-C(5)$ 1.46 (05) |            |                |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |       |
| C(2)                                      | -C(3)      | 1.66 (9        | 20)       | C(5) = C(6)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.40 (2 | 0)<br>0) |       |
| Č                                         | -0(2)      | 1.37 (1        | 18)       | C(5) = C(6)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.04 (2 | a)       |       |
| U(2)                                      |            |                | laverage  | 0(0) = 1.68          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.35 (2 | Z)       |       |
| C = O(average) = 1.38                     |            |                |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |       |
| (average) = 1.00                          |            |                |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |       |

<sup>a</sup> The standard deviation of the least significant figure of each is given in parentheses.



Figure 1. The structure of  $Hg_9Co_6(CO)_{18}$ · $2C_3H_6O$  as drawn by PLUTO. For clarity, acetone molecules have been omitted.

stantial amounts (up to 40%) of the insoluble component formed. The fate of  $CN^-$  is not known. Several attempts to prepare 1 from  $Na_3Co(CO)_3$  and various mercury(II) salts were not successful; I was not detected by IR spectroscopy in any of the cases. I is moderately soluble in organic solvents of intermediate polarity. It is surprisingly stable to light, air, and water; one sample was unchanged during more than a year in DMSO solution exposed to air. Upon recrystallization from acetone, 1 is initially isolated

Table IV. Selected Bond Angles (deg) of  $Hg_9Co_6(CO)_{18} \bullet 2C_3H_6O^a$ 

| Co(1)-Hg(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1)-Co(3)              | 163.2 (5)         | Co(4)-Hg(4)-Co(6)                     | ) 161.8 (6)         |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|---------------------------------------|---------------------|--|--|--|
| Co(1)-Hg(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2)–Co(2)              | 158.3 (6)         | Co(4) - Hg(5) - Co(5)                 | ) 157.7 (6)         |  |  |  |
| Co(2)-Hg(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3)-Co(3)              | 160.2 (6)         | $C_{0}(5) - H_{g}(6) - C_{0}(6)$      | 159.1(6)            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Co-Hg                 | (terminal)-       | Co(average) = 160.0                   | , 100.1 (0)         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | (terminur)        | co(average) - 100.0                   |                     |  |  |  |
| Co(3)-Hg(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7)–Co(6)              | 161.0 (6)         | Co(2)-Hg(9)-Co(5)                     | ) 162.2 (5)         |  |  |  |
| Co(1)-Hg(8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8)-Co(4)              | 163.0 (6)         |                                       |                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Co-Hg                 | (central)-C       | O(average) = 162.1                    |                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                   | -(4.01.80) -02.1                      |                     |  |  |  |
| Hg(1)-Co(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1) - Hg(2)            | ) 72.9 (5)        | Hg(4)-Co(4)-Hg(5)                     | ) 73.6 (5)          |  |  |  |
| Hg(1)-Co(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1) - Hg(8)            | ) 76.1 (5)        | Hg(4)-Co(4)-Hg(8)                     | ) 77.8 (5)          |  |  |  |
| Hg(2)-Co(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1) - Hg(8)            | 74.2(5)           | $H_{g}(5) - C_{0}(4) - H_{g}(8)$      | 762(5)              |  |  |  |
| Hg(2)-Co(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2) - Hg(3)            | 74.7 (4)          | $H_{g}(5) - C_{0}(5) - H_{g}(6)$      | 746(4)              |  |  |  |
| $H_{g}(2)-Co($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2) - H_{\sigma}(9)$  | 76.3 (5)          | $H_{g}(5) = C_{0}(5) = H_{g}(0)$      | 74.0(4)             |  |  |  |
| $H_{q}(3) - C_{q}(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2) - U_{\sigma}(0)$  | 766(4)            | $H_{\pi}(6) = C_0(5) = H_{\pi}(6)$    | (14.1(0))           |  |  |  |
| $H_{g}(3) = Co(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2)~ng(9)<br>9) II~(9) | 70.0 (4)          | Hg(0) - Co(0) - Hg(9)                 | ) 75.2 (5)          |  |  |  |
| Hg(1) - Co(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3) - Hg(3)            | 73.8 (5)          | Hg(4)-Co(6)-Hg(6)                     | ) 73.8 (5)          |  |  |  |
| Hg(1)-Co(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3) - Hg(7)            | 78.7 (5)          | Hg(4)-Co(6)-Hg(7)                     | ) 75.7 (5)          |  |  |  |
| Hg(3)-Co(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3) - Hg(7)            | 76.0 (5)          | Hg(6)-Co(6)-Hg(7)                     | ) 75.8 (5)          |  |  |  |
| Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (termina              | l)-Co-Hg(ta       | erminal)(average) =                   | 73.9                |  |  |  |
| He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (termina              | al)-Co-Hg(        | (average) = 1                         | 76.1                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | ,B(               | (utoruge)                             | 0.1                 |  |  |  |
| Hg(1)-Co()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1)-C(11)              | 91 (5)            | Hg(4)-Co(4)-C(41)                     | 89 (5)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(12)                | 85 (4)            | -C(42)                                | 163 (4)             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(13)                | 165(4)            | -C(43)                                | 92 (4)              |  |  |  |
| Hg(2)-Co(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D = C(11)             | 90 (5)            | $H_{q}(5) = C_{q}(4) = C(41)$         | 82 ( <del>1</del> ) |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(12)                | 155(4)            | C(42)                                 |                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(12)                 | 100(4)            | -0(42)                                | 96 (4)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0(13)                | 100(4)            | -C(43)                                | 162 (4)             |  |  |  |
| Hg(8) - Co(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(11)                 | 162 (5)           | Hg(8)-Co(4)-C(41)                     | 157 (5)             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(12)                | 88 (3)            | -C(42)                                | 86 (3)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(13)                | 89 (4)            | -C(43)                                | 91 (4)              |  |  |  |
| Hg(2)-Co(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2)-C(21)              | 86 (4)            | $H_{g}(5) - C_{0}(5) - C(51)$         | 88 (4)              |  |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -C(22)                | 162 (5)           |                                       | 160 (5)             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(23)                | 89 (4)            | -C(52)                                | 100 (5)             |  |  |  |
| $H_{\sigma}(3) = C_{\sigma}(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(20)                 | 82 (4)            | $H_{-}(\theta) = O_{+}(E) = O_{-}(E)$ | 94 (5)              |  |  |  |
| 11g(0) -C0(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O(21)                 | 00 (4)            | ng(6)-Co(5)-C(51)                     | 91 (3)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0(22)                | 89 (5)            | -C(52)                                | 92 (5)              |  |  |  |
| <b>TT</b> (0) <b>O</b> (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -C(23)                | 161(4)            | -C(53)                                | 156 (5)             |  |  |  |
| Hg(9)-Co(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -C(21)                | 155 (4)           | Hg(9)-Co(5)-C(51)                     | 160 (4)             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(22)                | 91 (4)            | -C(52)                                | 88 (4)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(23)                | 90 (4)            | -C(53)                                | 81 (5)              |  |  |  |
| Hg(1)-Co(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -C(31)                | 87 (5)            | $H_{\sigma}(4) - C_{0}(6) - C(61)$    | 94(7)               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(32)                | 155 (5)           | -C(62)                                | 154 (1)             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(33)                | 100 (0)<br>99 (5) | -C(02)                                | 104(4)              |  |  |  |
| $\mathbf{H}_{\alpha}(2) = \mathbf{C}_{\alpha}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0(00)                | 00 (0)            | -0(63)                                | 93 (6)              |  |  |  |
| ng(3)=00(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0(01)                 | 60 (0)            | Hg(6) = Co(6) = C(61)                 | 92 (6)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(32)                | 83 (5)            | -C(62)                                | 85 (4)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(33)                | 155 (4)           | -C(63)                                | 165 (5)             |  |  |  |
| Hg(7)-Co(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )-C(31)               | 159 (5)           | Hg(7)-Co(6)-C(61)                     | 166(7)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(32)                | 89 (5)            | -C(62)                                | 86 (4)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C(33)                | 83 (4)            | -C(63)                                | 94 (5)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hg-C                  | O-C(trans)        | (average) = 160                       | 01(0)               |  |  |  |
| $H\sigma = Co = C(cis)(cvcrage) = 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                   |                                       |                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                     | 00 0(015)(0       | avoluge) ov                           |                     |  |  |  |
| C(11)-Co(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )-C(12)               | 104 (6)           | C(41)-Co(4)-C(42)                     | 104 (6)             |  |  |  |
| C(11)-Co(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )-C(13)               | 102 (6)           | C(41)-Co(4)-C(43)                     | 108 (6)             |  |  |  |
| $C(12) - C_0(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(13)                | 98 (6)            | C(42) - Co(4) - C(43)                 | 05 (6)              |  |  |  |
| $C(21) - C_0(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C(22)                | 101 (6)           | $C(51) - C_0(5) - C(50)$              | 107 (6)             |  |  |  |
| $C(21) = C_{0}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C(22)                | 107(0)            | C(51) = C(5) = C(52)                  | 107 (6)             |  |  |  |
| C(21) = CO(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -C(23)                | 107 (6)           | C(51) - Co(5) - C(53)                 | 110 (6)             |  |  |  |
| C(22) - Co(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) - C(23)             | 104 (6)           | C(52)-Co(5)-C(53)                     | 93 (7)              |  |  |  |
| C(31)-Co(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )-C(32)               | 99 (7)            | C(61)-Co(6)-C(62)                     | 101 (8)             |  |  |  |
| C(31)-Co(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )–C(33)               | 112 (6)           | C(61)-Co(6)-C(63)                     | 96 (8)              |  |  |  |
| C(32)-Co(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )-C(33)               | 111(7)            | C(62)-Co(6)-C(63)                     | 106 (7)             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C                     | -Co-C(aver        | (age) = 103                           | 100 (1)             |  |  |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                   | ( <b>1Bc</b> ) <b>100</b>             |                     |  |  |  |
| Co(1)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0(11)                | 173 (16)          | Co(4) - C(41) - O(41)                 | 162 (13)            |  |  |  |
| -C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -O(12)                | 170 (8)           | -C(42)-O(42)                          | 164 (10)            |  |  |  |
| -C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0(13)                | 155(12)           | -C(43)-O(43)                          | 169 (11)            |  |  |  |
| $C_0(2) - C(21)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0(21)                | 165 (11)          | $C_0(5) = C(51) = O(51)$              | 172 (0)             |  |  |  |
| -C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0(22)                | 177(12)           | -C(59)_C(01)                          | 176 (3)             |  |  |  |
| _C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0(22)                | 170 (10)          | O(52) - O(52)                         | 1/0 (13)            |  |  |  |
| Co(2) C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0(23)                 | 100 (12)          | -0(53)-0(53)                          | 160 (15)            |  |  |  |
| CO(3)-C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0(31)                | 102 (15)          | Co(6)-C(61)-O(61)                     | 175 (16)            |  |  |  |
| -0(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0(32)                | 170 (12)          | -C(62)-O(62)                          | 162 (12)            |  |  |  |
| -C(33)-O(33) = 167 (12) = -C(63)-O(63) = 170 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                   |                                       |                     |  |  |  |
| Co-C-O(average) = 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                   |                                       |                     |  |  |  |
| C(1) = C(2) = C(2) 199 (15) $C(2) = C(2)$ $C(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                   |                                       |                     |  |  |  |
| O(1) - O(2) - O(2) - O(3) - |                       | 132 (15)          | C(4) - C(5) - C(6)                    | 137 (22)            |  |  |  |
| C(1) - C(2) - | 0(2)                  | 111 (15)          | C(4)-C(5)-O(5)                        | 95 (19)             |  |  |  |
| C(3) - C(2) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U(2)                  | 112 (14)          | C(6)-C(5)-O(5)                        | 126 (21)            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C                     | -C-C(avera        | age) = 134                            |                     |  |  |  |
| C-C-O(average) = 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |                                       |                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                   |                                       |                     |  |  |  |

<sup>a</sup> The standard deviation of the least significant figure of each angle is given in parentheses.

Table VI. Infrared  $[\nu(CO)]$  Spectra and Colors

|     | $\nu(CO),^a$                                     |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| no. | cm <sup>-1</sup>                                 | solv                                                                                                                                                                                                                                                                                                         | color                                                                                                                                                                                                                                                                                                                                                                                   |
| 1   | 2015, 1965                                       | THF                                                                                                                                                                                                                                                                                                          | burgundy                                                                                                                                                                                                                                                                                                                                                                                |
| 2   | 2062, 2024                                       | THF                                                                                                                                                                                                                                                                                                          | red-orange                                                                                                                                                                                                                                                                                                                                                                              |
| 3   | 2049, 2012                                       | Nujol                                                                                                                                                                                                                                                                                                        | yellow-orange                                                                                                                                                                                                                                                                                                                                                                           |
| 4   | 2044, 1999                                       | KBr                                                                                                                                                                                                                                                                                                          | yellow-orange                                                                                                                                                                                                                                                                                                                                                                           |
| 5   | 2015, 1955                                       | THF                                                                                                                                                                                                                                                                                                          | dark red                                                                                                                                                                                                                                                                                                                                                                                |
| 6   | 2052, 2010                                       | THF                                                                                                                                                                                                                                                                                                          | yellow                                                                                                                                                                                                                                                                                                                                                                                  |
| 7   | 2069, 2025                                       | THF                                                                                                                                                                                                                                                                                                          | yellow                                                                                                                                                                                                                                                                                                                                                                                  |
| 8   | 2016, 1964                                       | THF                                                                                                                                                                                                                                                                                                          | deep red                                                                                                                                                                                                                                                                                                                                                                                |
| 9   | 2020, 1969                                       | THF                                                                                                                                                                                                                                                                                                          | red                                                                                                                                                                                                                                                                                                                                                                                     |
|     | no.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | $\begin{array}{c c} & \nu({\rm CO}),^a \\ {\rm no.} & {\rm cm}^{-1} \\ \hline 1 & 2015, 1965 \\ {\rm 2} & 2062, 2024 \\ {\rm 3} & 2049, 2012 \\ {\rm 4} & 2044, 1999 \\ {\rm 5} & 2015, 1955 \\ {\rm 6} & 2052, 2010 \\ {\rm 7} & 2069, 2025 \\ {\rm 8} & 2016, 1964 \\ {\rm 9} & 2020, 1969 \\ \end{array}$ | $\begin{array}{c c} & \nu({\rm CO}),^a \\ {\rm no.} & {\rm cm}^{-1} & {\rm solv} \\ \hline 1 & 2015, 1965 & {\rm THF} \\ 2 & 2062, 2024 & {\rm THF} \\ 3 & 2049, 2012 & {\rm Nujol} \\ 4 & 2044, 1999 & {\rm KBr} \\ 5 & 2015, 1955 & {\rm THF} \\ 6 & 2052, 2010 & {\rm THF} \\ 7 & 2069, 2025 & {\rm THF} \\ 8 & 2016, 1964 & {\rm THF} \\ 9 & 2020, 1969 & {\rm THF} \\ \end{array}$ |

<sup>a</sup> Higher frequency peak is strong and lower frequency peak is weak to medium intensity.

as a bis(acetone) solvate, but the solvent is rapidly lost at room temperature, as shown by the elemental analysis and IR spectroscopy. The IR spectrum (C-O stretching region) of 1 in THF shows two major bands, 2015 (s) and 1965 (m)  $cm^{-1}$ , assigned to the A<sub>1</sub> and E stretching modes, respectively, of a  $Co(CO)_3$  group with  $C_{3v}$  geometry.<sup>28</sup> The observed <sup>59</sup>Co NMR line width  $\Delta v_{1/2} = 360$  Hz ( $\delta$  -225 vs  $Co(CO)_4$ ) is consistent with this symmetry environment.<sup>29</sup> The close similarity of the IR spectra of 1 in DMSO and in THF or Nujol suggests that, as with  $Hg[Co(CO)_4]_2$ ,<sup>30</sup> ionic dissociation does not occur to a significant extent. The molecular weight of 1, measured cryscopically in sulfolane, was found to be 2817 g/mol, consistent with the presence of an undissociated hexamer,  $[Hg_{1,5}Co(CO)_3]_6$ , in solution.

Crystal Structure of Hg<sub>9</sub>Co<sub>6</sub>(CO)<sub>18</sub>·2C<sub>3</sub>H<sub>6</sub>O. Because the unusual stability and stoichiometry of 1 suggested an unusual structure, a single-crystal X-ray analysis was carried out, establishing the structure shown in Figure 1. The metal framework is best described as a distorted rectangular trigonal prism with fac-(CO)<sub>3</sub>Co fragments at each corner and a mercury atom at the center of each edge. Mercury atoms Hg(1)-Hg(6), on the edges of the triangular faces (Hg(trig)), are located slightly inside the two  $Co_3$ planes and outside the lines connecting adjacent cobalt atoms. Mercury atoms Hg(7)-Hg(9), on the edges of the square faces (Hg(sq)), are bent toward the center of the cluster. The cobalt atoms exhibit distorted octahedral geometry with the C-Co-C angles averaging 103° while the Hg-Co-Hg angles average 75°. These distortions are at least partly caused by geometric requirements; it is impossible for the cluster to have 90° angles at cobalt and 180° angles at mercury and to maintain the trigonalprismatic arrangement of metal atoms.

There are several interesting features about the structure. Very few compounds are known to contain fac- $(CO)_3CoX_3$  units: As<sub>3</sub>Co $(CO)_3^{31a}$  and  $[SbCo(CO)_3]_4$ .<sup>31b</sup> The average C-Co-C angle of 100° and Sb-Co-Sb angle of 74.3° are very similar to the C-Co-C and Hg-Co-Hg angles of 103° and 75° in 1, respectively. The Hg(trig)-Co and Hg(sq)-Co distances were 2.574 and 2.537 Å; both values are slightly greater than the Hg–Co distance of 2.499 Å in  $Hg[Co(CO)_4]_2$ .<sup>32</sup> The average distance between Hg(trig) atoms is 3.094 Å, while the average Hg(sq)-Hg(trig) distance is 3.151 Å. These distances are comparable to the 2.99 Å found for nearest neighbors in mercury metal at -40



Figure 2. A space-filling model of  $Hg_9Co_6(CO)_{18} \cdot 2C_3H_6O$  as drawn by PLUTO.

°C<sup>33</sup> and the average Hg–Hg distance of 3.142 Å observed in  $Hg_6Rh_4[P(Me)_3]_{12}$ .<sup>6</sup> Formally, both 1 and  $Hg_6Rh_4[P (Me)_{3}_{12}$  are made up of  $Hg_{1.5}ML_{3}$  units, and it is not clear why the clusters adopt different degrees of oligomerization.

The nature of the Hg-Hg interactions in this type of cluster is open to question. Although the Hg-Hg distance of ca. 3.1 Å is well within bonding distance, this does not necessarily imply a bonding interaction. As noted by Grdenić, the additivity rule for atomic radii does not work well for mercury;<sup>34</sup> the Hg-Hg distance in Hg(I)-transition-metal compounds can vary from 2.651<sup>35</sup> to 3.225 Å,<sup>36</sup> in spite of the fact that there is clearly a Hg-Hg bond in each case. Extended Hückel calculations on 1 and, for comparison, on  $(CO)_4 Fe(HgCl)_2$  (with a Hg-Hg distance of 3.24 Å) show small overlap populations between mercury atoms, indicating that the bonding interactions, if any, are small.<sup>37</sup>

The stereochemistry observed in several compounds containing two or more mercury atoms bonded to the same transition metal is suggestive of a bonding interaction;4-10,38 the mercury atoms are cis with an Hg-M-Hg angle of 60–80° and an Hg–Hg distance less than 3.3 Å. In addition, comparison of the analogous clusters Hg[NiCp- $(GePh_3)HgGePh_3]_2^5$  and  $Cd[NiCp(GePh_3)CdGePh_3]_2^{39}$ shows a Hg-Hg distance of 3.177 Å in the former, but a Cd-Cd distance of 3.353 Å in the latter, in spite of the similar size of mercury and cadmium atoms.<sup>40</sup> The Hg-Ni-Hg angle of 81° is substantially smaller than the Cd-Ni-Cd angle of 86°. This evidence implies that some interaction occurs between adjacent mercury atoms in clusters of this type, but it is likely that it is much smaller than the covalent Hg-M bonds. The simple valence bond description of the bonding in these clusters (which ignores Hg-Hg interactions) is adequate for understanding the stoichiometry and major structural features of 1.

Reactions of 1 with Lewis Bases. For the linear derivatives,  $Hg(ML_n)_2$ , mercury is known to act as a Lewis

<sup>(28)</sup> Braterman, P. S. Metal Carbonyl Spectra; Academic: New York, 1975; pp 44-46.

<sup>(29)</sup> Harris, R. K.; Mann, B. E. NMR and the Periodic Table; Academic: New York, 1978.

<sup>(30)</sup> Burlitch, J. M. J. Am. Chem. Soc. 1969, 91, 4562

 <sup>(31) (</sup>a) Foust, A. S.; Foster, M. S.; Dahl, L. F. J. Am. Chem Soc. 1969, 91, 5631.
 (b) Foust, A. S.; Dahl, L. F. Ibid. 1970, 92, 7337.

<sup>(32)</sup> Sheldrick, G. M.; Simpson, R. N. F. J. Chem. Soc. A 1968, 1005.

<sup>(33)</sup> Barrett, C. S. Acta Crystallogr. 1957, 10, 58.
(34) Grdenić, D. Q. Rev., Chem. Soc. 1965, 19, 303.
(35) Cecconi, F.; Ghilardi, C. A.; Midollini, S.; Moneti, S. J. Chem. Soc., Dalton Trans. 1983, 349.
 (36) Albinati, A.; Moor, A.; Pregosin, P. S.; Venanzi, L. M. J. Am.

Chem. Soc. 1982, 104, 7672.

<sup>(0.7)</sup> remee, D. A.; Ragosta, J. M., unpublished observations. Average reduced overlap populations for  $(CO)_4Fe(HgCl)_2$ : Fe-Hg, 0.360; Fe-C, 0.855; Hg-Hg, 0.026; Hg-Cl, 0.296; C-C, 0.031. Average reduced overlap populations for Hg<sub>9</sub>Co<sub>8</sub>(CO)<sub>18</sub>: Co-Hg, 0.262; Co-C, 0.868; Hg-Hg, 0.039; C-C 0.035. (37) Femec, D. A.; Ragosta, J. M., unpublished observations. Average

<sup>C-C 0.033.
(38) (a) Kubicki, M. M.; Kergoat, R.; Guerchais, J. E.; Bois, C.; L'-Haridon, P. Inorg. Chim. Acta 1980, 43, 17.
(b) Kubicki, M. M.; Kergoat, R.; Guerchais, J. E.; Bkouche-Waksman, I.; Bois, C.; L'Haridon, P. J. Organomet. Chem. 1981, 219, 329.
(c) Raston, C. L.; White, A. H.; Wild, S. B. Aust. J. Chem. 1976, 29, 1905.
(d) Baird, H. W.; Dahl, L. F. J. Organomet. Chem. 1967, 7, 503.
(e) Baker, R. W.; Pauling, P. J. Chem.
(f) Raston, C. D.; White, A. H.; Wild, S. D. Varonet, D. L. White, A. H.; Wild, M. B. M. (Chem. 1967, 7, 503.</sup> Soc. D 1970, 573. (f) Brotherton, P. D.; Kepert, D. L.; White, A. H.; Wild, S. B. J. Chem. Soc., Dalton Trans. 1976, 1871.
 (39) Titova, S. N.; Bychkov, V. T.; Domrachev, G. A.; Razuvaev, G. A.;

Struchkov, Yu. T.; Zakharov, L. N. J. Organomet. Chem. 1980, 187, 167.

<sup>(40)</sup> Pauling, L. The Nature of the Chemical Bond, 4th ed., Cornell University Press: Ithaca, New York, 1967.

#### Assembly of a Mercury Cobalt Carbonyl Cluster

acid, readily forming adducts under favorable conditions.<sup>41</sup> Out of several attempts to form adducts, using 1 and various Lewis bases (I<sup>-</sup>, SCN<sup>-</sup>, and PPh<sub>3</sub>), there is evidence for adduct formation in only one case, viz., in the reaction of Et<sub>4</sub>N I; elemental analysis showed the presence of three iodide ligands per cluster. The reticence of 1 to form adducts is probably due to steric and electronic factors. A space-filling model (Figure 2) suggests that the coordination of small- to moderate-sized ligands to the square faces of the cluster should be possible. Coordination would also favor a change to trigonal-planar geometry at mercury,<sup>42</sup> but such a major change in geometry at mercury would be accompanied by distortion of the pseudooctahedral coordination at cobalt, thereby reducing the driving force for adduct formation.

The coordination of  $I^-$  has only a slight effect on the IR spectrum of the complex, lowering the highest frequency absorption by about  $6 \text{ cm}^{-1}$  from that of 1. This is consistent with a very little donation of electron density to the cobalt carbonyl fragments. The apparent inability of SCN<sup>-</sup> to form a similar complex surprised us.

In addition to the Lewis acid site on mercury, Lewis bases could also react by displacement of CO at cobalt. When a solution of 1 in THF was treated with PPh<sub>3</sub> at room temperature, no reaction was evident (IR). In contrast, when 1 was treated with  $P-n-Bu_3$  at room temperature in THF, there was no change in the IR spectrum for the first 30 min, but after this time, decomposition occurred, giving an uncharacterized product with no  $\nu(CO)$ absorptions.

Conversion of 1 to  $(CO)_3Co(HgX)_3$  Derivatives. It is well-known that symmetrical transition metal-mercury compounds  $Hg(ML_n)_2$  (ML<sub>n</sub> = Cp(CO)<sub>3</sub>Mo, Cp(CO)<sub>3</sub>W,  $(CO)_4Co, Cp(CO)_2Fe$ , etc.) react with mercury halides,  $HgX_2$  (X = Cl, Br, I, SCN), to form unsymmetrical com-pounds  $L_nMHgX.^{43}$  The reaction of 1 with compounds of type HgX<sub>2</sub> (X = Cl, Br, I, CF<sub>3</sub>COO) forms new compounds of composition  $(CO)_3Co(HgX)_3$  (eq 2). When X was Ph or p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>, no reaction was observed, whereas with mercury(II), dithiocarbamate, only  $Co(S_2CNEt_2)_2$  was isolated.

$$Hg_9Co_6(CO)_{18} + 9HgX_2 \rightarrow 6(CO)_3Co(HgX)_3 \quad (2)$$

Products from these exchange reactions are yellow to red solids. The iodide 2 and the trifluoroacetate are moderately soluble in polar solvents whereas the chloride 3 and bromide are only sparingly soluble. With the exception of the light-sensitive trifluoroacetate derivative, none could be recrystallized cleanly from the many solvent systems tried; in the case of the bromo derivative, dissolution in pyridine released CO and Hg and formed (py)<sub>2</sub>CoBr<sub>2</sub>. Slow decomposition occurred when these solids were stored for several days at room temperature; this instability manifested itself as partial insolubility in organic solvents previously found to dissolve the sample completely.44



The IR spectra of all the  $(CO)_3Co(HgX)_3$  compounds (see Table V) show the same pattern of  $\nu(CO)$  as 1 viz. a strong peak between 2000 and 2100 cm<sup>-1</sup> and a peak with weak to medium intensity at approximately 50 cm<sup>-1</sup> lower frequency. From this, we infer that these compounds have an environment at cobalt similar to that of 1, viz., nearly  $C_{3\nu}$  symmetry. The simplicity of the IR spectra and the observation of only one spot after TLC analysis are consistent with principally one species being present in solution. Mass spectra were obtained for several (CO)<sub>3</sub>Co- $(HgX)_3$  compounds, but parent molecular ions were not observed for any. Cryoscopic molecular weight determination on a freshly prepared sample of 2 showed it to be monomeric.

In an attempt to prepare compounds of type (CO)<sub>3</sub>Co- $(HgX)_3$  by an alternate method,  $Na_3Co(CO)_3^{19}$  was treated with mercury(II) halides. The reaction of Na<sub>3</sub>Co(CO)<sub>3</sub> with HgBr<sub>2</sub> gave a small amount of an unidentified product with  $\nu$ (CO) (Nujol) 2075 (m) and 2025 (m) cm<sup>-1</sup>. In none of several attempts was the product the same as the product formed by the reaction of 1 with  $HgX_2$ . The extreme reactivity of  $Na_3Co(CO)_3$  may cause it to be oxidized by  $HgX_2$  before it can react to form  $(CO)_3Co(HgX)_3$ .

**Reassembly of Hg\_9Co\_6(CO)\_{18}.** By far, the most unusual reaction of the (CO)<sub>3</sub>Co(HgX)<sub>3</sub> compounds, is the efficient conversion of the chloro derivative to 1. Addition of PPh<sub>3</sub> to a suspension of  $(CO)_3Co(HgCl)_3$  (3) gave 92% of the theoretical yield of (PPh<sub>3</sub>)<sub>2</sub>HgCl<sub>2</sub> and, after recrystallization, 82% of the theoretical yield of 1 (Equation 3). A similar reaction occurred on mixing  $(CO)_3Co(HgI)_3$ 

$$\begin{array}{l} 6(\mathrm{CO})_{3}\mathrm{Co}(\mathrm{HgCl})_{3} + \mathrm{excess} \ \mathrm{PPh}_{3} \rightarrow \\ \mathrm{Hg}_{9}\mathrm{Co}_{6}(\mathrm{CO})_{18} + 9(\mathrm{PPh}_{3})_{2}\mathrm{HgCl}_{2} \ (3) \end{array}$$

with PPh<sub>3</sub>, but it was much slower, requiring several days for completion during which time some decomposition occurred. Compounds of type  $L_nMHgX$  can be converted to the symmetrical compounds,  $(L_n M)_2$ Hg, by addition of excess PPh<sub>3</sub>.43b

Conversion of 3 to 1 gave only one cluster. Such specificity places rather stringent requirements on the spatial orientation of the fac-(XHg)<sub>3</sub>Co moieties during cluster growth if this were to occur by a sequence of irreversible reactions. In such a case, this orientation might be provided by coordination of the departing HgX<sub>2</sub> fragments to several Co-HgX units, as shown in Scheme I. In this scenario, the process would begin by coordination of the electron-rich cobalt (formally Co(-III)) of 3 to a mercury atom of a second molecule of 3, forming the intermediate labeled a. This intermediate is analogous to the one formed in the ammonia-promoted symmetrization of arylmercuric halides.<sup>45</sup> Adduct formation between a

<sup>(41)</sup> Conder, H. L.; Robinson, W. R. Inorg. Chem. 1972, 11, 1527.
(42) Petersen, R. B.; Ragosta, J. M.; Whitwell, G. E., II; Burlitch, J. M. Inorg. Chem. 1983, 22, 3407 and references therein.
(43) (a) Bonati, F.; Cenini, S.; Ugo, R. J. Chem. Soc. A 1967, 932. (b) Mays, M. J.; Robb, J. D. Ibid. 1968, 329.
(44) Because of the instability consistent performed budgets.

<sup>(44)</sup> Because of the instability, consistent carbon and hydrogen analyses could not be obtained when samples were sent out for analysis. Consequently, molecular weight determinations and metal and halogen analyses were done locally on freshly prepared samples. The most stable compound in this group,  $(CO)_3Co(HgO_2CCF_3)_3$ , could be stored for somewhat longer periods of time, so more complete, though less than ideal elemental analysis data were available. This compound, as a toluene solvate, was crystalline, but the crystals decomposed in an X-ray beam, even at -60 °C, so a structural determination was not possible.

transition-metal carbonyl anion and mercury is well-documented.<sup>42</sup> Mercuric chloride is then lost from this complex, but it remains coordinated to the condensation product **b** and orients the remaining -HgCl groups for attack by another molecule of **3**. Other reactions of the same type might thus lead to formation of 1.

Alternatively, if reversible reactions are considered, 1 might simply be the most energetically favorable of a very large number of transient species.

**Reactions of (CO)**<sub>3</sub>Co(**HgI**)<sub>3</sub>. The iodo derivative 2 served as a useful precursor for formation of other derivatives by metathetical reactions. The reaction of 2 with silver *p*-toluenesulfonate in THF resulted in the formation of a new compound,  $(p-CH_3C_6H_4SO_3Hg)_3Co(CO)_3$ , and nearly quantitative precipitation of AgI (eq 4, Y = *p*-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub> and M = Ag). The product is a yellow solid,

$$(CO)_3Co(HgI)_3 + 3MY \rightarrow (CO)_3Co(HgY)_3 + 3MI \qquad (4)$$

soluble in polar organic solvents. It was recrystallized as a yellow powder from methylene dichloride, but crystals suitable for an X-ray structure determination could not be obtained. Its IR  $\nu$ (CO) spectrum (Table V) was similar to that of 2 and showed the highest  $\nu$ (CO) of any of the compounds in this study. This is consistent with the weak base character of the *p*-tosyl group. The observed molecular weight of this product, 1295 g/mol (calculated 1258 g/mol), indicated a monomeric form in solution.

The metathesis reaction of 2 provided a route to a class of previously inaccessible cobalt carbonyl compounds, viz., organomercury derivatives,  $(RHg)_mCoL_n$ . Treatment of 2 with 3 equiv of phenyllithium (eq 3, Y = Ph, M = Li) gave a dark red product, the mass spectrum of which contained peaks assignable to  $(CO)_3Co(HgPh)^+$  but no parent ion. Like other  $(CO)_3Co(HgY)_3$  compounds, the phenyl derivative is somewhat thermally unstable but has an IR spectrum consistent with the structure of a *fac* isomer. It is noteworthy that attempts to prepare this derivative and its *p*-tolyl analogue by direct reaction of the appropriate  $R_2Hg$  compound with 1 were not successful.

Compound 2 formed a Lewis acid-base adduct with iodide ion. The product is thermally unstable, but elemental analysis indicated that the stoichiometry is approximately 1:1. The reversible nature of adduct formation was shown by the addition of 1 equiv of  $Ag^+$  to a solution of  $(CO)_3Co(HgI)_3I^-$ , regenerating 2. Formation of adducts with dimetallic  $L_nMHgX$  compounds with halides has been described.<sup>41</sup>

Summary and Conclusions. A novel metal cluster,  $Hg_9Co_6(CO)_{18}$  (1), has been prepared from  $Hg[Co(CO)_4]_2$ and found to consist of fac-Co(CO)<sub>3</sub> fragments at the corners of a rectangular prism with mercury atoms at the middle of each edge. Through reaction of 1 with mercury(II) halides or  $Hg(CF_3CO_2)_2$ , new compounds  $(CO)_3Co (HgX)_3$  were prepared. One of these, having X = Cl, reformed 1 in high yield when treated with triphenylphosphine; such an efficient reassembly of a large cluster, from a simple precursor under mild conditions, is most unusual and has potential for the preparation of novel, mixed-metal clusters starting with a mixture of ML<sub>n</sub>HgX species. Substitution of iodide in the analogous cmpound (CO)<sub>3</sub>Co(HgI)<sub>3</sub> by *p*-toluenesulfonato or phenyl ligands gave new compounds,  $(CO)_3Co(HgY)_3$  (Y = p- $CH_3C_6H_4SO_3$ ,  $C_6H_5$ ). The latter is the second organomercury derivative of a cobalt carbonyl of any type.<sup>46</sup> All of the tris(halomercury) compounds were somewhat unstable and were best prepared in situ (from 1) and used immediately.

Acknowledgment. Partial financial support for this work by the Cornell Materials Science Center, by Ace Glass, Inc., and by the Department of Chemistry, Cornell University, is gratefully acknowledged. We thank M. Rutzke for assistance with metal analyses and J. C. Cook of VG Industries for obtaining the continuous FAB mass spectrum. The NMR facility was supported by a major instrument grant from NIH, No. DHHS08SORR02002A.

**Registry No.** 1, 100851-89-6;  $1 \cdot 2C_3H_6O$ , 100851-90-9; 2, 102651-39-8; 3, 102651-40-1; 4, 113687-17-5; 5, 113687-18-6; 6, 102651-41-2; 7, 102651-43-4; 8, 102651-45-6; 9, 102651-42-3; [HgCo(CO)<sub>3</sub>]<sub>n</sub>, 113687-19-7; Hg[Co(CO)<sub>4</sub>]<sub>2</sub>, 13964-88-0; Na<sub>3</sub>(Co-(CO)<sub>3</sub>, 90668-30-7; Co, 7440-48-4; Hg, 7439-97-6.

**Supplementary Material Available:** Table V (thermal parameters) (1 page); a list of structure factor amplitudes (28 pages). Ordering information is given on any current masthead page.

<sup>(45)</sup> Jensen, F. R.; Rickborn, B. Electrophilic Substitution of Organomercurials; McGraw-Hill: New York, 1968; Chapter 6.

<sup>(46)</sup> Glockling, F.; Mahale, V. B.; Sweeney, J. J. J. Chem. Soc., Dalton Trans. 1979, 767.