Hindered Rotation about the Palladium–Aryl Bonds in $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PR_3)]$ and Related Molecules: X-ray Crystal Structure of $(\eta^5-Cyclopentadienyl)[2-(phenylazo)phenyl-C^1](tricyclohexyl-phosphine)palladium$

Gordon K. Anderson*

Department of Chemistry, University of Missouri - St. Louis, St. Louis, Missouri 63121

Ronald J. Cross, Ljubica Manojlović-Muir, and Kenneth W. Muir

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K

Mercè Rocamora

Departament de Quimica Inorgànica, Facultat de Quimica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

Received October 15, 1987

The compound $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PCy_3)]$ has been isolated from the reaction of $[Pd-(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)]$ with PCy₃. It crystallizes in space group *Pbca* with a = 11.958 (1) Å, b = 19.079 (2) Å, c = 28.247 (3) Å, V = 6444.5 (12) Å³, and Z = 8. The structure was refined by using 3252 reflections to R = 0.029. There are no significant intermolecular interactions. The PPdC(aryl) bond angle is 92.4 (2)°, and the 2-(phenylazo)phenyl group is constrained nearly perpendicular to the plane defined by these three atoms. Calculations indicate a considerable barrier to rotation about the Pd-C(aryl) bond even with phosphines less bulky than PCy₃. The retention of this conformation in solution at low temperatures is revealed by ¹H and ¹³C{¹H} NMR studies of the related complexes $[Pd(Ar)(\eta^5-C_5H_5)(PR_2Ph)]$ (Ar = 2-(phenylazo)phenyl or 2-[(methylimino)methyl]phenyl; R = Me or Et), in which the phosphine methyl or ethyl groups are magnetically nonequivalent. The observations of four nonequivalent hydrogens and five nonequivalent carbons in the analogous C_5H_4Me and $C_5H_4SiMe_3$ complexes, typical of $\eta^5-C_5H_4R$ rings attached to chiral metal centers, are also compatible with significant barriers to Pd-C(aryl) rotation and allow detection of this phenomenon in complexes of the more symmetrical phosphines Pt₃ and PCy₃. Raising the solution temperatures causes coalescence of the ¹H NMR signals due to the methyl or ethyl groups of the PMe₂Ph or PEt₂Ph complexes, and merging of the ¹H and ¹³C resonances of the C₅H₄R rings, in keeping with the onset of rapid rotation about the Pd-aryl bonds in the PEt₃, PMe₂Ph, and PEt₂Ph complexes. The NMR spectra of the more crowded $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_4Me)(PCy_3)]$ retain their "static" pattern above room temperature to the onset of decomposition.

Introduction

The majority of η^5 -cyclopentadienyl complexes of palladium are 18-electron species. Their reactions with nucleophiles, therefore, involve substitution of a previously coordinated ligand, as in the reactions of $[Pd(\eta^5-C_5H_5)X-(PR_3)]$ with tertiary phosphine¹ or with CO or C_2H_4 in the presence of AgClO₄.² Where a readily displaced ligand is not present, for example in $[Pd(\eta^5-C_5R_5)(\eta^3-allyl)]$ (R = H, Me),³ nucleophilic attack results in a change in bonding mode of one of the coordinated ligands, in this case a $\eta^3-\eta^1$ conversion of the allyl group.

We have shown recently⁴ that $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)]$ reacts with PEt₃ or P-*n*-Bu₃ by initial displacement of the coordinated nitrogen, but this reaction is reversible and the liberated phosphine attacks [Pd-(C₆H₄-2-N=NPh)(\eta^5-C_5H_5)(PR_3)] to give trans-[Pd-(C₆H₄-2-N=NPh)(\eta^1-C_5H_5)(PR_3)_2]. Thus the initial

product could be studied in solution but could not be isolated.

We have found that the second step in the sequence does not proceed when more bulky phosphines are employed. In this paper we report the isolation and crystal structure of $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PCy_3)]$, as well as variable-temperature NMR studies of analogous cyclopentadienyl and substituted cyclopentadienyl complexes which reveal that rotation about the Pd-C(aryl) bond is hindered at low temperatures.

Results and Discussion

Treatment of a CD_2Cl_2 or toluene- d_8 solution of [Pd-(C_6H_4 -2-N=NPh)(η^5 - C_5H_5)] with PCy₃, P-*i*-Bu₃, or P-(CH₂Ph)₃ produces a complex of the form [Pd(C_6H_4 -2-N=NPh)(η^5 - C_5H_5)(PR₃)] (R = Cy, *i*-Bu, or CH₂Ph), as previously observed with PEt₃ and P-*n*-Bu₃.⁴ The compounds are identified by their characteristic NMR spectra (see Experimental Section). These sterically demanding phosphines⁵ differ in their reactions from those of PEt₃ and P-*n*-Bu₃ in that they do not react further to give *trans*-[Pd(C₆H₄-2-N=NPh)(η^1 -C₅H₅)(PR₃)₂], even when present in large excess.

(5) Tolman, C. A. Chem. Rev. 1977, 77, 313.

⁽¹⁾ Cross, R. J.; Wardle, R. J. Chem. Soc. A 1971, 2000. Roberts, N. K.; Skelton, B. W.; White, A. H.; Wild, S. B. J. Chem. Soc., Dalton Trans. 1982, 2093.

⁽²⁾ Majima, T.; Kurosawa, H. J. Organomet. Chem. 1977, 134, C45.
(3) Parker, G.; Werner, H. Helv. Chim. Acta 1973, 56, 2819. Werner, H.; Crisp, G. T.; Jolly, P. W.; Kraus, H.-J.; Kruger, C. Organometallics

 <sup>1983, 2, 1369.
 (4)</sup> Anderson, G. K.; Cross, R. J.; Fallis, S.; Rocamora, M. Organometallics 1987, 6, 1440.

Figure 1. A perspective view of a molecule of $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PCy_3)]$. The carbon atoms of each cyclohexyl ring are numbered in order C(n1) to C(n6), starting with the atom attached to P; atom C(n2) is labeled with the ring identifier n = A, B, or C. Hydrogen atoms are omitted and 50% probability ellipsoids are shown.

Figure 2. A space-filling model of the $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PCy_3)]$ molecule viewed down the normal to the PdPC(2) plane. N atoms are in black, and the Pd atom is cross-hatched.

On a larger scale, when solid PCy_3 is added to a deep

blue hexane solution of $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)]$ the color changes to a dark blue-brown and, after solvent removal, $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PCy_3)]$ is isolated as red crystals from petroleum ether by cooling to -30 °C. On redissolution, a deep blue solution is again produced by partial dissociation of PCy₃. Presumably it is the inability of $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PCy_3)]$ to react further with PCy₃ that allows its isolation.

Structural and Conformation Studies. X-ray analysis reveals that crystals of $[Pd(C_6H_4-2-N=$ NPh)(η^5 -C₅H₅)(PCy₃)] are built up of well-separated molecules. The molecular structure is shown in Figures 1 and 2, and it is defined by the bond distances and angles presented in Table I.

The coordination of the Pd atom comprises the PCy₃ phosphine (Pd-P is 2.261 (2) Å), the 2-(phenylazo)phenyl ligand (Pd-C(2) is 1.993 (5) Å), and a η^5 -C₅H₅ ring. The P-Pd-C(2) angle is 92.4 (2)°. The centroid of the η^5 -C₅H₅ ring is nearly coplanar with the atoms Pd, P, and C(2), and the η^5 -C₅H₅ and PdPC(2) planes are approximately normal to one another (dihedral angle = 99.4°). The metal coordination, which is conveniently described as square planar with the η^5 -C₅H₅ ring occupying two mutually cis sites, is thus of a type well-established for Pd: similar (η^5 -C₅H₅)PdP(σ -C) units have been found in [Pd(η^5 -

Table I. Selected Interatomic Distances and Angles in $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_6)(PCy_3)]$

$[Pd(C_6H_4-2-N=NPh)(\eta^2-C_5H_5)(PCy_3)]$							
Bond Lengths (Å)							
Pd-P	2.261(2)	Pd-C(2)	1,993 (5)				
Pd-C(B) ^a	2 058	Pd-C(R1)	2 303 (6)				
$Pd-C(R_2)$	2 385 (6)	Pd - C(R3)	2.337 (5)				
$Dd_C(P_4)$	2.000 (0)	$\mathbf{P}_{\mathbf{J}} = \mathbf{C}(\mathbf{P}_{\mathbf{S}})$	2.007 (0)				
Fu=O(R4)	2.302 (0)	Pd = C(R3)	2.330 (3)				
P = O(AI)	1.846 (5)	P = C(B1)	1.840 (5)				
P-C(C1)	1.866 (5)	N(1) - N(2)	1.228 (6)				
N(1)-C(1)	1.437 (6)	N(2) - C(7)	1.426 (6)				
C(1) - C(2)	1.406 (6)	C(1) - C(6)	1.387 (7)				
C(2)-C(3)	1.401 (7)	C(3) - C(4)	1.368 (7)				
C(4) - C(5)	1.378 (8)	C(5) - C(6)	1.375 (8)				
C(7)-C(8)	1.384 (7)	C(7) - C(12)	1.380 (7)				
C(8) - C(9)	1.372 (8)	C(9) - C(10)	1.367 (8)				
C(10) - C(11)	1.384 (8)	C(11) - C(12)	1.376 (7)				
C(A1) - C(A2)	1.531 (7)	C(A1)-C(A6)	1.536 (7)				
C(A2)-C(A3)	1.529 (8)	C(A3)-C(A4)	1 498 (9)				
C(A4) - C(A5)	1.503(10)	C(A5)-C(A6)	1 531 (8)				
C(B1) - C(B2)	1.528 (6)	C(B1) - C(B6)	1.535 (6)				
C(D1) = C(D2)	1.520(0)	$C(\mathbf{D}_{1}) = C(\mathbf{D}_{0})$	1.500 (0)				
$O(\mathbf{D}_2) = O(\mathbf{D}_3)$	1.510 (7)	$O(D_2) = O(D_4)$	1.522(7)				
C(B4) = C(B0)	1.504 (8)	$C(B_0) - C(B_0)$	1.533 (7)				
C(C1)-C(C2)	1.543 (7)	C(CI) - C(Cb)	1.506 (7)				
C(C2)-C(C3)	1.527 (8)	C(C3) - C(C4)	1.489 (11)				
C(C4)–C(C5)	1.511 (10)	C(C5)-C(C6)	1.531 (7)				
C(R1)-C(R2)	1.354 (9)	C(R1)-C(R5)	1.383 (9)				
C(R2)-C(R3)	1.427 (9)	C(R3)-C(R4)	1.393 (9)				
C(R4)-C(R5)	1.355 (7)						
	~	• • • •					
	Bond An	gles (deg)					
P-Pd-C(2)	92.4 (2)	P-Pd-C(R)	133.6				
C(2)-Pd-C(R)	133.9	Pd-P-C(A1)	110.7(2)				
Pd-P-C(B1)	110.5(2)	Pd-P-C(C1)	115.9 (2)				
C(A1) - P - C(B1)	103.9 (2)	C(A1)-P-C(C1)	105.5 (2)				
C(B1)-P-C(C1)	109.6 (2)	N(2)-N(1)-C(1)	115.8 (4)				
N(1)-N(2)-C(7)	115.0 (4)	N(1)-C(1)-C(2)	116.8 (4)				
N(1)-C(1)-C(6)	120.9 (4)	C(2)-C(1)-C(6)	122.3 (5)				
Pd-C(2)-C(1)	122.8 (4)	Pd-C(2)-C(3)	121.7 (4)				
C(1) - C(2) - C(3)	115.5 (4)	C(2)-C(3)-C(4)	122.0(5)				
C(3) - C(4) - C(5)	1212(5)	C(4) - C(5) - C(6)	118.9 (5)				
C(1) - C(6) - C(5)	1199(5)	N(2) - C(7) - C(8)	115.4(4)				
V(2) - C(7) - C(12)	124.5(0)	C(8) = C(7) = C(12)	120 1 (5)				
(2) O(1) O(12) C(3) - C(8) - C(9)	124.0(4) 119.7(5)	C(8) = C(9) = C(10)	120.1 (0)				
C(1) = C(0) = C(0)	110.7 (0)	C(10) - C(11) - C(10)	120.0(0)				
$(9) \sim O(10) - O(11)$	119.3 (3)	$D_{1} = C(10) + C(11) + C(1)$	(114.0, (1))				
C(7) = C(12) = C(11)	119.3 (5)	P = C(AI) = C(A2)	114.3(4)				
2 - C(AI) - C(A6)	109.5 (3)	C(A2) - C(A1) - C(A)	A6) 110.2 (4)				
C(A1) - C(A2) - C(A3)	111.1 (4)	C(A2) - C(A3) - C(A3)	111.8 (5)				
C(A3)-C(A4)-C(A5)	111.8 (5)	C(A4)-C(A5)-C(A5)	(46) 111.7 (5)				
C(A1)-C(A6)-C(A5)	112.1 (4)	P-C(B1)-C(B2)	114.5 (3)				
P-C(B1)-C(B6)	116.0 (3)	C(B2)-C(B1)-C(B1)	36) 110.7 (4)				
C(B1) - C(B2) - C(B3)	111.1 (4)	C(B2)-C(B3)-C(I)	34) 111.6 (4)				
C(B3) - C(B4) - C(B5)	111.2(5)	C(B4)-C(B5)-C(B5)	36) 112.0 (4)				
C(B1)-C(B6)-C(B5)	110.2 (4)	P-C(C1)-C(C2)	118.5 (4)				
P-C(C1)-C(C6)	113.7 (4)	C(C2) - C(C1) - C(C1)	(4) (4)				
C(C1) - C(C2) - C(C3)	109.1 (5)	C(C2)-C(C3)-C(C	(4) 113.4 (6)				
$C(C_3) - C(C_4) - C(C_5)$	111.3(5)	C(C4) - C(C5) - C(C5)	(6) 111.2 (5)				
$C(C_1) - C(C_6) - C(C_5)$	111.5 (5)	$C(R_2) - C(R_1) - C(R_2)$	(0)				
(B1)_C(B0)_C(D0)	105 0 (5)	$C(R_2) = C(R_2) = C(R_2)$	(3) 1070 (5)				
$\nabla(\mathbf{n}_1) = \nabla(\mathbf{n}_2) = \nabla(\mathbf{n}_3)$	109.6 (E)	$C(\mathbf{P}_1) = C(\mathbf{P}_5) = C(\mathbf{P}_5)$	04) 1077(5)				
$(n_0) - O(n_4) - O(n_0)$	100.0 (0)	U(II)-U(ID)-U(I					

1

 $^{a}\,C(R)$ is the centroid of the cyclopentadienyl ring carbon atoms C(R1)–C(R5).

 $C_5H_5)(\eta^1-C_5H_5)(P-i-Pr_3)]$ and $[Pd(\eta^5-C_5H_5)(P-i-Pr_3)]C_3H_4PdBr(P-i-Pr_3)]$.^{6,7}

The $(\eta^5-C_5H_5)Pd$ unit displays approximate local C_s rather than C_{5v} symmetry: the approximate plane of symmetry contains Pd, C(R3), and the midpoint of the C(R1)-C(R5) bond and nearly coincides with the PdPC(2) plane. The PdC(R2) and PdC(R4) distances (2.385 (6) and 2.382 (5) Å) are longer than the other Pd-C (cyclopentadienyl) distances (2.303 (6)-2.337 (5) Å), mainly because of deviations of the C₅ ring from planarity: C(R2)

⁽⁶⁾ Werner, H.; Kraus, H.-J.; Schubert, U.; Ackermann, K.; Hofmann, P. J. Organomet. Chem. 1983, 250, 517.

⁽⁷⁾ Kuhn, A.; Burschka, Ch.; Werner H. Organometallics 1982, 1, 496.

Table II. Variable-Temperature ¹H NMR Data^a for the Complexes [Pd(C₆H₄-2-X)(η^5 -C₅H₄R)L] in C₇D₈ Solution

			temp	δ ($J_{\rm PH},{ m Hz}$)		
R	x	L	(°C)	C_5H_4R	L	
CH3	N=NPh	PEt ₃	-70 +23 ^b	5.63 (s), 5.70 (s), 5.83 (s), 5.95 (s), 1.94 (d, 3.1) 5.58 (m), 5.68 (m), 1.86 (d, 3.3)		
н	N=NPh	PMe_2Ph	-60°	5.81 (d) 5.77 (d)	0.92 (d, 11.3), 0.96 (d, 11.2)	
CH_3	N=NPh	$\mathrm{PMe}_{2}\mathrm{Ph}$	-80	5.64 (d, 1.9), 5.73 (d, 1.6), 5.84 (br), 5.88 (br), 1.86 (d, 3.4)	0.92 (d, 10.8), 0.96 (d, 10.7)	
			0^d	5.59 (m), 5.67 (m), 1.79 (d, 3.4)	1.03 (d, 10.0)	
Н	N—NPh	PEt_2Ph	-70 ^e	5.88 (d, 1.2)	pCH ₂ at 1.02 (br), 1.24 (br); PCH ₂ CH ₃ at 0.55 (dt, 17.0, ${}^{3}J_{HH} = 7.5$), 0.74 (dt, 18.3, ${}^{3}J_{HH} = 7.5$)	
			0	5.80 (d)	PCH_2 at 1.31 (m); PCH_2CH_3 at 0.67 (dt, 17.6, ${}^{3}J_{HH} = 7.4$)	
CH₃	N—NPh	PEt_2Ph	-50 ^f	5.69 (s), 5.71 (s), 5.81 (s), 5.85 (s), 1.83 (d, 3.7)	PCH_2 at 1.05 (m), 1.31 (m); PCH_2CH_3 at 0.60 (dt, 17.2, ${}^{3}J_{HH}$ = 7.9), 0.75 (dt, 18.1, ${}^{3}J_{HH}$ = 7.5)	
			+30	5.60 (br), 5.68 (br), 1.80 (d)	PCH_2 at 1.38 (m); PCH_2CH_3 at 0.70 (dt)	
CH_3	N=NPh	PCy_3	-70 +23 ^g	5.72-5.86 (complex m), 1.83 (d, 3.2) 5.68 (br), 1.79 (d, 3.3)		
$SiMe_3$	N=NPh	PMe_2Ph	-70^{h}	5.53 (s), 5.65 (m), 5.97 (m), 6.00 (s), 0.29 (s) 5.64 (br), 5.89 (br), 0.23 (s)	0.89 (d, 9.8), 0.92 (d, 9.9) 1.04 (d, 10.2)	
SiMe ₃	N=NPh	PEt_2Ph	-50^{i}	5.75 (m), 5.80 (m), 5.92 (m), 6.16 (br), 0.29 (s)	PCH ₂ at 0.96 (m), 1.32 (m); PCH ₂ CH ₃ at 0.58 (dt, 16.8, ${}^{3}J_{HH} = 8.0$), 0.72 (dt, 18.1, ${}^{3}J_{HH} = 7.5$)	
			+20	5.76 (m), 5.92 (v br), 0.21 (s)	PCH_2 at 1.4 (m); PCH_2CH_3 at 0.68 (dt, 16.9, ${}^{3}J_{UU} = 8.0$)	
Н	CH=NCH ₃	PMe_2Ph	-70 ^j	5.75 (d, 1.4)	0.80 (d, 10.0), 0.83 (d, 10.0)	
	· ·	-	+20	5.68 (d)	0.96 (d, 9.9)	
н	CH=NCH ₃	PEt_2Ph	-70^{k}	5.77 (d, 1.2)	PCH_2 at 1.15 (m); PCH_2CH_3 at 0.58 (dt, 17.3, ${}^{3}J_{HH} = 7.6$), 0.61 (dt, 17.3, ${}^{3}J_{HH} = 7.4$)	
			0	5.72 (d, 1.5)	PCH_2 at 1.24 (m); PCH_2CH_3 at 0.64 (dt, 17.5, ${}^{3}J_{HH} = 7.5$)	

^aRecorded at 300 MHz and referenced to CHD₂ at 2.09 ppm. ^b δ (P) 32.6. ^c δ (P) 7.3 (-50 °C). ^d δ (P) 6.1 (-20 °C). ^e δ (P) 35.8 (-50 °C). ^f δ (P) 35.3. ^s δ (P) 51.5. ^h δ (P) 5.6 (-60 °C). ⁱ δ (P) 33.3. ^jCH= at δ 8.99 (d, 1.2), NCH₃ at δ 3.51 (d); δ (P) 6.8. ^kCH= at δ 8.96 (d, 1.3), NCH₃ at δ 3.51 (d, 1.5); δ (P) 34.1 (-50 °C).

and C(R4) are displaced by 0.037 (6) and 0.022 (5) Å from the mean ring plane away from the Pd atom, counterbalanced by the displacements of C(R1), C(R3), and C(R5) (respectively 0.017 (5), 0.035 (5), and 0.005 (5) Å) toward the Pd atom. The ring C-C bond lengths fall into two groups, C(R1)-C(R2) and C(R4)-C(R5) (1.354 (9) and 1.355 (7) Å) being somewhat shorter than the remainder (1.383 (9)-1.427 (9) Å). Electronic factors, arising from lack of axial symmetry at the metal, may be responsible for these distortions, as has been suggested for $[Pd(\eta^5-C_5H_5)(\eta^1-C_5H_5)(P-i-Pr_3)].^6$

The C₆H₄-2-N=NPh ligand has the expected trans stereochemistry about the N=N bond [C(1)-N(1)-N-(2)-C(7) = 177.4 (6)°] and is coplanar to within ±0.12 Å. The ligand plane is roughly normal to the PdPC(2) plane [P-Pd-C(2)-C(1) = ω_1 = 100.7 (4)°]. The short N(1)... C(12) and N(2)...C(6) contacts [2.73 (1) and 2.69 (1) Å] are relieved by deformations of the N-C-C angles at C(1) and C(7) and by twisting of the phenyl rings out of the N₂C(1) and N₂C(7) planes [N(2)-N(1)-C(1)-C(6) = -4.2 (5)° and N(1)-N(2)-C(7)-C(12) = 3.7 (5)°]. The narrowing of the C(1)-C(2)-C(3) angle to 115.5 (4)° as a result of the attachment of C(2) to Pd is similar to that found in trans-[PdCl(C₆H₄-2-N=NPh)(PEt₃)₂].⁸

The geometry of the PCy_3 ligand is unexceptional. The cyclohexyl rings display chair conformations, the mean C-C bond length is 1.520 (4) Å, C-C-C bond angles are close to tetrahedral [109.1 (5)-113.4 (6)°], and |C-C-C-C| torsion angles are 53.4 (6)-57.6 (5)°. The P-C bonds [mean length 1.851 (8) Å] are equatorial to each ring.

The most significant interligand contact is that of 3.18 (1) Å between C(2) and C(C1). This arises from the ori-

entation of the PCy_3 ligand which is such that the bonds P-C(C1) and Pd-C(2) are nearly coplanar [C(2)-Pd-P- $C(C1) = \omega_2 = -5.9 (2)^\circ$]. We have calculated the molecular potential energy⁹ of $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PCy_3)]$ as a function of the torsion angles ω_1 and ω_2 in order to aid interpretation of the NMR data for this and related complexes (see below). The principal minima in the molecular potential energy occur at $\omega_1 = 110^{\circ}$ and $\omega_2 = -10^{\circ}$, corresponding to the conformation found in the crystal, and at $\omega_1 = -100^\circ$ and $\omega_2 = -10^\circ$, corresponding roughly to a rotation of the C₆H₄-2-N=NPh ligand by 180° about the Pd-C(2) bond. Intermediate values of ω_1 give high potential energies and unacceptably close interligand contacts whatever the value of ω_2 . The calculations thus suggest that stable conformations of the molecule require the C_6H_4 -2-N=NPh ligand to be roughly normal to the PdPC(2) plane and that the barrier to interconversion between the two low-energy conformers by rotation about the Pd–C(2) bond is considerable. Even if PCy_3 is replaced by a less sterically demanding phosphine, such as PMe₃, the barrier to rotation about Pd-C(2) is still substantial. In this case, however, the calculated molecular energy is insensitive to rotation of the PMe₃ ligand about the Pd-P bond.

NMR Spectroscopic Studies. Addition of 1 mol equiv of PMe₂Ph or PEt₂Ph (L) to a C_7D_8 solution of [Pd- $(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)$] in a 5-mm NMR tube generates the new derivatives [Pd($C_6H_4-2-N=NPh$)($\eta^5-C_5H_5$)L], analogous to the PCy₃ complex described above and those of PEt₃ and P-*n*-Bu₃ reported previously.⁴ Their

⁽⁸⁾ Weaver, D. L. Inorg. Chem. 1970, 9, 2250.

⁽⁹⁾ Using the CHEMMOD package: White, D. N. J.; Tyler, J. K.; Lindley, M. R. Comput. Chem. 1986, 10, 193.

Table III. Variable-Temperature ${}^{13}C{}^{1}H$ NMR Data^a for the Complexes [Pd(C₆H₄-2-X)(η^5 -C₆H₄R)L] in C₇D₈ Solution

			temp	$\delta (J_{ m PC},{ m Hz})$		
R	х	L	(°C)	C ₅ H ₄ R	L	
CH_3	N=NPh	PEt_3	-50	92.40 (s), 93.27 (s), 97.47 (s), 98.72 (s), 110.81 (d, 6.6, ipso), 14.21 (d, 3.8)	PCH ₂ at 17.85 (d, 28.9); PCH ₃ CH ₃ at 7.69 (d, 5.0)	
н	N=NPh	PMe_2Ph	-70	96.37 (d)	17.37 (d, 31.0), 18.59 (d, 30.5)	
		-	-10	96.52 (d, 2.8)	18.3 (br d, 27.5)	
CH₃	N=NPh	PMe_2Ph	-80	93.35 (s), 94.35 (s), 97.72 (s), 99.00 (s), 110.98 (d, 7.9, ipso), 14.07 (s)	17.33 (d, 32.5), 18.13 (d, 30.2)	
			0	94.12 (br s), 97.92 (s), 98.3 (v br), 111.26 (d, 6.7, ipso), 13.9 (br s)	17.8 (v br)	
н	N-NPh	PEt_2Ph	-70	96.37 (s)	PCH_2 at 18.61 (d, 30.2), 21.57 (d, 26.6); PCH_2CH_3 at 8.04 (s), 8.09 (s)	
			0	96.67 (d, 2.7)	PCH ₂ obscured by CD ₃ signal; PCH ₂ CH ₃ at 8.16 (s)	
CH3	N=NPh	$\operatorname{PEt}_2\operatorname{Ph}$	-70	93.44 (s), 94.21 (s), 98.08 (s), 99.25 (s), 110.86 (d, 8.1, ipso), 14.16 (s)	PCH_2 at 19.39 (d, 33.0), 21.15 (d, 32.3); PCH_2CH_3 at 8.06 (s), 8.22 (s)	
			+30	94.44 (br), 98.95 (br), ipso carbon not observed, 14.08 (s)	$PCH_2 \text{ at } 20.86 \text{ (d, } 28.9); PCH_2CH_3 \text{ at } 8.23 \text{ (s)}$	
CH3	N=NPh	\mathbf{PCy}_3	+23	94.29 (s), 94.90 (s), 99.09 (s), 99.82 (s), 111.76 (d, 7.8, ipso), 14.29 (s)		
$SiMe_3$	N=NPh	PMe_2Ph	-70	98.73 (s), 99.72 (d, 9.8), 100.71 (s), 101.99 (s), 106.84 (s), 0.66 (s)	17.25 (d, 32.8), 17.88 (d, 31.9)	
			0	99.86 (s), 100.13 (s), 101.17 (v br), 107.28 (s, ipso), 0.8 (s)	17.98 (br d, 31.3)	
SiMe ₃	N—NPh	PEt_2Ph	-70	99.08 (s), 99.58 (s), 100.41 (s), 101.92 (s), 106.34 (s, ipso), 0.44 (s)	PCH_2 at 18.05 (d, 30.3), 21.3 (d, ~30, partly obscured by CD_3 signal); PCH_2CH_3 at 7.77 (s), 7.86 (s)	
			+30	100.10 (br), 101.18 (br), 107.21 (s, ipso), 0.51 (s)	PCH ₂ obscured by CD ₃ signal; PCH ₂ CH ₃ at 8.09 (s)	
н	CH=NCH ₃	PMe ₂ Ph	-70^{b}	96.28 (s)	17.19 (d, 32.6)°	
		-	+20	96.65 (s)	17.82 (d, 31.7)	
Н	CH=NCH ₃	PEt_2Ph	-70 ^d	96.32 (s)	PCH ₂ at 19.11 (d, 30.2), 19.38 (d, 25.4); PCH ₂ CH ₃ at 7.82 (s), 7.90 (s)	
			0	96.62 (s)	PCH_2 at 19.96 (d, 28.4); PCH_2CH_3 at 7.98 (s)	

^a Recorded at 75.4 MHz and referenced to CD₃ at 20.40 ppm. ^bNCH₃ at δ 48.81 (s). ^c The methyl signals appear to be coincident. ^dNCH₃ at δ 48.81 (s).

¹H, ¹³C[¹H], and ³¹P[¹H] NMR data are listed in Tables II and III. At temperatures near -70 °C, it is clear from the ¹H and ¹³C[¹H] spectra that the two methyl or ethyl phosphine substituents are magnetically nonequivalent, and therefore no plane of symmetry containing the Pd–P bond exists. ¹H NMR measurements of this type have often been used to establish solution conformations, particularly for PMe₂Ph complexes,¹⁰ but to our knowledge this is the first report of the use of ¹³C[¹H] NMR spectroscopy for such analyses. These observations are entirely compatible with the 2-(phenylazo)phenyl ligand lying out of the PPdC(aryl) plane in solution, as it does in the tricyclohexylphosphine complex in the solid state.

At -10 °C, both the ¹H and ¹³C{¹H} NMR spectra of [Pd(C₆H₄-2-N=NPh)(η^5 -C₅H₅)L] indicate that the phosphine alkyls are now magnetically equivalent. This presumably comes about by rapid (on the NMR time scale) rotation or oscillation of the aryl group about its Pd-C bond between the two calculated potential energy minima. Retention of couplings between phosphorus and the C₅-ring carbons and hydrogens precludes a dissociative route being responsible for the apparent equivalences.

Since an important contribution to the rotational barriers for the aryl groups arises from the ortho substituents,¹⁰ we have extended our observations to 2-[(methylimino)methyl]phenyl complexes. Treatment of [Pd- $(C_6H_4-2-CH=NMe)(\eta^5-C_5H_5)$]¹¹ with PMe₂Ph or PEt₂Ph produces the new 2-(iminomethyl)phenyl complexes [Pd-(C_6H_4 -2-CH=NMe)(η^5 - C_5H_5)L], for which NMR data are given in Tables II and III. The PMe₂Ph and PEt₂Ph derivatives again exhibit magnetically nonequivalent alkyl (phosphine) groups at -70 °C, indicating a similar conformation to the 2-(phenylazo)phenyl complexes. Above 0 °C the alkyl groups are magnetically equivalent, indicative of rotation or oscillation of the aryl group.

To confirm that the same phenomenon exists with the more symmetrical phosphines PEt₃ and PCy₃, we have introduced an element of dissymmetry into the cyclopentadienyl ring. The methylcyclopentadienyl complex $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_4Me)]$ was prepared from the reaction of $[Pd_2(C_6H_4-2-N=NPh)_2(\mu-Cl)_2]$ with NaC_5H_4Me , generated in situ from C_5H_5Me and NaOEtin ethanol. The (trimethylsilyl)cyclopentadienyl complex $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_4SiMe_3)]$ was prepared similarly by using $LiC_5H_4SiMe_3$, generated by treating $C_5H_5SiMe_3$ with *n*-butyllithium in hexane solution. Both complexes form air-stable, black crystals that dissolve readily in organic solvents to produce intense green-purple solutions. Addition of 1 mol equiv of PEt₃, PMe₂Ph, PEt_2Ph , or PCy_3 to a C_7D_8 solution of the methylcyclopentadienyl complex, or of PMe_2Ph or PEt_2Ph to a C_7D_8 solution of the (trimethylsilyl)cyclopentadienyl complex, produces the species $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_4R)L];$ NMR data for these novel compounds are presented in Tables II and III.

The C_5H_4R complexes with PMe₂Ph or PEt₂Ph give rise to analogous spectroscopic observations as far as the

⁽¹⁰⁾ Moss, J. R.; Shaw, B. L. J. Chem. Soc. A 1966, 1793. Wada, M.; Kusabe, K.; Oguro, K. Inorg. Chem. 1977, 16, 446. Wada, M.; Sameshima, K. J. Chem. Soc., Dalton Trans. 1981, 240. Wada, M. Sameshima, K.; Nishiwaki, K.; Kawasaki, Y. J. Chem. Soc., Dalton Trans. 1982, 793. Coronas, J. M.; Muller, G.; Rocamora, M.; Miravitlles, C.; Solans, X. J. Chem. Soc., Dalton Trans. 1985, 2333.

⁽¹¹⁾ Bennett, R. L.; Bruce, M. I.; Goodall, B. L.; Iqbal, M. Z.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1972, 1787.

Table IV. ¹H NMR Coalescence Temperatures^a and ΔG^* Values^b for the Complexes $[Pd(C_6H_4-2-X)(\eta^5-C_5H_4R)L]$ in C₇D₈ Solution

R	X	L	$T_{\rm c}$ (K)	ΔG^* (kcal/mol)
Н	N=NPh	PMe ₂ Ph	225	11.8
CH_3	N=NPh	PMe_2Ph	245	12.7
$SiMe_3$	N=NPh	PMe_2Ph	226	11.9
Н	N=NPh	$\mathbf{PEt}_{2}\mathbf{Ph}$	235	11.4
н	N=NPh	$\mathbf{PEt}_{2}\mathbf{Ph}^{c}$	224	11.1
CH_3	N=NPh	PEt_2Ph	225	12.5
SiMe3	N=NPh	PEt_2Ph	273	13.5
Н	CH=NMe	PMe_2Ph	252	13.1
н	CH=NMe	$\operatorname{PEt}_2\operatorname{Ph}$	244	12.9

^a Measured for the phosphine methyl groups in each case. ^bObtained by means of the equation $\Delta G^* = 0.00457T_c(9.97 + \log$ $T_{\rm c}/\Delta\delta$).¹⁴ ^c In CD₂Cl₂ solution.

phosphine alkyl groups are concerned, but the presence of the ring substituents provides another probe of asymmetry even with nondiastereotopic phosphines. Thus, in $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_4R)L]$ (R = Me, L = PEt₃, PMe_2Ph , PEt_2Ph , or PCy_3 ; $R = SiMe_3$, $L = PMe_2Ph$ or PEt₂Ph) the C_5H_4 ring gives rise to four ¹H and five ¹³C resonances at low temperature. Similar observations have been made for optically active rhenium¹² and ruthenium¹³ methylcyclopentadienyl complexes. In our complexes each carbon resonance appears as a singlet, with the exception of the ipso carbon which exhibits coupling to phosphorus. As the temperature is raised, the four ¹H signals gradually merge into two, and at 0 °C or above only two ¹H and three ¹³C resonances are detected for the PEt₃, PMe₂Ph, and PEt₂Ph complexes. Even at +23 °C, however, [Pd- $(C_6H_4-2-N=NPh)(\eta^5-C_5H_4Me)(PCy_3)]$ exhibits five carbon resonances for the C_5H_4 unit, indicating that rotation about the Pd-C(aryl) bond is still hindered at this temperature with the more bulky PCy_3 ligand. Above this temperature, decomposition of the complex occurs.

We have determined coalescence temperatures for each of the PMe₂Ph and PEt₂Ph complexes by monitoring the ¹H methyl signals. These, together with ΔG^* values calculated at the coalescence temperature,¹⁴ are given in Table IV. The temperature dependence and small chemical shift differences for the PMe₂Ph complexes may lead to small errors in ΔG^* , but this is not the case for the PEt₂Ph complexes. For $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_4R)(PEt_2Ph)]$ $(R = H, Me, SiMe_3) \Delta \delta$ is at least 7 times greater than the chemical shift variation over a 100 °C temperature range in C_7D_8 . For $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PEt_2Ph)]$ in CD_2Cl_2 solution, coalescences of the CH_3 signals in the ¹H NMR spectrum and of the CH_2 resonances in the ${}^{13}C{}^{1}H$ NMR spectrum (where the peak separation is greater) lead to consistent ΔG^* values. Thus, there is a steady increase in the coalescence temperature and ΔG^* in the order C_5H_5 $< C_5H_4Me < C_5H_4SiMe_3$ for the PEt₂Ph complexes. There is also a small solvent effect on changing from C_7D_8 to CD_2Cl_2 . The increasing ΔG^* with the size of the cyclopentadienyl substituent is to be expected, since the presence of a substituent will cause greater hindrance to rotation about the Pd-C(aryl) bond.

Experimental Section

NMR spectra were recorded on a Varian XL-300 spectrometer operating in the Fourier Transform mode. Probe temperatures

Table V. Crystallographic Data for $[Pd(C,H_{2},N=NPh)(n^{5},C,H_{2})(PCv_{2})]$

_		(1 () 3/]
	formula	$C_{35}H_{47}N_2PPd$
	fw, amu	633.1
	cryst system	orthorhombic
	space group	Pbca
	a, Å	11.958 (1)
	b, Å	19.079 (2)
	c, Å	28.247 (3)
	V, Å ³	6444.5 (12)
	Z	8
	F(000), electrons	2656
	$d(\text{calcd}), \text{ g cm}^{-3}$	1.305
	μ (Mo K α), cm ⁻¹	6.4
	transmissn on F	0.85-1.16
	intensity measurements	
	scan type	$\theta/2\theta$
	scan width $(\Delta \omega)$, deg	1.2
	max counting time, s	120
	2θ range, deg	4-50
	q^a	0.03
	unique reflectns	6123
	final refinement	
	reflectns used (n) $[I \geq 3\sigma(I)]$	3252
	refined parameters (p)	352
	max shift/error	0.018
	R^b	0.029
	R_{w}^{c}	0.036
	S^d	1.6
	weights, w	$\sigma^{-2}(\mathbf{F})$
	$ \Delta \rho $, electrons	0.40

^a Manojlović-Muir, Lj.; Muir, K. W. J. Chem. Soc., Dalton Trans. 1974, 2427. ^bR = $\sum ||F_0| - |F_c|| / \sum |F_0|$. ^cR_w = $[\sum w(|F_0| - |F_c|)^2 / \sum w|F_0|^2]^{1/2}$. ^dS = $[\sum w(|F_0| - |F_c|)^2 / (n-p)]^{1/2}$.

were calibrated by using the temperature-dependent chemical shift differences of the ¹H resonances of methanol.¹⁵ Microanalyses were performed at the University of Glasgow, the Institut de Quimica Bio-Organica de Barcelona (C.S.I.C.), and Galbraith Microanalytical Laboratories, Knoxville, TN. The compounds $[Pd_2(C_6H_4-2-N=NPh)_2(\mu-Cl)_2],^{16}$ $[Pd_2(C_6H_4-2-CH=NMe)_2(\mu-Cl)_2],^{16}$ Cl_{2}],¹¹ [$\dot{P}d(C_{6}H_{4}-2-N=\dot{N}Ph)(\eta-C_{5}H_{5})$],⁴ and [$\dot{P}d(C_{6}H_{4}-2-\dot{N}Ph)(\eta-C_{5}H_{5})$],⁴ $CH = NMe)(\eta - C_5H_5)$ ¹¹ were prepared as described previously. Methylcyclopentadiene was distilled following the method of Reynolds and Wilkinson.¹⁷ Cyclopentadienyltrimethylsilane was prepared by treating C_5H_6 successively with *n*-butyllithium then Me₃SiCl in ether. After filtration and solvent removal it was used without futher purification.

Preparation of $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_4Me)]$. To a solution of sodium ethoxide (5.6 mmol, prepared from 0.13 g of sodium) in ethanol (50 mL) was added freshly distilled methylcyclopentadiene (2.0 mL), followed by $[Pd_2(C_6H_4-2-N=$ $NPh)_2(\mu-Cl)_2$ (1.5 g, 2.3 mmol). The solution slowly developed a deep blue-green color. Stirring was continued for 3 days, then unreacted $[Pd_2(C_6H_4-2-N=NPh)_2(\mu-Cl)_2]$ (0.2 g, identified by its infrared spectrum) was removed by filtration. Removal of the solvent from the filtrate left a black semisolid. Extraction with petroleum, followed by slow evaporation of the solvent at -30 °C in vacuo, gave the product as a black powder (0.4 g, 35%). Anal. Calcd for $C_{18}H_{16}N_2Pd$: C, 58.9; H, 4.4; N, 7.6. Found: C, 59.0; H, 4.5; N, 7.6. ¹H NMR (C_7D_8 , -50 °C): δ 5.39 (apparent triplet, $J_{\rm HH} = 2.2$ Hz), 5.47 (apparent triplet, $J_{\rm HH} = 2.2$ Hz), 1.79 (CH₃). ¹³C(¹H) NMR: C₅H₄ at δ 95.18, 97.85, 110.85 (ipso); CH₃ at δ 13.15; phenyl carbons at δ 123.71, 124.14, 125.52, 128.65, 129.78, 131.55, 140.02, 154.25, 162.31, 182.82.

Preparation of $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_4SiMe_3)]$. A hexane solution of n-butylithium (5.5 mL, 1.5 M) was added to a stirred solution of $Me_3SiC_5H_5$ (3.0 mL) in diethyl ether (50 mL). A white precipitate formed. $[\dot{Pd}_2(C_6H_4-2-N=\dot{N}Ph)_2(\mu-Cl)_2]$ (2.0

⁽¹²⁾ Heah, P. C.; Patton, A. T.; Gladysz, J. A. J. Am. Chem. Soc. 1986, 108, 1185.

⁽¹³⁾ Amarasekera, J.; Rauchfuss, T. B.; Rheingold, A. L. Inorg. Chem. 1987, 26, 2017.

⁽¹⁴⁾ Martin, M. L.; Delpuech, J.-J.; Martin, G. J. Practical NMR Spectroscopy; Heydon: London, 1980; pp 339-345.

⁽¹⁵⁾ Von Geet, A. L. Anal. Chem. 1968, 40, 2227.
(16) Cope, A. C.; Siekman, R. W. J. Am. Chem. Soc. 1965, 87, 3272.
(17) Reynolds, L. T.; Wilkinson, G. J. Inorg. Nucl. Chem. 1959, 9, 86.

	In alcount a		06116/(1 033/]	
	x/a	y/b	z/c	$U,^a$ Å ²
Pd	0.20196 (3)	0.17287 (1)	0.16674 (1)	0.042
Р	0.21638 (9)	0.27560 (5)	0.12731(4)	0.043
N(1)	0.3501 (3)	0.0778 (2)	0.1001 (1)	0.055
N(2)	0.4149 (3)	0.0397 (2)	0.0783 (1)	0.067
C(1)	0.2374 (4)	0.0798 (2)	0.0826 (2)	0.052
C(2)	0.1605 (4)	0.1208 (2)	0.1082 (2)	0.048
C(3)	0.0516 (4)	0.1223 (2)	0.0899 (2)	0.057
C(4)	0.0232 (4)	0.0881 (3)	0.0491 (2)	0.071
C(5)	0.1012 (5)	0.0503 (3)	0.0239 (2)	0.082
C(6)	0.2078 (4)	0.0442 (3)	0.0417 (2)	0.071
C(7)	0.5275 (4)	0.0407 (2)	0.0950 (2)	0.053
C(8)	0.6027 (5)	0.0019 (3)	0.0685 (2)	0.074
C(9)	0.7135 (4)	0.0007 (3)	0.0812(2)	0.078
C(10)	0.7509 (4)	0.0383 (3)	0.1192 (2)	0.074
C(11)	0.6752 (4)	0.0763 (3)	0.1460 (2)	0.071
C(12)	0.5636 (4)	0.0777 (2)	0.1341 (2)	0.062
C(A1)	0.1077 (4)	0.3378 (2)	0.1471 (2)	0.053
C(A2)	0.1251 (4)	0.3661 (2)	0.1972 (2)	0.061
C(A3)	0.0300 (5)	0.4154 (3)	0.2115(2)	0.083
C(A4)	-0.0818 (5)	0.3805 (3)	0.2076 (2)	0.102
C(A5)	-0.1021 (4)	0.3520 (3)	0.1588 (2)	0.094
C(A6)	-0.0078 (4)	0.3030 (3)	0.1429 (2)	0.068
C(B1)	0.3485 (3)	0.3198 (2)	0.1423(1)	0.046
C(B2)	0.4522(4)	0.2734 (2)	0.1382(2)	0.053
C(B3)	0.5536 (4)	0.3093 (2)	0.1589(2)	0.067
C(B4)	0.5742 (4)	0.3803 (3)	0.1360 (2)	0.090
C(B5)	0.4723(4)	0.4263 (2)	0.1395 (2)	0.086
C(B6)	0.3684 (4)	0.3910 (2)	0.1184(2)	0.063
C(C1)	0.2013 (4)	0.2704 (2)	0.0616 (1)	0.056
C(C2)	0.1562(5)	0.3350 (3)	0.0349 (2)	0.083
C(C3)	0.1320 (6)	0.3147 (3)	-0.0163 (2)	0.105
C(C4)	0.2304 (7)	0.2843 (4)	-0.0413 (2)	0.119
C(C5)	0.2778 (5)	0.2225 (3)	-0.0145 (2)	0.097
C(C6)	0.3032(4)	0.2419 (2)	0.0369 (2)	0.065
C(R1)	0.2322(5)	0.0821 (3)	0.2189 (2)	0.079
C(R2)	0.3083 (4)	0.1307 (4)	0.2322 (2)	0.086
C(R3)	0.2454 (6)	0.1907 (3)	0.2465 (2)	0.077
C(R4)	0.1330 (5)	0.1714 (3)	0.2459 (2)	0.067
C(R5)	0.1249 (4)	0.1058(2)	0.2278(2)	0.066

^a U is the mean latent root of the anisotropic displacement tensor.

g, 3.1 mmol) was added as a solid, and stirring was continued for 2 h, during which time a deep blue-black color developed. The solution was filtered, and the solvent was removed under reduced pressure. The oily residue was crystallized from petroleum ether to give the product as dark purple crystals (1.3 g, 50%). Anal. Calcd for $C_{20}H_{22}N_2PdSi$: C, 56.5; H, 5.2; N, 6.6. Found: C, 56.6; H, 5.2; N, 6.4. ¹H NMR (C_7D_8 , 22 °C): δ 5.60 (apparent triplet, $J_{\rm HH} = 2.0$ Hz), 5.82 (apparent triplet, $J_{\rm HH} = 2.0$ Hz), 0.09 (SiMe₃). ¹³ $C[^{1}H]$ NMR: $C_{5}H_{4}$ at δ 100.01, 100.14, 110.46 (ipso); SiMe₃ at δ 0.43; phenyl carbons, at δ 123.88, 124.25, 125.74, 128.66, 130.04, 131.83, 154.73, 162.62, 180.97.

Preparation of $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PCy_3)]$. Tricyclohexylphosphine (0.16 g, 0.57 mmol) was added to a hexane solution (10 mL) of $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)]$ (0.20 g, 0.57 mmol) under argon. The solvent was removed after 3 h, and the residue was washed with hexane (5 mL) to give a deep blue solution and a red-brown solid. The latter was dissolved in petroleum ether, and cooling to -30 °C gave the product as red crystals (0.20 g, 56%). Anal. Calcd for $C_{35}H_{47}N_2PPd$: C, 66.4; H, 7.5; N, 4.4. Found: C, 66.3; H, 7.5; N, 4.3. ¹H NMR (CD₂Cl₂, 23 °C): δ 5.64 (d, J_{PH} = 3.0 Hz, Cp). ¹³C{¹H} NMR: δ (C) 97.01 $(d, J_{PC} = 3.8 \text{ Hz}, \text{Cp}), 115.05, 123.31, 123.60, 127.88, 129.27, 130.19,$ 143.19, 148.78 (d, J_{PC} = 10.9 Hz), 153.51, 160.98. ³¹P{¹H} NMR: $\delta(P)$ 49.91. Crystals suitable for X-ray structure determination were obtained by recrystallization from petroleum ether at -30 °C.

Reaction of $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)]$ with PEt_2Ph . The complex (20.8 mg, 0.0605 mmol) was weighed into a 5-mm NMR tube fitted with a rubber septum. The tube was evacuated and then filled with argon, and toluene- d_8 (0.4 mL) was introduced by syringe. After the complex dissolved to give a deep blue-black solution, PEt₂Ph (10.5 µL, 0.0603 mmol) was added and the solution became dark brown. The tube was then transferred to the NMR probe, which had been precooled to -50 °C, and the complex $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PEt_2Ph)]$ was examined in situ.

The other complexes of the type $[Pd(C_6H_4-2-X)(\eta^5-C_5H_4R)L]$ were generated similarly. NMR data for the complexes [Pd- $(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)L$ (L = P-*i*-Bu₃ or P(CH₂Ph)₃) are as follows. [Pd(C₆H₄-2-N=NPh)(η^5 -C₅H₅)(P-*i*-Bu₃)]: ¹H NMR (C₇D₈, +24 °C) C₅H₅ at δ 5.76 (d, $J_{PH} = 1.3$ Hz); ³¹P(¹H) NMR δ (P) 24.7. [Pd(C₆H₄-2-N=NPh)(η^5 -C₅H₅){P(CH₂Ph)₃]]: ¹H NMR $(C_7D_8, -20 \text{ °C})$ C_5H_5 at δ 5.21 (d, J_{PH} 1.6 Hz), PCH₂ at δ 2.75; ³¹P{¹H} NMR δ (P) 26.8.

X-ray Structure Analysis of $[Pd(C_6H_4-2-N=NPh)(\eta^5 C_5H_5$ (PCy₃)]. The experimental and computational procedures have been described in detail elsewhere.¹⁸ Pertinent details of this analysis are presented in Table V. All X-ray measurements were made at 22 ± 1 °C by using an Enraf-Nonius CAD4F diffractometer and graphite-monochromated Mo X-rays ($\lambda = 0.71069$ Å). The specimen was a red plate, $0.52 \times 0.36 \times 0.12$ mm.

The unit-cell dimensions were determined by a least-squares treatment of the setting angles of 22 high-angle reflections. The intensities were corrected for background, Lp, and absorption effects. R(internal) = 0.033 for averaging the intensities of 1404 reflections measured more than once. The space group was determined from the systematic absences.

The structure was solved by Patterson and difference Fourier methods and refined by full-matrix least-squares. In the final calculations anisotropic displacement parameters were adjusted for Pd, P, N, and C atoms. H atoms were constrained to ride on their attached C atoms with C-H = 0.96 Å and U(H) = $1.2U_{iso}(C)$. Neutral atom scattering factor and anomalous dispersion corrections were taken from ref 19. All calculations were performed on a GOULD 32/27 minicomputer using the locally developed GX system.²⁰ Final coordinates of non-hydrogen atoms are presented in Table VI.

Acknowledgment. We thank the SERC (U.K.), University of Glasgow, and the donors of the Petroleum Research Fund, administered by the Americal Chemical Society, for financial support, the National Science Foundation for an instrumentation grant (CHE-8506671), NATO for a travel grant (G.K.A. and R.J.C.), the Ministerio de Educacion y Ciencia, Spain, for a scholarship (M.R.), and Johnson Matthey for loans of palladium salts.

Registry No. $[Pd_2(C_6H_4-2-N=NPh)_2(\mu-Cl)_2], 14873-53-1;$ $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_4Me)], 114762-97-9; [Pd(C_6H_4-2-N=NPh)(\eta^5-N_5H_4Me)], 114762-97-9; [Pd(C_6H_4-2-N=NPh)(\eta^5-N_5H_4Me)]$ $N=NPh(\eta^5-C_5H_4SiMe_3)$], 114762-98-0; [Pd(C₆H₄-2-N= NPh) $(\eta^{5}-C_{5}H_{5})$], 85453-00-5; [Pd(C₆H₄-2-CH=NCH₃)($\eta^{5}-C_{5}H_{5})$], 39015-52-6; $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PCy_3)]$, 114762-99-1; $[Pd(C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PEt_2Ph)], 114763-00-7; [Pd (C_6H_4-2-N=NPh)(\eta^5-C_5H_4CH_3)(PEt_3)], 114763-01-8; [Pd (C_6H_4-2-N=NPh)(\eta^5-C_5H_5)(PMe_2Ph)], 114763-02-9; [Pd(C_6H_4-2))$ $2-N=NPh)(\eta^5-C_5H_4CH_3)(PMe_2Ph)], 114763-03-0; [Pd(C_6H_4-2-2))$ $N=NPh)(\eta^{5}-C_{5}H_{4}CH_{3})(PEt_{2}Ph)], 114763-04-1; [Pd(C_{6}H_{4}-2-N=$ NPh) $(\eta_{5}^{5}-C_{5}H_{4}CH_{3})(PCy_{3})], 114763-05-2; [Pd(C_{6}H_{4}-2-N=$ NPh) $(\eta^5-C_5H_4SiMe_3)(PMe_2Ph)]$, 114763-06-3; [Pd(C₆H₄-2-N= NPh) $(\eta^5-C_5H_4SiMe_3)(PEt_2Ph)$], 114763-07-4; [Pd(C₆H₄-2-CH= NCH_3 $(\eta^5 - C_5H_5)(PMe_2Ph)$], 114763-08-5; $[Pd(C_6H_4-2-CH=$ $NCH_{3}(\eta^{5}-C_{5}H_{5})(PEt_{2}Ph)], 114763-09-6; Me_{3}SiC_{5}H_{5}, 25134-15-0;$ methylcyclopentadiene, 26519-91-5.

Supplementary Material Available: Anisotropic displacement parameters (Table VII) and hydrogen atom parameters (Table VIII) (3 pages); a listing of final $|F_0|$ and $|F_c|$ values (Table IX) (14 pages). Ordering information is given on any current masthead page.

⁽¹⁸⁾ Manojlovič-Muir, Lj.; Muir, K. W.; Treurnicht, I.; Puddephatt, R. J. Inorg. Chem. 1987, 26, 2418.

⁽¹⁹⁾ International Tables for X-ray Crystallogrphy; Kynoch Press: Birmingham, U.K., 1974; Vol. IV, Tables 2.2B, 2.3.1.
(20) Mallinson, P. R.; Muir, K. W. J. Appl. Cryst. 1985, 18, 51.