Acknowledgment. The investigation was supported in part (A.L.S.) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Advancement of Pure Research (ZWO). The X-ray data were collected by Dr. A. J. M. Duisenberg. Professor K. Vrieze is thanked for helpful discussions.

Registry No. 4, 114762-89-9; 4-d₃, 114762-95-7; 5, 114762-90-2; 6, 114762-91-3; 7, 114762-92-4; 7-d₃, 114762-96-8; 8, 114762-93-5; 9, 114762-94-6; 2,6-(Me₂NCH₂)₂C₆H₃Br, 66479-06-9; [IrCl(COD)]₂, 12112-67-3; 1-Me-2-Br-3-(Me₂NCH₂)C₆H₃, 114739-32-1; Li₄- $[C_6H_4(CH_2NMe_2)-2]_4$, 56174-66-4; 2-Br-1,3,5-(Me₂NCH₂)₃C₆H₂, 114739-29-6; 2-bromo-1,3-dimethylbenzene, 576-22-7; 2-bromo-1,3-dimethylbenzene-d₃, 114739-30-9; 2-bromo-1,3-bis((dimethylamino)methyl)benzene-d₃, 114739-31-0.

Supplementary Material Available: Lists of hydrogen atom positions and thermal parameters and complete lists of bond distances and angles (4 pages); a listing of the F_o and F_c values (25 pages). Ordering information is given on any current masthead page.

Formation of Octahedral Iridium(III) Dihydrides from the Reaction of Ortho-Chelated Aryliridium(I) Compounds with Dihydrogen

Adolphus A. H. van der Zeijden, Gerard van Koten,* Ronald Luijk, and David M. Grove

Anorganisch Chemisch Laboratorium, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Received November 6, 1987

The reaction of $Ir^{I}[C_{6}H_{2}(CH_{2}NMe_{2})-2\cdot R^{1}\cdot 4\cdot R^{2}\cdot 6](COD)$ (COD = cycloocta-1,5-diene) with dihydrogen in CD₂Cl₂ was monitored by ¹H NMR. At -20 °C quantitative formation of the novel dihydride complexes $Ir^{III}H_{2}[C_{6}H_{2}(CH_{2}NMe_{2})-2\cdot R^{1}\cdot 4\cdot R^{2}\cdot 6](COD)$ [R¹ = H, R² = CH₂NMe₂ (10), Me (11); R² = H, R¹ = H (12), Me (13), CH₂NMe₂ (14); R¹ = R² = CH₂NMe₂ (15)] occurs. Further reactions, the type of which depends on the bulkiness of the R¹ and R² groups, occur when these solutions are warmed to 0 °C. Complexes 12-14 (R² = H) lose H₂ to re-form Ir^I[C₆H₃(CH₂NMe₂)-2·R¹-4](COD). In contrast, complexes 10, 11, and 15 (R² = alkyl) react further by means of C(aryl)-H reductive elimination. For complex 15 (R¹ = CH₂NMe₂) this results in quantitative formation of 1,3,5-(Me₂NCH₂)₃C₆H₃ and "IrH(COD)". In Ir^{III}H₂[C₆H₃-(CH₂NMe₂)-2·R·6](COD) [R = alkyl (10 and 11)], C(aryl)-H reductive elimination is followed by re-addition of another C(aryl)-H bond, which upon subsequent reductive elimination of H₂, yields the *rearranged* iridium(I) complexes Ir^I[C₆H₃(CH₂NMe₂)-2·R·4](COD). Since the rearrangement of Ir^I[C₆H₃-(CH₂NMe₂)-2·R·6](COD) to Ir^I[C₆H₃(CH₂NMe₂)-2·R·4](COD) can also be induced thermally at 60 °C, it is therefore being catalyzed by dihydrogen at 0 °C. None of these reactions with dihydrogen is attended by hydrogenation of the COD ligand.

Introduction

The oxidative addition of dihydrogen to metal d^8 complexes is a key step in homogeneous hydrogenation and hydroformylation catalysis.¹ Since the discovery of the first stable metal dihydrido olefin complexes in 1976 by Crabtree et al.,² several papers have emerged on the observation of other species of this type.³ These species, as well as recently isolated *cis*-alkyl/aryl/acyl hydride rhodium and iridium complexes,⁴ can be regarded as intermediates in the homogeneous catalytic hydrogenation of olefins.

In previous papers we reported the syntheses of M^{I} -[C₆H₃(CH₂NMe₂)-2-R-6](COD) [M = Rh, R = CH₂NMe₂ (1), Me (2), H (3);⁵ M = Ir, R = CH₂NMe₂ (4), Me (5), H (6)] and Ir^I[C₆H₂(CH₂NMe₂)₃-2,4,6](COD) (9);⁶ see Figure 1. We also reported that compounds 4 and 5, which suffer from internal steric crowding between the 6-substituted alkyl group and the adjacent COD double bond, isomerize quantitatively in an unusual way to Ir^I[C₆H₃-(CH₂NMe₂)-2-R-4](COD) [R = CH₂NMe₂ (7) and Me (8), respectively]. The mechanism of this conversion involves the successive intramolecular breaking and making of several C-H bonds (see Scheme I). Some of the postulated intermediates in this conversion involve iridium(III) hydride species yet, despite the cis arrangement of the metal hydride and one of the double bonds of COD, no hydrogenation of COD was observed. In view of this it was anticipated that the reaction of molecular hydrogen with the iridium(I) complexes 4-9 might lead to isolable iridium(III) dihydride species. This paper contains the results

^{*}To whom correspondence should be addressed at the Laboratory of Organic Chemistry, University of Utrecht, Department of Metal Mediated Synthesis, Padualaan 8, 3584 CH Utrecht, The Netherlands.

Dickson, R. S. Homogeneous Catalysis with Compounds of Rhodium and Iridium; D. Reidel: Dordrecht, Holland, 1985.
 Crabtree, R. H. Acc. Chem. Res. 1979, 12, 331.
 (3) (a) Crabtree, R. H.; Felkín, H.; Fillebeen-Khan, T.; Morris, G. E.

^{(3) (}a) Crabtree, R. H.; Felkin, H.; Fillebeen-Khan, T.; Morris, G. E. J. Organomet. Chem. 1979, 168, 183. (b) Crabtree, R. H.; Uriarte, R. J. Inorg. Chem. 1983, 22, 4152. (c) Burk, M. J.; Crabtree, R. H.; Holt, E. M. Organometallics, 1984, 3, 638. (d) Fernandez, M. J.; Esteruelas, M. A.; Jimenez, M. S.; Oro, L. A. Organometallics 1986, 5, 1519. (e) Kretschmer, M.; Pregosin, P. S.; Albinati, A.; Togni, A. J. Organomet. Chem. 1985, 281, 365.

<sup>Chem. 1988, 281, 365.
(4) (a) Milstein, D. Acc. Chem. Res. 1984, 17, 221. (b) Arpac, E.;</sup> Mirzaei, F.; Yardimcioglu, A.; Dahlenburg, L. Z. Anorg. Allg. Chem. 1984, 519, 148. (c) Thorn, D. L. Organometallics 1986, 5, 1897. (d) Bennett, M. A.; Crisp, G. T. Organometallics 1986, 5, 1792. (e) Bennett, M. A.; Crisp, G. T. Organometallics 1986, 5, 1800. (f) Bianchini, C.; Peruzzini, M.; Zanobini, J. J. Organomet. Chem. 1987, 326, C79. (g) Fryzuk, M. D.; MacNeil, P. A.; Rettig, S. J. J. Am. Chem. Soc. 1987, 109, 2803.
(5) und der Zeilden A. A. H.; und Katen G.; Nordemann, R. A.; Koijá

⁽⁵⁾ van der Zeijden, A. A. H.; van Koten, G.; Nordemann, R. A.; Kojić Prodić, B.; Spek, A. L. Organometallics, in press.

⁽⁶⁾ van der Zeijden, A. A. H.; van Koten, G.; Luijk, R.; Nordemann, R. A.; Spek, A. L. Organometallics, preceding paper in this issue.

Figure 1. Solid-state structures of $M^{I}[C_{6}H_{2}(CH_{2}NMe_{2})-2-R^{1}-4-R^{2}-6](COD)$ (1-9).

of these investigations that have led to the identification of dihydride complexes that also bear olefin and aryl functions around the iridium center.

Experimental Section

General Data. All manipulations were conducted under an atmosphere of dry nitrogen. The compounds $Ir[C_6H_3(CH_2NMe_2)_2-2,6](COD)$ (4), $Ir[C_6H_3(CH_2NMe_2)-2-Me-6](COD)$ (5), $Ir[C_6H_4(CH_2NMe_2)-2](COD)$ (6), $Ir[C_6H_3(CH_2NMe_2)_2-2,4]$ -(COD) (7), $Ir[C_6H_3(CH_2NMe_2)-2-Me-4](COD)$ (8), and $Ir[C_6H_2-(CH_2NMe_2)_3-2,4,6](COD)$ (9) were synthesized according to ref 6.

Reaction of the Iridium(I) Complexes (4-9) with H_2 . Formation of Dihydride Species and NMR Measurements. In a typical experiment a red solution of ca. 0.15 mmol of one of the iridium complexes, 4-9, in 1.5 mL of dry CD_2Cl_2 was cooled to -20 (±5) °C. When hydrogen was bubbled through this solution for ca. 1 min, a clear yellow solution resulted. At this temperature, 0.5 mL of the reaction mixture, containing the iridium(III) dihydride complex, was transferred to a precooled 5-mm NMR tube. Subsequent ¹H NMR spectra were recorded first at -20 °C and then with increasing temperature at intervals of 10° up to +20 °C on a Bruker WM250 spectrometer.

Results and Discussion

Formation and Characterization of $Ir^{III}H_2[C_6H_2-(CH_2NMe_2)-2\cdotR^{1}\cdot4\cdotR^2\cdot6](COD)$ (10–15). The orange-red complexes $Ir^{I}[C_6H_2(CH_2NMe_2)-2\cdotR^{1}\cdot4\cdotR^2\cdot6](COD)$ (4–9) have square-planar configurations in the solid state, with a C,N-coordinated aryl ligand and a bidentate COD ligand (Figure 1).⁶ Bubbling dihydrogen through solutions of these complexes in CD_2Cl_2 at -20 (±5) °C results in rapid formation of a yellow solution containing the iridium(III) dihydride species $Ir^{III}H_2[C_6H_2(CH_2NMe_2)-2\cdotR^{1}\cdot4\cdotR^2\cdot6]$ -(COD) (10–15) (Figure 2). The oxidative addition reaction proceeded very cleanly in this narrow temperature range, and ¹H NMR measurements at -20 °C of these clear solutions showed the iridium(III) dihydrides to be the only

Figure 2. Structures of $Ir^{III}H_2[C_6H_2(CH_2NMe_2)-2-R^{1}-4-R^2-6]-(COD)$ (10–15) in solution at -20 °C.

Figure 3. ¹H NMR spectrum of $Ir^{III}D_2[C_6H_3(CH_2NMe_2)_2-2,6](COD)$ (10-d₂) in CD₂Cl₂ at -20 °C.

species present. As complexes 10-15 were found to be unstable above 0 °C in solution, identification was restricted to in situ ¹H NMR spectroscopy and no attempts were made to isolate solid products.

The iridium(III) dihydride complexes 10-15 can be readily characterized by their distinctive ¹H NMR spectra (Table I and Figure 3). There are two hydride resonances with equal intensity at ca. -9 and -17 ppm, which are singlets within the resolution of the NMR measurements (0.5 Hz). The four olefinic protons of COD appear as four separate signals, indicative of the complete absence of

Scheme I. Postulated Mechanism for the Conversion of $Ir^{I}[C_{6}H_{3}(CH_{2}NMe_{2})-2-R-6](COD)$ [R = $CH_{2}NMe_{2}$ (4), Me (5)] to $Ir^{I}[C_{6}H_{3}(CH_{2}NMe_{2})-2-R-4](COD)$ [R = $CH_{2}NMe_{2}$ (7), Me (8)]⁶

			$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
compd	R1	\mathbb{R}^2	2-CH ₂ NMe ₂ group		other aromatic protons and	<u> </u>	
			CH ₂	N(CH ₃) ₂	substituents ^b	$=CH(COD)^{c}$	$\mathrm{Ir}H$
10	н	CH ₂ NMe ₂	3.63 (d), 4.08 (d)	2.94 (s), 3.00 (s)	$\begin{array}{c} H_{3,5}, 6.91 (\mathrm{d}), 7.07 (\mathrm{d}); H_4, 6.78 \\ (\mathrm{t}); \mathrm{R}^2, \mathrm{C}H_2, 3.53 (\mathrm{d}), 3.70 (\mathrm{d}), \\ \mathrm{C}H_3, 2.26 (\mathrm{s}) \end{array}$	3.25, 4.03, 4.25, 4.74	-9.37, -16.41
11	н	Me	3.63 (d), 4.10 (d)	2.97 (s), 3.01 (s)	$H_{3,5}$, 6.89 (d), 6.86 (d); H_4 ; 6.70 (t); R^2 , CH_3 , 2.50 (s)	3.23, 4.07, 4.21, 4.77	-9.12, -16.44
12	Н	н	3.68 (d), 3.84 (d)	2.68 (s), 3.12 (s)	H_{3} , 6.99 (d); $H_{4,5}$, 6.75 (t), 6.81 (t); H_{6} , 7.49 (d)	2.83, 4.09, 4.61, 4.74	-9.16, -17.88
13	CH ₂ NMe ₂	Н	3.66 (d), 3.83 (d)	2.67 (s), 3.11 (s)	$\begin{array}{c} H_3, \ 6.94 \ (\mathrm{s}); \ H_5, \ 6.71 \ (\mathrm{d}); \ H_6, \ 7.40 \\ (\mathrm{d}); \ \mathrm{R}^1, \ \mathrm{C}H_2, \ 3.19 \ (\mathrm{s}), \ \mathrm{C}H_3, \ 2.11 \\ (\mathrm{s}) \end{array}$	2.82, 4.08, 4.61, 4.72	-9.17, -17.91
14	Me	Н	3.65 (d), 3.83 (d)	2.66 (s), 3.13 (s)	H_{3} , 6.87 (s); H_{5} , 6.69 (d); H_{6} , 7.38 (d); \mathbb{R}^{1} , CH_{3} , 2.51 (s)	2.83, 4.09, 4.62, 4.75	-9.13, -17.86
15	CH_2NMe_2	CH_2NMe_2	3.62 (d), 4.04 (d)	2.94 (s), 2.96 (s)	$H_{3,5}$, 6.97 (s), 6.84 (s); R ¹ , CH ₂ , 3.20 (s); CH ₃ , 2.11 (s); R ² , CH ₂ , 3.53 (d), 3.70 (d), CH ₃ , 2.11 (s)	3.23, 4.03, 4.25, 4.74	-9.43, -16.47

(a), ^a Measured in CD₂Cl₂ at -20 °C and 250 MHz. Chemical shifts (δ) relative to external TMS. ^bFor adjacent aryl protons, ³J(H-H) = 7 Hz;

for CH₂ AB doublets, ${}^{2}J(H-H) = 13$ Hz. ^cBroad resonance.

symmetry in these complexes. Finally, there is a single aryl ligand, which for all these complexes shows diastereotopic CH_2 protons and NMe_2 methyls in (one of) the CH_2NMe_2 group(s). This chirality of the N atom can only arise if this CH₂NMe₂ group is coordinated to the iridium center, and therefore the aryl ligand in complexes 10-15 is always bidentate C,N-coordinated. Together with the two hydrides and the two coordinated double bonds of COD, this adds up to a six-coordinate iridium(III) complex, which almost certainly has a monomeric octahedral structure. Since the ¹H NMR data of the hydrides and olefinic protons of COD in 10-15 are all fairly similar, these complexes are believed to be isostructural.

A symmetrical structure in which the hydride atoms are in trans positions can be ruled out immediately on the basis of the above NMR data. There remain two other possible octahedral structures for these iridium(III) dihydrides in which the two hydrides are both in cis positions (isomers a and b in Scheme II). Despite the fact that the hydride atoms must be cis positioned, no mutual coupling was observed, but such couplings are usually very small $(<2 \text{ Hz})^{3,7-9}$ Spectroscopically, the two postulated structures a and b can be discriminated on the basis of the ¹H chemical shifts of the hydride atoms. It is known that the chemical shifts of iridium hydride resonances keep a reliable track of the electronegativity of the opposing trans group.¹⁰ Thus, the ¹H NMR resonances of trans-C (either double bond or aryl/alkyl) hydrides are expected at ca. -11 (± 2) ppm and those of trans-N hydrides at ca. -18 (± 2) ppm. Accordingly, the hydride that appears at -17 ppm in complexes 10-15 should be trans to a nitrogen atom, which means that these complexes have structures designated as isomer a in Scheme II. Additionally, other facts point to a as being the most likely structure: (i) if complexes 10, 11, and 15 had structure b, there would be severe steric hindrance between the 6-substituted R^2 group and the trans-N olefinic group of COD; (ii) the resonances of one of the hydrides appear in the extremely narrow range of -16.44 (±0.03) ppm for the three complexes 10, 11, and 15 and of $-17.89 (\pm 0.03)$ ppm for the other three complexes 12-14. This clear difference can only be readily explained by the influence of the adjacent R^2 group in structure a, which is a proton in complexes 12-14 and an alkyl group

Scheme II. Possible Pathways for the Cis Addition of Dihydrogen to $Ir^{I}[C_{6}H_{2}(CH_{2}NMe_{2})-2-R^{1}-4-R^{2}-6](COD)$ (4-9) Leading to the Formation of $Ir^{III}H_2[C_6H_2(CH_2NMe_2)-2-R^1-4-R^2-6](COD)$ (10-15)

in complexes 10, 11, and 15. Such behavior would not expected for the trans-C(aryl) hydride of structure b because here it has the same spatial environment in all six iridium(III) complexes, 10-15. Evidently, the introduction of a 6-position alkyl group into the iridium(III) dihydride complexes 10, 11, and 15 causes a deshielding of the trans-N hydride atom and a consequent downfield shift of 1.45 ppm. Finally, it is worth noting that in accordance with structure a, the other hydride (which is trans to a double bond of COD) resides in a position that is far away from the R² group, which explains why its ¹H chemical shift of -9.28 (±0.15) ppm does not differ much within the six iridium(III) dihydrides.

Complexes 10-15 are rare examples of iridium(III) species having olefin, aryl, and hydride functions together around the same metal center. To our knowledge, the only other complex having this feature is dinuclear PhH- $(COD)Ir(\mu-C_{12}H_8)Ir(COD)$.¹¹ It is further noted that the new hydrides 10–15 are structurally related to the cationic

Fisher, B. J.; Eisenberg, R. Organometallics 1983, 2, 764.
 Johnson, C. E.; Eisenberg, R. J. Am. Chem. Soc. 1985, 107, 3148.

⁽⁹⁾ Yang, C.; Socol, S. M.; Kountz, D. J.; Meek, D. W.; Glaser, R. Inorg. Chim. Acta 1986, 114, 119.

⁽¹⁰⁾ Olgemoeller, B.; Beck, W. Inorg. Chem. 1983, 22, 997.

⁽¹¹⁾ Mueller, J.; Haensch, C.; Pickardt, J. J. Organomet. Chem. 1983, 259, C21.

Scheme III. Thermally Induced Reactions of Ir^{III}H₂[C₆H₂(CH₂NMe₂)-2-R¹-4-R²-6](COD) (10-15) upon Warming in Solution from -20 to 0 °C

complexes [IrH₂(COD)L₂]⁺, which currently are the most active catalysts known for the homogeneous hydrogenation of olefins.²

Mechanism of Dihydrogen Addition to $Ir^{I}[C_{6}H_{2}]$ $(CH_2NMe_2)-2-R^1-4-R^2-6](COD)$ (4-9). Knowing the geometry of the new iridium(III) dihydrides 10-15, it is now possible to discuss the available pathways for their formation from the iridium(I) precursors 4-9 (summarized in Scheme II). As mentioned earlier, the iridium(I) complexes 4 and 5, as well as 9, suffer from steric crowding of the 6-position aryl R² group and an adjacent double bond of COD. In solution these complexes relieve their strain by a reversible dissociation of the Ir-N bond, followed by rotation of the aryl ligand out of the coordination plane, thereby creating a T-shaped 14-electron intermediate (see Scheme I, upper left, or Scheme II, upper part). It has been shown that this intermediate is the actual species that reacts intramolecularly with an NMe C-H bond to initiate the unique irreversible rearrangement depicted in Scheme I.⁶ However, irrespective of this fluxionality, compounds 4, 5, and 9 as well as the nonfluxional compounds 6-8 react with dihydrogen to afford the isostructural cis-dihydride species 10-15. This means that attack of dihydrogen on the T-shaped three-coordinate species as well as on the square-planar four-coordinate species yields the same type of product.

A concerted cis addition of H_2 to the square-planar arrangement of the iridium(I) complexes 4–9 can take place along either the N–Ir–olefin or the C(aryl)–Ir–olefin' axis, affording the octahedral iridium(III) dihydride structures a and b, respectively (see Scheme II). In the present case, isomer b is unlikely on steric grounds, and although this type of dihydrogen addition is often under kinetic control,^{3b,8} here it must be guided by thermodynamic factors.

For complexes 4, 5, and 9 dihydrogen can also add to the T-shaped three-coordinate conformation. Oxidative addition to such a species will normally be directed (on steric grounds) such that a diatomic substrate approaches the metal center oriented perpendicular to the coordination plane with its midpoint in this plane to afford a five-coordinate complex (Scheme II, right).¹² In accordance with the observed product formation, the two hydrides then remain mutually cis, since upon subsequent intramolecular coordination of the tertiary amine group the octahedral cis-dihydride complexes 10, 11, and 15 are generated. However, without further information it is impossible to say by which of the two mechanisms outlined here the fluxional iridium(I) complexes 4, 5, and 9 react with dihydrogen.

Reactions of $Ir^{I}[C_{6}H_{2}(CH_{2}NMe_{2})-2-R^{1}-4-R^{2}-6](COD)$ (4-9) with Dihydrogen at Other Temperatures. In contrast to the behavior of the iridium(I) complexes 4-9with dihydrogen at -20 °C, at temperatures below ca. -40 °C no measurable reaction was observed, despite the presumed enhanced thermodynamic preference for dihydride formation. This is in accord with theoretical calculations by Saillard and Hoffmann.¹³ They state that side-on dihydrogen additions to planar d⁸-ML₄ complexes proceed better if two trans ligands can bend toward each other (in the yz plane). This destabilizes the d_{yz} orbital, which can than provide an improved overlap with the dihydrogen σ^* orbital. This situation can only be reached if these complexes exhibit sufficient thermal motion. This temperature-dependent behavior of the iridium(I) complexes 4-9 toward dihydrogen points to the conclusion that a slight bending in these square-planar metal d⁸ complexes is indeed required to induce a side-on addition of dihydrogen.

The reaction of the iridium(I) complexes 4-9 with dihydrogen, when carried out at room temperature, led to gradual decomposition and formation of $1-(Me_2NCH_2)-3-R^1-5-R^2-C_6H_3$, cyclooctane, and probably metallic iridium. The kinetic barriers are now low enough at this temperature for hydrogenation of the double bonds of COD.

Finally in this section, it is worth noting that the analogous rhodium(I) complexes 1-3 also exhibit a temperature-dependent behavior toward molecular hydrogen. However, they differ from the iridium(I) complexes in that there was no intermediate temperature range in which rhodium(III) dihydride species could be detected.⁵

Thermally Induced Reactions of $Ir^{III}H_2[C_6H_2-(CH_2NMe_2)-2\cdotR^1\cdot4\cdotR^2\cdot6](COD)$ (10–15). Solutions of the iridium(III) dihydride complexes 10–15, prepared from 4–9 in situ in CD₂Cl₂ at -20 °C, undergo various reactions on warming to +20 °C. These reactions were monitored by ¹H NMR, and in all cases the resonances assigned to $Ir^{III}H_2[C_6H_2(CH_2NMe_2)-2\cdotR^1\cdot4\cdotR^2\cdot6](COD)$ disappear above 0 °C. The types of reaction that take place, summarized in Scheme III, are found to depend primarily on the bulkiness of the R² group of the aryl ligand.

Figure 4. Reaction of $Ir^{I}[C_{6}H_{3}(CH_{2}NMe_{2})_{2}\text{-}2,6](COD)$ (4) with $D_{2}.$

Complexes 12-14, which all have a proton at the 6position of the aryl ligand ($\mathbb{R}^2 = H$), lose dihydrogen quantitatively, re-forming their starting iridium(I) complexes 6-8, respectively. The reaction of 6-8 with dihydrogen to form the dihydrides 12-14 is therefore reversible.

However, complexes 10, 11, and 15, which all have an alkyl group as \mathbb{R}^2 , do not give back their respective iridium(I) precursors on warming. Instead of $\mathrm{Ir}^{I}[\mathrm{C}_{6}\mathrm{H}_{3}$ -(CH₂NMe₂)-2-R-6](COD) [$\mathbb{R} = \mathrm{CH}_{2}\mathrm{NMe}_{2}$ (4), Me (5)], the respective dihydrides 10 and 11 yield mainly the rearranged isomers $\mathrm{Ir}^{I}[\mathrm{C}_{6}\mathrm{H}_{3}(\mathrm{CH}_{2}\mathrm{NMe}_{2})$ -2-R-4](COD) (7 and 8) (70%), accompanied by some decomposition to 1-(Me₂NCH₂)-3-R-C₆H₄ and "IrH(COD)" (30%).¹⁴ If a solution of $\mathrm{Ir}^{III}\mathrm{H}_{2}[\mathrm{C}_{6}\mathrm{H}_{3}(\mathrm{CH}_{2}\mathrm{NMe}_{2})_{2}$ -2,6](COD) (10) (which itself does not react with PPh₃) is warmed up in the presence of 2 equiv of PPh₃, a 1:1 mixture of 1,3-(Me₂NCH₂)₂C₆H₄ and the known¹⁷ complex IrH(COD)-(PPh₃)₂ is obtained, so corroborating the formation of a "IrH(COD)" moiety during the reaction.¹⁴ Complex 15 reacts on warming to afford only 1,3,5-(Me₂NCH₂)₃C₆H₃ as the organic product.

In contrast to the H-H elimination of the dihydride complexes 12-14, the nature of the reaction products of the iridium(III) dihydrides 10, 11, and 15 points to C-(aryl)-H reductive elimination pathways. The 6-position alkyl groups in these latter complexes appear to exert a repulsive force on the neighboring hydride atom such that C(aryl)-H reductive elimination becomes more favorable than dihydrogen elimination.

For 10 and 11, the formation of the iridium(I) complexes 7 and 8 suggests a rearrangement process (see Scheme III) very similar to that found for the thermal conversion of complexes 4 and 5 to 7 and 8 at 60 °C (see Scheme I). This latter process has been shown to be triggered by a C-H addition of a MeN group to the iridium(I) center.⁶ In the former process, addition of H-H initiates the intramolecular rearrangement, which now proceeds at a much lower temperature (0 °C), and therefore dihydrogen is actually acting as a catalyst.

The mechanism of the dihydrogen catalyzed 4/7 and 5/8 rearrangement was examined by following the reaction of $Ir^{I}[C_{6}H_{3}(CH_{2}NMe_{2})_{2}-2,6](COD)$ (4) with dideuterium (see Figure 4). At -20 °C this yields, as anticipated, $Ir^{III}D_{2}$ -

Figure 5. Reaction of $Ir^{I}[C_{6}H_{4}(CH_{2}NMe_{2})-2](COD)$ (6) with D_{2} .

 $[C_6H_3(CH_2NMe_2)_2-2,6](COD)$ (10-d₂). When the mixture was warmed to 0 °C, Ir[C₆H₂(CH₂NMe₂)₂-2,4-D-3](COD) $(7-d_1)$ was formed exclusively. Although the concomitant formation of HD in this briefly warmed solution was not demonstrated directly, rapid recooling of the reaction mixture to -20 °C resulted in the formation of a species formulated as $Ir^{III}HD[C_6H_2(CH_2NMe_2)_2-2,4-D-3](COD)$ (13- d_2). Its ¹H NMR spectrum has hydride signals at -9.2 and -17.9 ppm, but with half the intensity found for fully protonated 13. [In principle this species could also be a 1/1 molar mixture of the H₂ (13-d₁) and D₂ (13-d₃) complexes. However a dihydride complex $(13-d_1)$ cannot be formed because 4, which is the only possible H source for H_2 in this rearrangement, has already been consumed (see the derived mechanism shown in Scheme III).] Presumably, this is a result of a random cis addition of the generated HD molecules to $7-d_1$

The reaction of $Ir^{I}[C_{6}H_{4}(CH_{2}NMe_{2})-2](COD)$ (6) with D_{2} at -20 °C in $CD_{2}Cl_{2}$ affords $Ir^{III}D_{2}[C_{6}H_{4}(CH_{2}NMe_{2})-2](COD)$ (12- d_{2}) (see Figure 5). When this solution is warmed, the starting complex 6 is recovered with no deuterium incorporated into the 3-position of the aryl ring. This rules out the occurrence of reversible C(aryl)-H elimination/addition reactions in the iridium(III) dihydride complex 12, and therefore probably in 13 and 14 as well.

The mechanisms of the thermally induced and dihydrogen-catalyzed 4/7 and 5/8 isomerizations (shown in Schemes I and III, respectively) are very similar. They include the involvement of some well-defined intermediates, whose nature can be used to explain why the thermally induced isomerization is more effective than the dihydrogen-catalyzed one (which is accompanied by 30% decomposition). For the two processes, the initial activation of 4 and 5 involves oxidative addition of a H-H and a C(alkyl)-H bond, respectively. Subsequent C(aryl)-H reductive elimination takes place affording two completely different intermediates, 16a and 17a. In intermediate 16a (Scheme I), the aryl ligand is bonded to the iridium(I) center by means of a Ir-C(alkyl) σ -bond, probably in combination with an arene π -bond. The presence of the σ -bond probably explains why the aryl ligand at this stadium does not dissociate from intermediate 16a but instead exclusively adds intramolecularly another C(aryl)-H bond via 16b. However, in the other intermediate 17a (Scheme III) the aryl ligand, now present as neutral 1- (Me_2NCH_2) -3-R-C₆H₄, is bonded to the iridium center only by weak Ir–N and/or π -arene interactions. It is likely that at this point the observed 30% decomposition to the free arene 1-(Me₂NCH₂)-3-R-C₆H₄ and "IrH(COD)" occurs.¹⁴ The weak linkage of the arene ligand in intermediate 17a is demonstrated when PPh₃ is present in solution during warmup. This increases the decomposition pathway from 30 to 100%, as PPh_3 fully substitutes the arene ligand from intermediate 17a, thereby forming $IrH(COD)(PPh_3)_2$. Normally however, in the dominant process (70%) intermediate 17a rearranges to its conformational isomer 17b, whereupon the arene ligand "re-metalates" at the, less sterically hindered, former 3-position of the aryl ligand. This affords the rearranged iridium(III) dihydrides 13 and 14 (which were not actually observed by ¹H NMR during

⁽¹⁴⁾ Although hydride clusters such as $Rh_4H_4(COD)_4^{15}$ and $Ir_4H_4^{-1}(COD)_4(C_3H_4)^{16}$ are known, no such species were observed by ¹H NMR during the present experiments.

 ^{(15) (}a) Schmidt, G. F.; Muetterties, E. L.; Beno, M. A.; Williams, J.
 M. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 1318. (b) Kulzick, M.; Price,
 R. T.; Muetterties, E. L. Organometallics 1982, 1, 1256.

 ⁽¹⁶⁾ Mueller, J.; Menig, H.; Pickardt, J. Angew. Chem. 1981, 93, 407.
 (17) Shapley, J. R.; Osborn, J. A. J. Am. Chem. Soc. 1970, 92, 6976.

this conversion), from which subsequent H_2 elimination affords the more stable iridium(I) complexes 7 and 8 (Scheme III).

The thermal reaction of $Ir^{III}H_2[C_6H_2(CH_2NMe_2)_3-2,4,6](COD)$ (15), which also proceeds via C(aryl)-H reductive elimination, affords the intermediate IrH-(COD)[1,3,5-(Me_2NCH_2)_3C_6H_3] (cf. 17a/b). All three aryl C-H bonds are now equivalent and equally unfavorable for "re-metalation" due to the steric hindrance of the three bulky CH_2NMe_2 groups. Since "re-metalation" would only result in re-formation of the iridium(III) dihydride complex 15 (a reaction that is obviously thermodynamically unfavorable), the alternative pathway followed is dissociation of the neutral arene ligand 1,3,5-(Me_2NCH_2)_3C_6H_3 from the metal center.

Conclusions

Iridium(I) complexes of type $Ir^{I}[C_{6}H_{2}(CH_{2}NMe_{2})-2-R^{1}-4-R^{2}-6](COD)$ react with H₂ to form the unique octa-

hedral iridium(III) dihydrides $Ir^{III}H_2[C_6H_2(CH_2NMe_2)-2-R^{1}-4-R^2-6]$ (COD), which display interesting reactivity patterns. From these reactions it can be concluded that, without altering the innermost ligand sphere of the metal center, intramolecular steric effects can drastically change the direction of H–H and C–H bond elimination/addition reactions in iridium(III) compounds. Whereas $Ir^{III}H_2$ - $[C_6H_2(CH_2NMe_2)-2-R^{1}-4-R^2-6]$ (COD) complexes that have a proton as the R² group react further by simple H–H elimination, those where R² is a bulkier alkyl group react further by an exclusive C(aryl)–H reductive elimination process. Therefore, when discussing the electronic and thermodynamic factors of H–H and C–H bond activation, it is also important to take possible interligand repulsions into account.

Acknowledgment. Richard A. Nordemann and Miss Jacqueline M. A. Wouters are thanked for practical assistance. Professor K. Vrieze is thanked for helpful discussions.

Electronic Structure of Triple-Decker Sandwich Compounds with P_5 , P_6 , As_5 , and C_nH_n as Middle Rings[†]

Eluvathingal D. Jemmis* and A. Chandrasekhar Reddy

School of Chemistry, University of Hyderabad, Central University P.O., Hyderabad-500 134, India

Received December 3, 1987

Extended Hückel calculations on CpNiCpNiCp⁺, CpCoC₆H₆CoCp, CpCoC₁H₇CoCp, CpVC₆H₆VCp, C₆H₆CrC₆H₆CrC₆H₆CrC₆H₆, CpMoP₆MoCp, CpCrP₅CrCp, and CpMoAs₅MoCp (Cp = η^5 -C₅H₅) have been carried out to find the relationship of the stability of the metal-ring combination with the number of valene electrons. The electron count varies from 34 electrons to 26 electrons depending on the magnitude of the interactions 4a-e. With the vanadium complex the e₂" interaction, 4b, is substantial. With P₆, P₅ and As₅ ligands, the a₂" interaction, 4e, also becomes very strong. CpMoAs₅MoCp leads to a degenerate HOMO with three electrons leading to a distortion of the As₅ ring, with two long and three short As-As bonds. The isoelectronic P₅ compound does not have such a distortion as the HOMO is a nondegenerate MO with only one electron.

Triple-decker sandwiches, 1, are formally obtained from metallocenes, 2, by the additional sandwiching with a metal and a ring. The following metal and ring combinations are known among them: metal = V, Cr, Fe, Co, Ni, Mo, Pt; terminal ring = C_5H_5 , C_6H_6 , $C_2B_2SH_4$, $C_3B_2H_5$; middle ring = C_5H_5 , C_6H_6 , P_5 , As_5 , P_6 , $C_2B_2SH_4$, $C_4B_2H_5$, $C_3B_2H_5$.¹⁻¹⁶ Table I lists these complexes with the number of valence electrons and the M-M distances wherever known. There are many interesting structural variations in these compounds. The M-M distance falls within the bonding range only with phosphorus and arsenic rings in the middle.¹⁴⁻¹⁶ While most of the triple-decker sandwich compounds with C_nH_n , P₅, and P₆ as middle rings retain local C_n axis, the As₅ ring in CpMoAs₅MoCp has a distorted geometry with two As-As bonds longer than the other three.¹⁶ The structure appears as a combination of As₃ and As₂ as in 3. The middle As in the As_3 group is farthest from the metals so that an η^4 -description is often used for the As₅ ligand.

The number of electrons around the metals also varies considerably. If only the π -electrons of the ligands are included in the electron count, there are 26 electrons in the vanadium complex $C_5H_5VC_6H_6VC_5H_5$ and 34 electrons in the nickel complex $C_5H_5NiC_5H_5NiC_5H_5^{-1}$. There are any

Table I. Currently Known Triple-Decker Sandwich Compounds									
with Metal-Metal Distances, Number of Valence Electrons, and									
References									

compound	M-M dist ^a	no. of valence electrons	ref
(1) CpNiCpNiCp ⁺	3.580	34	1
(2) $CpCoC_{e}R_{e}CoCp$		34	3
(3) $CpVC_6R_6VCp$	3.400	26	2
(4) C ₆ H ₈ CrC ₆ H ₆ CrC ₆ H ₆	3.338	30	4
(5) $CpFe(C_2B_2SR_4)FeCp$	3.236	30	6
(6) $(C_2B_2SR_4)Co(C_2B_2SR_4)Co(C_2B_2SR_4)$		30	7
(7) $CpM(C_3B_2R_5)M'Cp$			
(a) $M = Ni$, $M' = Ni$	3.416	33	8
(b) $M = Fe$, $M' = Co$	3.337	32	8
(c) $M = Fe$, $M' = Co$	3.204	30	8
(d) $M = Co, M' = Co$		31	8
(8) $CpCo(C_3B_2R_5)CoCp$	3.140	30	9
(9) $CpRh(C_4B_2R_6)RhCp^{2+}$	3.440	30	10
(10) $C_p M(C_3 B_2 R_5) M'(C_3 B_2 R_5)$			
(a) $M = Co, M' = Pt$		30	11
(b) $M = Ni$, $M' = Pt$		31	11
(c) $M = Co, M' = Ni$		30	11
(11) $(C_{6}H_{5}R)Fe(C_{3}B_{2}H_{5})Ni(C_{3}B_{2}H_{5})$		30	12,
			13
(12) CpMoP ₆ MoCp	2.648	28	14
(13) CpMoAs ₅ MoCp	2.762	27	16
(14) CpCrP ₅ CrCp	2.728	27	15
^a Distances in Å.			

number of complexes with intermediate electron counts of 28 and 30 (Table I). Several theoretical studies have

[†]Dedicated to Professors P. T. Narasimhan and M. V. George, I. I. T. Kanpur, on their sixtieth birthdays.