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Summary: Protonic acids such as H202(aq) or HCI in Et20 
transform one of the M=O linkages and not the M-C 
B bonds of CP‘M(O)~R complexes [Cp’ = Cp (v5-C5H5) or 
Cp” (v5-C5Me5); M = Mo or W; R = CH2SiMe3 or Me]. 
The respective oxo peroxo and oxo dichloro product 
complexes Cp’M(0)(v2-02)R and Cp * W(O)(CI),R are isol- 
able in good yields as air-stable crystalline solids that have 
been fully characterized by conventional methods, in- 
cluding a single-crystal X-ray crystallographic analysis of 
CpW(0)(v2-02)(CH2SiMe3). 

Reflecting the current interest in transition-metal oxo 
and peroxo complexes as oxidizing agents, Faller and Ma 
recently reported that treatment of Cp*W(O),R complexes 
(Cp* = s5-C5Me5; R = Me or CH2SiMe3) with hydroper- 
oxide formed by air oxidation of diethyl ether affords the 
novel compounds C~*W(O)(V~-O,)R.~  We now wish to 
present the preliminary results of our related chemical 
investigations. Specifically, we report (a) a more general, 
high-yield synthetic route to such Cp’M(0)(v2-Oz)R com- 
plexes [Cp’ = Cp (v5-C5H5) or Cp*] for both molybdenum 
and tungsten, (b) the unequivocal establishment of the 
solid-state intramolecular dimensions of one of these v2- 
0,-containing compounds, and (c )  the unusual reactions 
of Cp*W(O),R with HC1. Features (a)-(c) are considered 
in turn below. 

(a) Our general synthetic route is summarized in eq 1. 

Thus, exposure of the 16-electron dialkyl nitrosyl com- 
plexes Cp’M(NO)R2 (M = Mo or W)314 to water and mo- 
lecular oxygen converts them to the corresponding dioxo 
alkyl compounds Cp’M(O),R in higher yields (>80%) than 
if 0, alone is e m p l ~ y e d . ~  Then, treatment of the latter 
complexes with 30% H,O,(aq) results in their clean con- 
version to the corresponding Cp’M(0)(s2-02)R compounds. 
Overall yields of the final peroxo alkyl complexes6 from 
their dialkyl precursors range from 50% (R = Me) to 80% 
(R = CH2SiMe3). This observation contrasts with the 
overall yield of 1% (R = Me) or 22% (R = CH,SiMe3) for 
Cp*W(0)(q2-O2)R from [Cp*W(CO)2]2 obtained by Faller 
and Ma.2 Furthermore, conversions 1 afford both the Cp 
and Cp* derivatives of the two group 6 metals.’ 

(1) Permanent address: Departamento de Quimica Inorghica, Fa- 
cultad de Quimica, Universidad de Sevilla, Sevilla, Spain. 

(2) Faller, J. W.; Ma, Y. Organometallics 1988, 7,559 and references 
therein. 

(3) Legzdins, P.; Rettig, S. J.; Sinchez, L.; Bursten, B. E.; Gatter, M. 
G. J.  Am. Chem. SOC. 1985,107, 1411. 

(4) The Cp*M(NO)Mez complexes are generated at  -65 OC in EgO 
from [Cp*M(NO)12]. (n = 1 or 2) and MeLi and are then allowed to warm 
to room temperature in the presence of 0 2  and H20 to effect their 
transformation into the Cp*M(0)zMe derivatives. 

(5) Legzdins, P.; Rettig, S. J.; Shchez, L. Organometallics 1985, 4, 
1470. 

(6) Elemental analysis and spectroscopic data for all new complexes 
isolated during this work are presented as supplementary material. , 
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Figure 1. Molecular structure of CpW(O)(v2-O2)(CH2SiMe3). 
Selected bond lengths (A) and angles (deg): W-O(1) = 1.68 (3), 
W-O(2) = 1.92 (3), W-0(3) = 1.87 (3), W-C(6) = 2.15 (4), C(6)-Si 
= 1.84 (4), 0(2)-0(3) = 1.44 (3), W-0(2)-0(3) = 66 (2), W-O- 
(3)-0(2) = 70 (2), O(l)-W-C(6) = 99.2 (14), 0(1)-W-0(2) = 99.7 
(13), O(l)-W-O(3) = 106.5 (14), O(2)-W-0(3) = 44.7 (lo), W- 
C(6)-Si = 119 (2). 

(b) A single-crystal X-ray crystallographic analysis of 
one of the alkyl peroxo complexes, namely, CpW(0)(q2- 
0,) (CH2SiMe3)? has established its solid-state molecular 
structure as being that of a slightly flattened “three-legged 
piano stool” (Figure l), the midpoint of the peroxo ligand 
constituting the terminus of one of the legs. The W(v2-02) 
intramolecular dimensions (W-0 = 1.92 (3) and 1.87 (3) 
8, and 0-0 = 1.44 (3) A are within the ranges (transi- 
tion-metal-0 = 1.80-1.99 8, and 0-0 = 1.42-1.49 8,) 
commonly found in peroxo comple~es.~ Furthermore, the 
W=O, W-alkyl, and W-Cp bond distances are compa- 
rable to those found in related ~ o m p o u n d s . ~ , ~  In other 
words, the solid-state molecular structure exhibited by 
CpW(0) (q2-02)(CH2SiMe3) is completely consistent with 
it being formulated as a 16-electron oxo peroxo complex 
containing W=O and 

‘ 0  

linkages. The spectroscopic properties of all our alkyl 
peroxo complexes6 indicate that their molecular structures 
both in solutions and in the solid state are similar to that 
shown for CpW(0)(v2-02)(CH2SiMe3) in Figure 1. In 
particular, their Nujol mull IR spectra all exhibit bands 
in the regions 960-930, 875-850, and 575-555 cm-’ as- 
signable to vM=0, vo-0, and ~ ~ - 0 ,  respectively. 

(c) Just as in the second step of reactions 1, it is also one 
of the W=O linkages which is transformed when Cp*W- 

(7) We have subsequently learned in a personal communication from 
Professor Faller that his methodZ also produces 30-40% yields of the 
Cp*Mo(0)(q2-02)R complexes from Cp*Mo(O),Cl, but it is only appli- 
cable to the Cp* derivatives. 

(8) Crystals of CpW(O)( 2-02)(CH2SiMe3) are orthorhombic with a = 
6.531 (6) A, b = 11.659 (2) 1, c = 32.198 (7) A, Ddd = 2.08 g ~ m - ~ ,  2 = 
8, and space group Pbca. The structure was solved by conventional 
heavy-atom methods and refined by full-matrix least-squares procedures 
using 765 decay- and absorption-corrected reflections with I 2  3 d O  
collected at 22 “C with graphite-monochromated Mo Ka radiation on an 
Enraf-Nonius CAD4-F diffractometer. Refinement of the tungsten and 
silicon atoms anisotropically and all other non-hydrogen atoms isotrop- 
ically (with hydrogens fixed in ideal positions) has been carried out to R 
= 0.084. Residual electron density in a final difference Fourier map (u- 
N 3 e A-3) does not suggest any disorder of the three oxygen atoms. 
Refinement was limited by extensive decay; three standard reflections, 
measured every hour, had overall intensity decay varying from 68.9% to 
78.9%. Initially colorless, the crystals remained intact but became in- 
creasingly orange during exposure to X-rays. 

(9) Mimoun, H. In The Chemistry of Functional Groups, Peroxides; 
Patai, S., Ed.; Wiley: New York, 1983; Chapter 15. 
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(O),R complexes are treated with 2 equiv of HC1 in EtzO 
(eq 2).1° The Cp*W(0)(Cl)z(CHzSiMe3) and Cp*W(O)- 

(Cl),Me products isolated to date from reactions 2 exhibit 
IR and 'H and 13C(1H] NMR spectra which are consistent 
with their possessing the molecular structures shown.6 
These product complexes are also very useful synthetic 
precursors, e.g. reactions 3 affording the final oxo alkyl- 
idene complexes in much higher yields than other  route^.^^^ 

A 
Cp*W(O)(R)(R')z Cp*W(O)R[=(R' - H)] + R'H 

(3) 
R = CHzSiMe,; R' = CHzSiMe3, CHzPh 

In essence, the chemical transformations of the M=O 
links shown in reactions 1 and 2 are those classically found 
for these functional g r o ~ p s . ~ J ~ J ~  The unusual feature is 
that the M-C u bonds remain intact,13 there being no 
evidence for the occurrence of the conversions 

Cp'M(0)ZR + H-A + Cp'M(0)ZA + R-H (4) 
where H-A = a protonic acid such as HzOz or HC1. Our 
preliminary investigations also indicate that the applica- 
bility of reactions 1 and 2 is only limited by the availability 
of the requisite dioxo alkyl complexes of which we now 
have an extended series.15 Consequently, we are currently 
extending this work to include a wide range of protonic 
acids and are endeavoring to ascertain the effects of the 
M-C u bonds on the reactivities of the alkyl peroxo and 
the oxo alkylidene complexes. 
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Registry No. CpMo(NO)Mez, 94620-70-9; CpMo(N0)- 
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115364-28-8; CpW(0)z(CHzSiMe3), 96760-75-7; Cp*Mo(0)zMe, 
115364-29-9; C ~ * M O ( O ) ~ ( C H ~ S ~ M ~ ~ ) ,  115364-30-2; Cp*W(0)zMe, 
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115364-34-6; Cp*Mo(0)(q2-Oz)Me, 115364-35-7; Cp*Mo(O)($- 
02)(CH2SiMe3), 115364-36-8; Cp*W(O)($-O2)Me, 112247-13-9; 

Cp*W(O) ( q 2 - 0 2 )  (CH2SiMe3), 112247-14-0; [ Cp*Mo(NO)I2], 

115364-39-1; [ Cp*W(NO)IZl2, 115364-40-4; Cp* W(0) (Cl),Me, 
115364-41-5; Cp*W(0)(Cl)2(CH2SiMe3), 115364-42-6; Cp*W- 
(0)(CH,SiMe3)(CHSiMe3), 115364-43-7; Cp*W(0)(CHzSiMe3)- 
(CHPh), 115364-44-8; Me3SiCH2MgC1, 13170-43-9; PhCH,MgCl, 

115364-37-9; [ Cp*Mo(NO)IZ] 2, 115364-38-0; [ Cp* W (NO)Iz], 

6921-34-2. 

Supplementary Material Available: Elemental analysis and 
spectroscopic (IR, 'H and 13C{1HJ NMR) data for the nine new 
complexes and tables of fractional coordinates and isotropic and 
anisotropic thermal parameters for CpW(0) ($-02) (CHzSiMe3) 
(6 pages); a listing of structure factors (5  pages). Ordering in- 
formation is given on any current masthead page. 
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Summary: On treatment with (trimethylstanny1)lithium in 
THF at -78 OC, 1,4-dichlorobutadienes (4) gave the 
stereoisomeric 1,4-bis(trimethyIstannyl)- 1,3-butadienes 
(5-7). Compounds 5 and 7 may be converted to the 
corresponding 1,4dilithio-l,3-butadienes (1 and 3) by 
treatment with excess methyllithium, while 6 and 7 may 
be converted to 1 by reaction with <1 equiv of methyl- 
lithium. 

Organopolylithium compounds have attracted consid- 
erable attention due to the interest in their unusual 
structures.l Thus, it has been argued that (12,32)-1,4- 
dilithio-1,3-butadiene (1) possesses a symmetrically bridged 
structure 2,2 which is stabilized by favorable electrostatic 
and orbital interactions. Since MO calculations (4-31G/ / 
STO-3G) indicate that 1 is 44 kcal/mol more stable than 
its E$-isomer 3,3 it should be possible to effect conversion 
of 3 to the more synthetically useful l.5 We report here 
a facile preparation of 1, which provides indirect but 
convincing evidence for the greater thermodynamic sta- 
bility of 1 over 3. 

- W L I  

LI 

1 
LI 
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3 

The reaction of an isomeric mixture of 1,4-dichloro- 
1,3-butadienes (4)6 with an excess of (trimethylstanny1)- 
lithium in THF at  -78 "C gave a 60% yield of the 1,4- 
bis(trimethylstannyl)-1,3-butadienes (5-7) in the ratio of 

(10) Typically, stirred colorless solutions of CP'M(O)~R were treated 
with a shght excess of the requisite reagent (either 30% HzOz(aq) or HC1 
in EtzO), and the mixtures were stirred for 3-12 h whereupon they re- 
mained colorless or became yellow. Removal of volatiles from the final 
solutions in vacuo and recrystallization of the remaining residues from 
Et10 afforded the desired products in 70-95% yields as crystalline, air- 
stable solids. 

(11) See. for examDle: MacLaunhlin, S. A.: Murray, R. C.: Dewan, J. 
C.; Schrock, R. R. O&mometalli& 1985, 4, 796. 

demic: New York, 1978. 

ample being provided by WzO8(CHZCMe&." 

Spool, A. J.  Am. Chem. SOC. 1984,106,6305. 

tion. 

(12) Kochi, J. K. Organometallic Mechanisms and Catalysis; Aca- 

(13) Such inertness of W-C bonds to HCl is quite rare, another ex- 

(14) Feinstein-Jaffe, I.; Gibson, D.; Lippard, S. J.; Schrock, R. R.; 

(15) Legzdins, P.; Phillips, E. C.; SBnchez, L., manuscript in prepara- 
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(1) Schleyer, P. v. R. Pure Appl. Chem. 1983,55,355; 1984,56, 151. 
Setzer, W. N.; Schleyer, P. v. R. Adu. Organomet. Chem. 1985,24,354. 
Maercher, A.; Theis, M. Top. Curr. Chem. 1987, 138, 1. 

(2) An X-ray structure of the tetraphenyl derivative of 1 shows this 
bridged structure. Schleyer, P. v. R., private communication. 

(3) Kos, A. J.; Schleyer, P. v. R. J.  Am. Chem. SOC. 1980, 102, 7928. 
(4) However, see: Streitwieser, A., Jr. Acc. Chem. Res. 1984, 17, 353. 
(5) (a) Low-yield preparations of 1 have been reported: Ashe, A. J., 

111; Drone, F. J. Organometallics 1985,4, 1478. Ferede, R.; Noble, M.; 
Cordes, A. W.; Allison, N. T.; Lay, J., Jr. J .  Organomet. Chem. 1988,339, 
1. (b) For substituted 1,4-dilithio-1,3-butadienes: Reich, H. J.; Reich, 
I. L. J .  Org. Chem. 1976, 40, 2248. Atwell, W. H.; Weyenberg, D. R.; 
Gilman, H. J.  Org. Chem. 1967,32, 885. Smith, L. I.; Hoehn, H. H. J.  
Am. Chem. SOC. 1961, 83, 4406. Ashe, A. J., 111; Drone, F. J. Organo- 
metallics 1984, 3, 495. 

(6) Criegee, R.; Horauf, W.; Schellenberg, W. D. Chem. Ber. 1953,86, 
126. Bartlett, P. D.; Wallbillich, G. E. H. J.  Am. Chem. SOC. 1969, 91, 
409. 
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