
1882 Organometallics 1988, 7, 1882-1883 

mesitylgermylene. These data are consistent with 515- and 
380-nm bands of dimesitylgermylene-chlorine and -sulfur 
complexes and contrast markedly with the behavior of 
silylene or carbene with allylic  compound^.^ 
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Summary: 1,1,2,2-Tetrakis(2,6diethyIphenyl)digermirane 
(3) was prepared by the reaction of tetrakis(2,6-diethyl- 
phenylwigermene (2) with diazomethane. The photolysis 
of 3 with a high-pressure mercury lamp yields germene 
4 and germylene 5. The digermirane 3 reacts with pyr- 
idine N-oxide, sulfur, and selenium to yield the insertion 
products of 0, S, and Se into the germanium-germanium 
bond. 2,2,3,3-Tetrakis(2,6diethylphenyl)azadigermiridine 
(12) was prepared by the reaction of 2 with phenyl azide. 

Synthesis of small-ring systems involving a germanium- 
germanium bond have received considerable attention 
because of interest in the reactivity of the reactive ger- 
manium-germanium bonds in the ring.'+ However, di- 
germiranes and azadigermiridines have not been isolated 
or very well characterized, although recently synthesis of 
a disilirane' and an azadisiliridine8 was reported by Ma- 
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samune and West. Here, we report the first synthesis and 
reactions of a novel digermirane and an azadigermiridine. 

Irradiation of a cyclohexane solution of hexakis(2,6-di- 
ethylpheny1)cyclotrigermane ( l ) 3 b p 4  a t  room temperature 
with a low-pressure mercury lamp afforded tetrakis(2,6- 
diethylpheny1)digermene (2) in good yield.3b A cyclo- 
hexane solution of 2 (prepared from 0.5 mmol of 1) was 
transferred to an ethereal solution of diazomethane (ca. 
5 mmol, dried by KOH and degassed) under argon at -78 
"C. After the addition was completed, the resulting mix- 
ture was warmed to room temperature. During the reac- 
tion, dinitrogen was evolved and the solution became pale 
yellow. Crystallization of the residue from hexane afforded 
1,1,2,2-tetrakis(2,6-diethylphenyl)digermirane (3) as col- 
orless crystals in 72% yield (based on the cyclotrigermane 
1 used) (Scheme I). 

The structure of 3 was confirmed by spectroscopic 
analysis ['H NMR (CDCl,) 6 0.87 (t, J = 7 Hz, 24 H, CH,), 
1.30 (s, 2 H, GeCH2Ge), 2.76 (9, J = 7 Hz, 8 H, CH,), 2.91 
(9, J = 7 Hz, 8 H, CH2), 6.8-7.4 (m, 12 H, Ar); 13C NMR 
(CDC13) 6 6.99 (t, GeCH2Ge), 15.32 (9, CH,), 30.12 (t, CH,), 
125.41 (d, Ar), 128.75 (d, Ar), 138.85 (9, Ar), 149.77 (9, Ar); 
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mass spectrum, m/e (relative intensity) 692 (3, M'), 559 
(8, M+ - Ar), 354 (13, Ar2Ge=CH2), 340 (100, Ar2Ge), 207 
(48, ArGe); UV (hexane) A,, 300 nm (log E 4.24)] as well 
as elemental analy~is .~ In the 13C NMR spectrum of 3 the 
characteristic three-membered ring carbon was observed 
at 6.99 ppm. Digermirane 3 is fairly stable toward air and 
moisture. The formation of 3 can be rationalized in terms 
of a dipolar addition of diazomethane to 2 followed by loss 
of N P .  

Irradiation of a benzene solution of 3 (0.072 mmol) in 
the presence of an excess of 2,3-dimethyl-1,3-butadiene (5 
mmol) with a high-pressure mercury lamp through a Pyrex 
filter for 2.5 h provided 1-germacyclopent-3-ene 6 in 50% 
yield3c as well as polymeric material. Using a large excess 
of methanol as a trapping reagent led to the formation of 
two products, quantitative yields of methoxymethyl- 
germane 71° and methoxygermane 8." These results clearly 
indicate that digermirane 3 is fragmented into the corre- 
sponding germene 4 and germylene 5 as shown in Scheme 
11. While germylene 5 reacted efficiently with the buta- 
diene and methanol, germene 4 did not react with the 
butadiene and underwent polymerization. 

Digermirane 3 is inert toward atmospheric oxygen but 
is readily oxidized by pyridine N-oxide in refluxing benzene 
to give 1,2,4-oxadigermetane 911 in quantitative yield. In 
contrast, oxadigermetane 9 was not isolated from the re- 
action of 3 by m-chloroperbenzoic acid, probably due to 
the unstability of 9 under acidic conditions. Elemental 
sulfur and selenium also reacted with 3 to give the ring 
expansion products 10l2 and 1113 in 87% and 94% yields, 
respectively (Scheme 111). 

(9) Compound 3: mp 196-197 OC dec. Anal. Calcd for C11HUGe2: C, 
71.15; H, 7.86. Found: C, 71.06; H, 7.90. 

(10) Compound 7 was prepared independently by the reaction of di- 
chlorobis(2,6-diethylphenyl)germane with methylmagnesium iodide fol- 
lowed by treatment with MeOH/Et3N as shown. 

1. MeMpl ,OMe 
A r 2 G e C ' 2  2 MeOH,Et3N) ArzGe  

'Me 
Compound 7: 'H NMR (CDCl,) 6 1.00 (t, J = 7 Hz, 12 H, CH,), 1.02 (s, 
3 H, GeCH3), 2.75 ( q , J  = 7 Hz, 8 H, CH,), 3.40 (s ,3  H, OCH3), 6.9-7.4 
(m, 6 H, Ar); high-resolution mass calcd for CZ1HmOGe (M+ - Me) 
371.1428, found 371.1441. 

(11) Compound 9: mp 194-195 OC; 'H NMR (CDC13) 6 0.89 (t, J = 7 
Hz, 24 H, CH3), 2.69 (s, 2 H, GeCHZGe),2.85 (9, J = 7 Hz, 16 H, CHz), 
6.9-7.3 (m, 12 H, Ar); lSC NMR (CDCl,) 6 15.71 (9, CH,), 28.39 (t, CHz), 
32.88 (t, GeCH2Ge), 126.06 (d, Ar), 129.37 (d, Ar), 139.55 (8 ,  Ar), 149.03 
(8 ,  Ar); mass spectrum, m / e  (relative intensity) 708 (13, M+), 678, (11, M+ 
- 0 - CH2), 575 (13, M+ - Ar), 442 (15, M+ - 2Ar), 356 (27, ArzGe=O), 
354 (5, Ar2Ge=CH2), 340 (100, ArzGe). Anal. Calcd for CIlH,OGe2: C, 
69.55; H, 7.69. Found C, 69.49; H, 7.70. 

(12) Compound 10: mp 121-123 OC; 'H NMR (CDCl,) 6 0.91 (t, J = 

CHJ, 2.93 ( 8 ,  2 H, GeCH2Ge), 6.9-7.3 (m, 12 H, Ar); 13C NMR (CDC1,) 
6 15.49 (q, CH,), 28.82 (t, CHz), 37.66 (t, GeCH2Ge), 126.23 (d, Ar), 129.21 
(d, Ar), 140.85 (8 ,  Ar), 148.38 (8 ,  Ar); mass spectrum, m / e  (relative in- 
tensity) 724 (1, M+), 591 (100, M+ - Ar), 372 (13, Ar,Ge=S), 354 (26, 
Ar,Ge=CH,), 340 (52, ArzGe). Anal. Calcd for C,,H,SGe2: C, 68.01; 
H, 7.52. Found C, 67.56; H, 7.65. 

(13) Compound 11: mp 128-129 OC; 'H NMR (CDClJ 6 0.92 (t, J = 

CHz), 3.27 (8 ,  2 H, GeCH2Ge), 6.9-7.3 (m, 12 H, Ar); I3C NMR (CDC1,) 
6 15.49 (q, CH3), 28.93 (t, CH3,40.79 (t, GeCH,Ge), 126.17 (d, Ar), 129.J5 
(d, Ar), 140.37 (s, Ar), 148.17 (8 ,  Ar); mass spectrum, m / e  (relative in- 
tensity) 770 (15, M+), 637 (100, M+ - Ar), 418 (15, ArzGe=Se), 354 (41, 
ArzGe=CH2), 340 (73, ArzGe). Anal. Calcd for CI1HUSeGe2: C, 63.86; 
H, 7.05. Found C, 63.68; H, 7.16. 

7 Hz, 24 H, CHS), 2.82 (4, J = 7 Hz, 8 H, CHZ), 2.84 (q, J = 7 Hz, 8 H, 

7 Hz, 24 H, CHS), 2.63 (q, J = 7 Hz, 8 H, CHZ), 2.84 (q, J = 7 Hz, 8 H, 

Scheme V 

1 Ar,Ge=NPh Ph 

I +  Pyridine-N-1 I hv ,, 

- 1 5 X = S  
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Having the analogous digermirane-containing nitrogen, 
digermene 2 reacted with phenyl azide to yield colorless 
crystals of 2,2,3,3-tetrakis(2,6-diethylphenyl)azadigermi- 
ridine (12)14 in 68% yield (Scheme IV). 

Azadigermiridine 12 is remarkably stable toward at- 
mospheric oxygen or moisture and does not decompose 
even when heated to its melting point (mp 217-219 "C). 
Photolysis of 12 with 2,3-dimethyl-1,3-butadiene or 
methanol produced only products from germylene 5 in 
good yield. Although germanimine 13 was not trapped by 
butadiene or methanol, it is quite reasonable to assume 
that germanimine 13 and germylene 5 are generated in the 
photodecomposition of 12 as in the case of digermirane, 
thiadigermirane, and selenadigermirane.2b Azadigermi- 
ridine 12 also reacted with pyridine N-oxide, sulfur, and 
selenium to yield the four-membered ring products 14,15 
15,16 and 16l' in 58%, 12%, and 81% yields, respectively 
(Scheme V). 
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(14) Compound 12: 'H NMR (CDClJ 6 0.71 (t, J = 7 Hz, 24 H, CHJ, 
2.62 (q, J = 7 Hz, 8 H, CH2), 2.68 (q, J = 7 Hz, 8 H, CHz), 6.5-7.4 (m, 
17 H, Ar, Ph); 13C NMR (CDCl,) 6 14.97 (4, CH,), 30.35 (t, CH2), 119.30 
(d), 123.82 (d), 125.64 (d), 128.11 (d), 129.16 (d), 141.90 (s), 148.36 (s), 
153.00 (e ) ;  mass spectrum, m / e  (relative intensity) 769 (2, M'), 678 (11, 
M+ - NPh), 636 (2, M+ - Ar), 473 (9, Ar3Ge), 431 (24, ArzGe=NPh), 340 
(100, ArzGe), 207 (59, ArGe); UV (hexane) A, 270 nm (log e 4.60). Anal. 
Calcd for ClcHc,NGes: C, 71.83: H, 7.47. Found C, 71.65; H, 7.45. - -. - 

(15) Compound 14: mp'287-290 OC; 'H NMR (CDC1,) 6 0.80 (t, J = 
7 Hz, 24 H, CHn), 2.60 (9, J = 7 Hz, 8 H, CHS), 2.70 (q, J = 7 Hz, 8 H, 
CHz), 6.5-7.4 (m, 17 H, A;, Ph); mass spectrum, m / e  (relative intensity) 
785 (2, M+), 694 (72, M+ - NPh), 561 (100, M+ - NPh - Ar), 431 (15, 
Ar2Ge=NPh), 356 (12, Ar,Ge=O), 340 (57, Ar,Ge). Anal. Calcd for 
CaH5,NOGez: C, 70.36; H, 7.31. Found C, 70.36, H, 7.41. 

(16) Compound 15: mp 217-218 OC; 'H NMR (CDCl3) 6 0.80 (t, J = 
7 Hz, 24 H, CH,), 2.65 ( q , J  = 7 Hz, 8 H, CHz), 2.80 ( q , J  = 7 Hz, 8 H, 
CHz), 6.5-7.4 (m, 17 H, Ar, Ph); mass spectrum, m / e  (relative intensity) 
801 (11, M+), 710 (100, M+ - NPh), 668 (67, M+ -Ar). Anal. Calcd for 
CUIH5,NSGe2: C, 68.96; H, 7.17. Found: C, 68.88; H, 7.22. 

(17) Compound 16: mp 201-203 OC; 'H NMR (CDCl,) 6 0.80 (t, J = 

CH,), 6.5-7.3 (m, 17 H, Ar, Ph); mass spectrum, m / e  (relative intensity) 
847 (2, M+), 756 (25, M+ - NPh), 431 (100, ArzGe=NPh), 418 (51, 
Ar,Ge==Se). Anal. Calcd for CaH5,NSeGeS C, 65.14; H, 6.77. Found: 
C, 65.01; H, 6.84. 

7 Hz, 24 H, CH,), 2.62 (q, J = 7 Hz, 8 H, CHZ), 2.75 (4, J = 7 Hz, 8 H, 
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