Spontaneous and Induced Carbonylation of (C5Me4Et)2RU2S4

Ann E. Ogllvy and Thomas B. Rauchfuss'

School of Chemical Sciences, University of Illinois Urbana, Illinois 6 180 1

Received April 19, 1988

Summary: $Cp^*_{2}Ru_2S_4$ ($Cp^* = C_5Me_4Et$, 1) reacts with CO to give $Cp^*_{2}Ru_{2}S_{4}(CO)_{x}$ (x = 1, 2), the first example of metal-centered addition to a cyclopentadienylmetal sulfide. 1 can be carbonylated under ambient conditions in the presence of PBu₃, as a sulfur-abstracting agent, to give $Cp^*_{2}Ru_2S_2(CO)_2$. Sequential addition of PBu_3 and CO to a solution of 1 fails to give any carbonylated products. A variety of new $Cp^*_{2}Ru_{2}S_{x}(CO)_{v}$ compounds are formed in the thermal as well as the photochemical reactions of $Cp^*_{2}Ru_2(CO)_4$ and elemental sulfur.

Organometallic sulfides of the type $Cp_2M_2S_4$ have elicited considerable attention in the area of small molecule activation and cluster synthesis.¹⁻³ All known addition reactions of dimeric cyclopentadienylmetal sulfides result in the binding of the addend to the sulfur atoms. On the basis of our studies on the insertion reactions of Cp_2TiS_5 we have suggested that many *apparent* additions to the sulfur centers may in fact result from the facile migration of substrates from the metal to the coordinated sulfide.⁴ This suggestion is now supported by our finding that carbon monoxide adds to the metal centers in $Cp_{2}Ru_{2}S_{4}$ to give a series of dimeric ruthenium carbonyl sulfides.

Toluene solutions of $Cp_{2}Ru_{2}S_{4}$ (Cp_{2} = $C_{5}Me_{4}Et_{1}$, 1) react completely with carbon monoxide (≥ 4 atm) at 60 °C. No reaction occurs at room temperature under the same conditions. The progress of the carbonylation can be easily monitored by reverse-phase $HPLC⁵$ (Figure 1). The principal product is $Cp_{2}^{*}Ru_{2}S_{4}(CO)_{2} [1(CO)_{2}]$ which can be isolated as dark blue-green microcrystals after flash chromatography (66% yield). $1(CO)_2$ was characterized by elemental analysis and spectroscopic methods.6 The formulation is further supported by FD mass spectrometry which shows a molecular ion peak at m/z 686. The 300-MHz ¹H NMR spectrum features a quartet, two singlets, and a triplet in a 2:6:6:3 ratio, indicating that the Cp* groups are equivalent and that they are bisected by a time-averaged plane of symmetry. The observation of a

(1) Weberg, R. **T.;** Haltiwanger, R. C.; Laurie, J. C. V.; Rakowski University, N. 1, Haurwaller, N. C., Laurie, 3. C. V., Haussine (New York), N. J. Am. Chem. Soc. 1986, 108, 6242 and references within.
Kubas, G. J.; Ryan, R. R. J. Am. Chem. Soc. 1985, 107, 6138.
(2) Rauchfuss, T. B.; Rod

SOC. **1986,** *108,* **3114.**

(3) Darkwa, J.; Lockemeyer, J. R.; Boyd, P. D. W.; Rauchfuss, T. B.; Rheingold, A. L. J. Am. Chem. Soc. 1988, 110, 141. Bolinger, C. M.; Weatherill, T. D.; Rauchfuss, T. B.; Rheingold, A. L.; Day, C. M.; Wilson, S. R. Inor **1987, 15, 219.**

(4) Giolando, D. M.; Rauchfuss, T. B. J. Am. *Chem.* SOC. **1984,106, 6455.** Giolando, D. M.; Rauchfuss, T. B.; Rheingold, A. L.; Wilson, S. R.

Organometallics **1987,** 6, **667. (5)** The HPLC setup consists of a Varian **2510** pump, Varian **2550** variable wavelength detector, and a Spectraphysics integrator. Samples were analyzed at **580** nm by using HPLC grade acetonitrile as the mobile packing) as the stationary phase. The flow rate was 1 mL/min .

(6) Anal. Calcd C, **42.06;** H, **5.00.** Found C, **42.47;** H, **5.12.** FDMS *(m/z,* '02Ru): **686** P'), **658 (P'** - CO). 'H NMR (C&,): **6 2.17 (q, 4** H), **1.62 (s, 12** H), **1.42** (e, **12** H), **0.90** (t, **6** H). IR (hexane): **1958** cm-'.

Figure 1. HPLC trace from an early stage in the carbonylation of 1 to 1 (CO)₂.

single $v_{\rm co}$ band in the IR spectrum (1958 cm⁻¹, hexane) indicates that $1({\rm CO})_2$ possesses an inversion center consistent with the structure **trans-1,4-[Cp*Ru(CO)],S4.** The crystallographic characterization *of* the analogous *trans*l,4-[(MeCp)Ru(PPh3)],S4 was described by **us** last year.'

Solutions of $1({\rm CO})_2$ undergo decarbonylation (80 °C, toluene) to give the air-sensitive pine-green monocarbonyl
 $Cp^*_{2}Ru_{2}S_{4}(CO)$ [1(CO)] in 90% yield.⁸ This mono- $Cp_{2}Ru_{2}S_{4}(CO)$ [1(CO)] in 90% yield.⁸ carbonyl may be converted to the dicarbonyl $1(CO)_2$ upon treatment with CO (30 atm) at *60* "C (eq 1). The 'H NMR $spectrum of 1(CO)$ shows a multiplet (CH_2CH_3) , four singlets (CH_3) , and another multiplet (CH_2CH_3) , indicating that the Cp* groups are nonequivalent but that both are bisected by a plane of symmetry. The IR spectrum shows two $v_{\rm co}$ bands at 1970 and 1932 cm⁻¹ (hexane). The low frequency of the $v_{\rm co}$ band indicates the presence of a relatively electron-rich metal center.⁹ The analogous $(C_5H_4Me)_2Fe_2S_4(CO)$ exists as both trans (1950 cm⁻¹) and cis (1985 cm⁻¹, C_6H_{12} solution) isomers in solution. The structure of the latter compound features nonequivalent CpFe centers bridged by a pair of η^1 , η^2 -S₂ moieties.¹⁰

While solutions **of** 1 are unreactive toward CO at room temperature, a rapid reaction ensues when the **sulfur** abstracting agent $(n-Bu)_{3}P$ is added. In a typical experiment,

⁽⁷⁾ Amarasekera, **J.;** Rauchfuss, T. B.; Rheingold, A. L. *Znorg. Chem.*

^{1987, 26, 2017.&}lt;br>
(8) FDMS (m/z , ¹⁰²Ru): 658 (P⁺), 690 (P⁺ + S), 630 (P⁺ - CO). ¹H

(NMR (C_eD₆): δ 2.09 (m, 4 M), 1.64 (s, 6 H), 1.62 (s, 6 H), 1.44 (s, 6 H),

1.43 (s, 6 H), 0.81 (m, 6 H). IR (hexane): 1

a solution of 21.3 μ L of $(n-Bu)_{3}P$ (2.3 equiv) in 10 mL of CO-saturated toluene was slowly added dropwise to a solution of 24.4 mg of **l** in **25** mL of CO-saturated toluene. The phosphine discharges the intense blue color characteristic of **1** resulting in a pale yellow solution. After several hours, the golden brown product was purified by filtration through silica gel and recrystallization from $CH₂Cl₂/hexane$. Elemental analysis and FDMS indicate the formulation $\mathbf{Cp^*}_{2}\mathbf{Ru}_{2}\mathbf{S}_{2}(\mathbf{CO})_{2}$ (yield 60%).¹¹ ¹H NMR and IR spectroscopy indicate a centrosymmetric molecule which suggests the following structure (eq **2).11** We note

$$
S-S \n\begin{matrix}\nS-S & S \\
\vdots & \vdots \\
\downarrow & \downarrow \\
\downarrow & \downarrow \\
\downarrow & \downarrow\n\end{matrix}
$$
\n
$$
C\rho^*Ru - S - RuC\rho^* \stackrel{-2S}{\longrightarrow} C\rho^*Ru \stackrel{S}{\longrightarrow} SUC\rho^* \n\begin{matrix}\n\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow\n\end{matrix}
$$
\n
$$
(2)
$$

that this $S_2(CO)_2$ compound would have the same number of valence electrons as Roussin's red anion $Fe₂S₂(NO)₄²$. The latter has a planar M_2S_2 core with a short Fe--Fe contact.12 So far we have been unsuccessful in obtaining X-ray-quality single crystals **of** the dicarbonyl. Obviously the phosphine-induced carbonylation of 1 follows a different pathway than the thermal process. When 1 is treated with the phosphine in the absence of CO, a red compound is formed which is itself unreactive toward CO. These results parallel our study of the phosphine-induced reaction of 1 and acetylenes that leads to the formation of dithiolene complexes $Cp_{2}Ru_{2}S_{2}C_{2}R_{2}.^{2}$

Several of the compounds described above are also formed in variable yields in both the photochemical and thermal (60 °C) syntheses of 1 from $Cp_{2}Ru_{2}(CO)_{4}$ and 0.5-1 equiv of S_8 (toluene solvent). We observed the following new compounds after standard chromatographic workup: 13 red $\mathrm{Cp^{*}}_{2}\mathrm{Ru}_{2}\mathrm{S}_{5}(\mathrm{CO})^{14}$ (13% yield), black-green $\text{Cp*}_2\text{Ru}_2\text{S}_6(\text{CO})_2^{15}$ (variable amounts), and traces of a turquoise isomer of $Cp*_{2}Ru_{2}S_{2}(CO)_{2}.^{16}$ On the basis of the 'H NMR spectra, the penta- and hexasulfides are chiral; the latter possesses equivalent Cp* ligands while the former has no symmetry (eight methyl singlets). Both

(13) Flash chromatography was carried out by using 32-63-um Merck **silica gel eluting with toluene.**

(14) Anal. Calcd C, 40.07; H, 4.98. Found C, 40.60; H, 5.19. FDMS *(m/z,* **'"Ru): 690 (P+), 658 (P+** - S), **722 (P+** + S), **630 (P+** - **COS). 'H** NMR (C₆D₆): δ 2.05 (q, 2 H), 1.86 (q, 2 H), 1.62 (s, 3 H), 1.60 (s, 3 H), 1.58 (s, 3 H), 1.56 (s, 3 H), 1.40 (s, 3 H), 1.40 (s, 3 H), 1.33 (s, 3 H), 1.33 (s, 3 H), 0.85 (t, 3 H), 0.71 (t, 3 H). IR (CH₂Cl₂): 1970 (s The (C₅Me₅) derivative of this compound has been isolated by J. Wachter **and his group in Regensburg.**

1.51 (s, 6 H), 0.75 (t, 6 H). IR (CH_2Cl_2) : 1963 cm⁻¹. **(15) FDMS** *(m/z,* ¹⁰²Ru): 750 **(P⁺), 690 (P⁺** - **COS)**, 658 **(P⁺** - **COS**₂). **H** NMR (C_6D_6) : δ 2.09 $(q, 4H)$, 1.61 $(s, 6H)$, 1.59 $(s, 6H)$, 1.54 $(s, 6H)$, species can be quantitatively converted to 1 by photolysis in toluene. The spectroscopic data indicate that the hexasulfide is structurally analogous to 1.5 - $(MeCp)Ru (PPh_3)$]₂S₆.⁸

1,5-L(C₅R₅)RuL1₂S₆ (L=CO, PPh₃; R₅=H₅ or Me₄Et)

In summary, the carbonylation of 1 represents the first example of a metal-centered ligand addition to a cyclopentadienyl metal sulfide. The metal centers in l(CO), are good π donors and therefore provide the driving force for the carbonylation of 1 despite the relatively high formal oxidation state of Ru(II1). The carbonylation of 1 involves the stepwise unfolding of the M_2S_4 core and demonstrates the facultative nature of the μ -S₂ ligand. Lastly, desulfurization reagents permit the carbonylation of 1 to proceed under very mild conditions. This pattern is reminiscent of the proposed role of anion vacancies in heterogeneous metal sulfide catalysis.¹⁷

Acknowledgment. This research was supported by the National Science Foundation. Field desorption mass spectra were recorded on a MAT 731 supported by NIH (GM27029). We thank Dr. J. Wachter for communication of results prior to publication.

1, 101953-49-5; *tran~-l(CO)~,* 115226-90-9; *trans-l(CO),* 115226-91-0; ck-l(CO), 115268-39-8; **Cp*2Ru2S2(CO)2, Registry No.** 115226-92-1; $\text{Cp*}_{2} \text{Ru}_{2}(\text{CO})_{4}$, 115226-93-2; $\text{Cp*}_{2} \text{Ru}_{2}(\text{CO})_{2}$, 115226-94-3.

 (16) FDMS $(m/z, {}^{102}\text{Ru})$: 622 (P⁺), 594 (P⁺ - CO). ¹H NMR (C_6D_6) : **6 2.31 (4, 4 H), 1.79 (s, 12 H), 1.72 (s, 12 H), 0.88 (q, 6 H).**

(17) Gellman, A. J.; Bussell, M. E.; Somorjai, G. A. J. *Catal.* **1987,107, 103 and references therein.**

The structure of trans-l,4-[Cp*Ru- (18) Note added in proof: (C0)lzS4 has been confirmed by single-crystal X-ray diffraction. The molecule very closely resembles $trans-1,4-[(MeCp)Ru(PPh₃)]₂S₄$.

An Appraisal of the Steric versus Electronic Requirements of Gold(I) Phosphine Substituents In Clusters: The Crystal Structure of $[HF_{4}(CO)_{12}[AuPEt_{3}]_{2}B]$

Catherlne E. Housecroft" and Musa S. Shongwe

University Chemical Laboratory, Lensfield Road Cambridge CB2 lEW, U.K.

Arnold L. Rhelngold"

Department of Chemistry, University of Delaware Newark, Delaware 19716

Received April **26,** *1988*

Summary: The elucidation of the crystal structure of one isomer of the mixed metal boride $[HF_{4}(CO)_{12}\lbrace AuPEt_{3}\rbrace_{2}B]$ illustrates that the geometry of the hexametal atom core and the location of the endo-hydrogen atom depend upon the steric, rather than electronic, requirements of the gold(1) phosphine substituents. Electronic effects, however, are responsible for the AuPR₃ fragment interacting with Fe-B rather than Fe-Fe bonds of the core cluster.

⁽¹⁰⁾ Chanaud, H.; Ducourant, A. M.; Gianotti, C. J. Organomet. Chem. 1980,190,201. For an update on this chemistry see: Weberg, R.; Haltiwanger, R. C.; Rakowski DuBois, M. Organometallics 1985, 4, 1315. Brunner, H.; Janietz, N.; Meier, W.; Sergeson, G.; Wachter, J.; Zahn, T.;

Ziegler, M. L. Angew. Chem., *Int. Ed. Engl.* 1985, 24, 1060.

(11) Anal. Calcd: C, 46.41; H, 5.52. Found: C, 46.18; H, 5.44. FDMS

(m/z , ¹⁰²Ru): 622 (P⁺). ¹H NMR (C₆D₆): δ 2.24 (q, 4 H), 1.69 (s, 12 H), 1.5

⁽¹²⁾ Lin, X.; Huang, J.; Lu, J. *Acta* **Crystallogr., Sect.** *A:* **Cryst. Phys.,** *Diffr.,* **Theor.** *Gem Crystallogr.* **1981,** *A37,* **C232.**